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A guest at a cocktail party must focus on one person’s
voice in a room filled with competing voices and other
noises. This ‘cocktail-party problem’ is solved
effortlessly by humans with binaural hearing1.
Recently, independent component analysis (ICA)
algorithms have provided an automated solution to
the cocktail-party problem under certain idealized
conditions2–5. The problem of isolating the electrical
activity of single neurons in population recordings
shares a number of similarities with the challenge of
isolating voices at a cocktail party so we call it the
‘neural cocktail-party problem’.

Wire-electrode and photodiode arrays record
hundreds of individual neurons taking part in neural
cocktail parties6–10. Action potentials from individual
neurons can be related to behavior, either by
recording from behaving animals implanted with
electrode arrays or by optically recording fictive
behavior patterns in reduced preparations.
Unfortunately, extracting spike trains from these
large data sets has remained labor intensive because
automated methods for data analysis have not kept
pace with advances in recording technology.

ICA (Fig. 1) promises to improve our ability to
extract neural signals from recorded mixtures. We
focus here on how ICA can be used to recover spike
trains automatically from optical recordings made in
the isolated brain of the seaslug, Tritonia diomedea,
using a voltage-sensitive dye11 (Fig. 2). Because the
success or failure of separating spike trains is easy to
judge, spike-train recovery provides a good real-world
application for demonstrating the power and
highlighting the limitations of ICA. 

ICA finds spike trains by unmixing the optical
signals into their most independent parts. Similar to
its widely used predecessor, principal components

analysis (PCA), ICA removes redundancy from
multivariate data. PCA transforms data so that the
co-variance between pairs of variables vanishes,
whereas ICA attempts true redundancy reduction by
minimizing mutual information (Box 1). 

Because ICA traces its roots to blind source
separation in signal processing12, some signal-
processing jargon must be introduced. The basic
problem is to recover n sources given n different
linear mixtures of sources (Fig. 1). The mixtures could
be, for example, sound recordings from microphones
at a cocktail party or in the case of optical recordings,
output from photodiode detectors. The interesting
sources are cocktail party guests or neurons,
respectively, but noise sources must also be
considered, as explained below. ‘Sources’ are also
called ‘latent variables,’ ‘hidden variables,’ or ‘causes’
in other contexts. We use ‘detectors’ and ‘mixtures’
interchangeably, and these are also called ‘measured
variables’ or ‘manifest variables’ in other contexts.

All sorting and filtering algorithms for recovering
spike trains from multiple-detector recordings face
similar challenges11,13–16. First, recording artifacts must
be removed or ignored. Second, spikes corresponding to
action potentials must be detected. Third, action
potentials from neurons must be separated from each
other in spite of similarities in their shape. Fourth,
coincident action potentials that appear on the same
detector(s) must be separated and assigned to
appropriate neurons. Finally, action potentials from the
same neuron should be put into a single group even
when they change shape, for example during high-
frequency bursts of spikes. The latter problem has
defeated many conventional spike-sorting algorithms
that assume a fixed spike shape17,18. Ideally, even
subthreshold membrane potential fluctuations would
be detected and assigned to the appropriate neuron.

Spike-sorting algorithms group spikes according to
their shape because action potentials with similar
shapes will often correspond to action potential trains
from a single neuron13–18. However, there is also
information about the identity of a spike from its
spatial distribution on the detector array. If spikes
are sorted on each detector separately, this potential
source of information will be lost. Modern algorithms
sort spikes based on events from multiple channels
simultaneously, which makes some use of the spatial
pattern of activity14,19,20. 

ICA uses only the spatial information2–4. Many ICA
algorithms actually shuffle the time points before the
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analysis. The spatial pattern of activity on the detector
array is assumed to be constant for each neuron. ICA
recognizes this pattern of activity and collects
redundant signals into a single channel. Each unmixed
channel is an independent component (Fig. 1).

Of course neurons are not independent of one
another because they can be coupled by synapses or
they can share inputs. Nevertheless, the individual
spike trains might be the statistically independent
components of population activity (Fig. 2). Note that
dependence in this context refers only to instantaneous
overlaps, not time-delayed dependencies. Sources that
are not active simultaneously will not need to be
separated anyway. Furthermore, ICA does not find
truly independent components because independence
does not exist in the real world, and the independent
components are really only as independent as is
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Fig. 1. The independent component analysis model. n hypothetical source signals (S) are mixed
linearly and instantaneously by an unknown mixing process (M). Mixed sources are recorded by a set
of n detectors (D). Independent component analysis (ICA) (W) transforms the detected signals into n
independent components (IC) (C). If the assumptions of the model are not violated, the independent
components will be the original sources except that scale, sign, and order will not be preserved. The
number of sources is assumed to be equal to or less than the number of detectors, which leads to the
completeness problem described in the text. 
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Fig. 2. Independent components of optical recordings. (a) Upper traces
show six channels of raw data selected from a group of 448 detectors
recording the membrane potential of Tritonia neurons stained with a
voltage-sensitive dye6. The y axis is proportional to transmitted light,
which is, in turn, proportional to fluctuations in membrane potential8.
Bursts of action potentials can be seen in the raw data, but each
detector records from several different neurons, and artifacts are also
present on many channels. Data were collected at 1 KHz. The
independent component analysis (ICA) algorithm returned 448
independent components eight of which are shown in the lower panels
(1–8). The x axis (time) is not changed by independent component
analysis (ICA). Following ICA the y axis is arbitrary because scale is not
preserved. Many independent components appeared to be spike trains

from individual neurons (2,3,6–8). Other components were recording
artifacts (1,5). (b) Coincident events were separated automatically. The
left column shows raw data from two neighboring photodiode
detectors (1 s total time). There appears to be action potential activity
from two different neurons on both traces. The traces on the right show
two independent components (1 s total time) that appear to be the
unmixed action potential trains. The first two action potentials of each
neuron in addition to the final one coincided. Coincident action
potentials were common in these recordings because the neurons
share presynaptic inputs. (c) ICA-separated nonstationary action
potentials. Spikes changed shape during a high-frequency burst
(shown after ICA, 1 s total time) and these types of changes actually aid
the ICA separation (see text).



possible. If the spike trains are the main, or high-
entropy, parts of the recorded signals, then they must
be separated in order to make the resulting
components as independent as possible. 

In general, dependencies between sources will not be
a major concern in deciding whether or not to use ICA
on a particular data set. Interesting sources tend to be
sufficiently independent. Instead, other assumptions of
the ICA model – linear, instantaneous mixing of
spatially stationary sources in which the number of
sources is less than or equal to the number of detectors
(Fig. 1 and discussed below) – must be considered.

Algorithms that solve the neural cocktail-party
problem will be important for analyzing population
recordings from closely spaced neurons, and these types
of recordings will be of interest for several reasons. The
distance between neurons connected by synapses has
been minimized by natural selection to keep axons and
dendrites as short as possible21–23. Neurons that send or
receive the same information will tend to sit close to one
another in the nervous system. If neurons share inputs,
it is more probable that they will be neighbors in order
to minimize axon length in presynaptic neurons.
Similarly, axons carrying information with coincident
action potentials might be adjacent in order to minimize
dendrite length of shared postsynaptic targets. 

To summarize, analysis of recordings from closely
spaced neurons will be necessary to analyze neurons
connected by synapses, to measure redundancy and
to understand population codes in the nervous
system. For example, it is of interest to record from as
many neurons as possible in a cortical column, such
as an orientation column in the primary visual cortex
(V1) during a visual task. ICA might be able to help
sort out recordings of such a neural cocktail party.

ICA in action

Optical recordings were made with a photodiode-
detector array containing 448 elements in the isolated
brain of the nudibranch seaslug Tritonia diomedea
after staining with a voltage-sensitive absorbance dye6.
During each recording, a fictive swimming episode was
activated by electrical stimulation of a nerve root.
Fictive swimming lasted ~30 s and was characterized
by bursts of action potentials in many of the neurons
that form the swimming network of Tritonia24,25. The
raw data contained mixtures of action potentials and
recording artifacts. The activity of most neurons was
recorded by more than one detector, and one detector
often recorded action potentials from multiple neurons. 

Recovering spike trains from these large data sets
has previously required up to a week of operator time,
mostly for correcting errors made by the spike-sorting
algorithms26. By contrast, ICA processes data automatically
and requires only a few hours of operator time to proceed
from raw data to separated spike trains11 (Box2).

ICA returned a continuous estimate of membrane
potential for each neuron, and artifacts were assigned
to separate channels (Fig. 2a). Overlaps were
automatically resolved (Fig. 2b). Action potentials of
different shapes and sizes from the same neuron were
put into a single, independent component (Fig. 2c).
Although subthreshold changes, such as postsynaptic
potentials or intrinsic membrane fluctuations, were
detected rarely in these recordings, ICA can recover
subthreshold potentials in addition to spikes. This
complements advances in voltage-sensitive-dye
technology that make the detection of subthreshold
potentials possible27. 

Changes in spike shape actually help the ICA
algorithm. To understand why, consider the
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Consider the following three sequences of ones and
zeros, labelled A, B and C:

A 111011101001000000101111000001011001...

B 001001101100010110110010011111111010...

C 110010000101010110011101011110100011...

Each sequence might be considered to be a
measured variable or detector and each column a
data point or time point. No two sequences co-vary.
There is a probability of ~0.5 that B will be zero when
A is zero, and that C will be one when A is zero, etc.
However, zero co-variance does not imply
independence. (C is the exclusive – or of A and B.)
The columns contain only four of the possible eight
combinations of ones and zeros. This is a third-order
redundancy because it depends on consideration of
all three variables.

Principal component analysis (PCA) could not
reduce the dimensionality of this three-dimensional
system because PCA only removes co-variance from

multivariate data. By contrast, ICA minimizes the
mutual information among variables, which includes
third-order redundancies of this typea,b. This system
could be represented by two new sequences, for
example X and  Y:

X 000100010110111111010000111110100110...

Y 001101111010101001100010100001011100...

where (0,0) has replaced (1,0,1), etc. 
The original sequences contained a third-order but

no second-order relationship. In practice, mutual
information normally includes co-variance in addition
to third and higher order dependencies. ICA
minimizes redundancies of all orders.
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Box 1. Minimizing mutual information
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Matrix multiplication

Linear transformations, such as independent component analysis
(ICA), are matrix multiplications. Two matrices can be multiplied if
their inner dimensions agree, that is if the number of columns in the
first equals the number of rows in the second. Suppose matrix  W has
dimensions m by n (m rows by n columns) and matrix D has dimensions
n by p. The resulting matrix (C) has outer dimensions m by p:

The individual entries in C are calculated as follows:

Cij = Σk=1 to n (wik)(dkj)

where i takes values from 1 to m and j takes values from 1 to p. That
is, each entry in C is calculated by summing the individual products
when the ith row of  W is multiplied by the jth column of D.

A few other matrix algebra rules must also be remembered.
The identity matrix (I) has ones on the diagonal from top left to
bottom right and zeros everywhere else. Multiplying by I does not
change a matrix, e.g., ID = D. The transpose of a matrix, signified
with a superscript  T exchanges the rows with the columns of a
matrix. By definition, multiplication with an inverse reverses
multiplication so if  WD = C, then  W–1C = D. Methods for inverting
matrices can be found in a linear algebra text and computers
running mathematical software can invert even large matrices.

Finding independent components

Consider the case of multiple detectors sampling the
environment over time. If the signals from each detector form the
rows of the data (or detector) matrix D, then each column of D is a
time point. Independent components analysis (ICA) finds the
square matrix  W (n = m = the number of detectors) such that
WD = C. The rows of C are called ‘independent components’
because they are forced to be as independent as possiblea. The
independent components are the same length as the data and
there are the same number of independent components as there
are of detectors. This can be represented schematically:

The hope is that the independent components (rows of C) will be
of interest. W is called the ‘unmixing matrix’ because it unmixes
the detected signals in D, which are assumed to be mixtures of
signals from different sources. Each row of  W unmixes the
detected signals (D) into one independent component (row of C)
so rows of  W are sometimes called unmixing functions or ICA
filters. 

If the assumptions of the ICA model are correct, the rows of C
will be the original source signals. However, neither the sign nor the
scale will be preserved and the independent components will be
shuffled with respect to the original sources. The trick of course is
finding (or estimating) W, and this is accomplished by the ICA
algorithm (see main text)b. One ICA algorithmb starts with a  W that
eliminates correlations, similar to a principle component analysis
solution (Box 1), and iteratively refines the entries in  W until it
converges on the independent components (Box 3).

Viewing the columns of W–1

ICA also reveals where the source signals were located with respect to
the detectors. Postulated sources form the rows of a matrix S. If these
sources are the same as the independent components, that is S =C, then
W−1 =M, where M is the matrix that originally mixed the signals and:

It might even be helpful to remember the mixing matrix M as
something like an upside down  W, which is the unmixing matrix.
Of course a matrix inverse is not a matrix turned over. W
originally stands for ‘weight matrix’ because the entries in  W
weight how much each detector will contribute to each
independent component. Also, the entries in  W became weights
in a neural-network-based ICA algorithmb.

The entries in M are determined by physical properties of the
recording set-up, such as the distance between sources and
detectors. One row of M mixes the original source signals for one
detector, in the same way that one row of  W unmixes one
independent component. Now the useful part: a column of M, or
in practice a column of  W−1, reveals which detectors recorded a
particular independent component. The columns of M are
sometimes called ‘basis functions’.

Although the detectors are stacked on top of each other in one
dimension in D, they might also have a two or three-dimensional
structure. A column from  W−1 can be visualized with respect to the
original arrangement of detectors to reveal the pattern of detectors
that recorded the corresponding independent component; this is a
‘place map’(see main text). 

Reconstructing raw data without artifacts

W−1 can also be used to reconstruct raw data without artifactual
sources of signal. Each column of  W−1 corresponds to one
independent component, some of which are the source signal of
interest, but many of which can be recording artifacts. If the columns
of  W−1 corresponding to artifacts are set to zero (the zero vector)
resulting in the matrix  W−1*, and remembering that W−1C =D, W−1* is
multiplied by C to reconstruct D without artifacts (now D*):

Ordering independent components

No standardized ordering method exists in ICA. Independent
components could be ranked, similar to principal components, by
the amount of variance each explains in the original data. Entropy
can be used instead of variance (G.D. Brown, unpublished).
However, a mathematical ordering for independent components is
not necessarily important in applications. Similar to principal
components, interesting independent components would not
necessarily follow a generalized ordering scheme anyway because
interest is application-specific. For example, in fMRI recordings,
the ICA components with the largest variance tend to be artifactsc.
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unrealistic example of two neurons that always fire
synchronous action potentials and where the action
potentials never change shape. ICA would consider
these as one source, even if the spike shapes from the
two neurons were different. However, assuming that
the fluctuations themselves are independent,
fluctuations in the shape of the spikes makes it
possible to separate the two signals. Recalling the
classic cocktail-party problem, it would be more
difficult for a human to attend to an individual
speaker if everyone were saying the same thing at
exactly the same time. (Of course this is improbable,
and computerized ICA algorithms could still separate
such a chorus as the sound waves from the various
speakers would arrive with different phases.)

ICA also recovered the spatial pattern of activity on
the detector array for each neuron (Fig.3, Box2), which
are often called ‘place maps’. The brain region
underneath the detector array was photographed so that
the place maps revealed the location of each neuron.
Place maps from neurons with similar spiking patterns
can be combined to form topographic maps(Fig.3).

The ICA algorithm itself puts no constraints on the
shapes of the place maps5. However, we know a priori
that detectors that record the activity of a single
neuron should be close together. When the patterns
associated with spike trains formed tight clusters of
detectors on the array (Fig. 3c and 4b), this provided
corroborative evidence that we had indeed recovered
spike trains from individual neurons. Thus,
knowledge of what the place maps should look like
can help validate the ICA separation. In practice, the
individual spike trains themselves are easily
distinguished from artifacts or mixtures of spike
trains (Figs. 2 and 3). Similarly, it is easy for a
listener to distinguish a recording of one person
talking from a recording of fragments of speech taken
from several conversations. 

Artifacts also have distinctive patterns of activity
on the detector array (Fig. 3c), and ICA allows raw
data to be reconstructed without artifacts (Fig. 5).
This type of artifact rejection (Box 2) could be
important, even when ICA is not needed to separate
the spike trains from one another. For example,
neurons might already be isolated on a single channel
when using arrays of fine-wire electrodes8,9, but
artifacts might still appear on multiple channels. If
artifacts can be isolated by ICA, then they can be
eliminated from the data. 

Choosing an ICA algorithm

The basic ICA step is a linear change of variables
(Box 2). The difficult part is done by the ICA
algorithm, which must find an unmixing matrix to
separate the independent components (BOX 3).
Although ICA can be used effectively without a full
understanding of the underlying algorithm, some
knowledge of possible pitfalls of ICA is essential and
will be discussed further in the next two sections.

Several ICA algorithms have appeared recently,
including artificial neural networks4,5 (Box 3),
projection pursuit methods2, maximum-likelihood
approximations28,29, fixed-point algorithms30 and
wavelet-based methods31. Computer code (often in
MATLAB), which in most cases can be downloaded
from the internet, is available from the creators of the
algorithms. Existing algorithms are being improved,
and newer, more-powerful algorithms will probably
appear32–34. At the moment, it is unclear if there is a
single best method or even what the application-
dependent variables might be, so it is probably a good
idea to compare several algorithms on a new data set. 

We compared ICA algorithms on optical recording
data and also compared ICA to PCA (Fig. 4). PCA did
not separate spike trains adequately, indicating that
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Fig. 3. Independent component analysis recovers the position of each neuron. (a) Eight seconds of
raw optical recording data are shown at low resolution with the two-dimensional structure of the
photodiode array preserved. Each pixel shows the activity recorded by one detector over 8 s. Bursting
neurons can be seen. (b) Independent components were classified as one of four types of
neurons6,24,25 (top eight traces) or as artifacts (bottom two traces) and color coded (45 s total time). 
(c) For each of the four types of neurons and the artifacts represented in (b) the detector array is
represented in the x–y plane of each place map. The z axis is the relative contribution of each detector
to one independent component. As expected, independent components corresponding to single
neurons formed tight clusters on the detector array. By contrast, recording artifacts (light blue) were
distributed more widely. (d)  The individual place maps for each type of neuron shown in (b) and (c)
were thresholded and plotted in two dimensions as a colored spot. The recorded area of the Tritonia
pedal ganglion shows the positions of the neurons in the brain. All data were collected at 1 KHz.



statistical relationships between detectors beyond
pairwise interactions are important for the separation
(Box 1). Consistent with other studies, most ICA

algorithms produced similar results11,34,35. There was
some trade-off between computer time and the quality
of the separation with the different algorithms,
especially as the number of detectors increased, but
more striking was the overall similarity of the results.
Using the infomax algorithm (Box 3), the number of
operations required to do ICA grows as a fourth power
of the number of detectors and linearly with the
number of data points. In practice, >100 channels can
be routinely separated with a desktop PC.

The completeness problem

The ICA model assumes that there are the same
number of detectors (e.g. photodiodes) as there are
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Fig. 4. Principal component analysis does not solve the neural cocktail-
party problem. (a) Raw optical recording signals taken from a four by four
group of photodiode detectors (8 s total). The arrangement of detectors has
been preserved. (b) After independent component analysis (ICA), eight
action potential trains from single neurons (traces 1–7 and 9) were
apparent (8 s total, y axis arbitrary). Components 11 and 13 also showed
action potential activity. Another component (8) appeared to be a recording
artifact. In actual experiments6, separation of spike trains was even higher
quality because more detectors were used (see Figs 2 and 3). (c) Principal
component analysis (PCA) was not able to isolate multiple spike trains
from individual neurons. PCA also failed to separate recording artifacts
from spike trains. In general, the PCA solution was unacceptable except in
the most trivial cases.



source signals3 (Fig. 1). Thus, ICA finds a complete
representation of the data. Standard ICA algorithms
can recover fewer sources than detectors (the
undercomplete case, but fail when there are more
sources than detectors (the overcomplete case). In
addition to the sources of interest, ICA considers
unwanted nongaussian signal sources, such as
movement artifacts or line noise, as independent
components (Figs 2 and 3). 

The completeness problem leads to a counter-
intuitive result: more data are not always better
(Fig. 6). When sources only appear sporadically
during a recording, more data can mean more sources
and a higher probability that data will be
overcomplete. Conversely, ICA can be used for
overcomplete data if the sources are not active all the
time (Fig. 6b), that is, if subsets of the data are either
complete or undercomplete. For example, artifacts
can be removed from overcomplete optical recording
data (Fig. 5) if not all neurons are active when the
artifact appears.

The completeness problem applies locally in
addition to applying globally: the number of sources
recorded by any subset of detectors, where these
sources are not recorded by any other detectors, must
be less than or equal to the number of detectors in
that subset. ICA will fail on any part of the data that
is overcomplete. For example, ICA cannot separate
two neurons that are recorded by one detector if their
activity is not recorded by other detectors. Thus, all
independent components must be examined after
unmixing to determine if the analysis has been
successful.

Encouragingly, algorithms that find overcomplete
representations have been introduced29,32,34. In the
future, it will be possible to separate more spike
trains than there are detectors. Of course no matter
how much algorithms improve, there will be some
limit on the number of spike trains that can be
accurately separated when recording with a limited
number of detectors. 

Other constraints

Although ICA could be applied to any type of
multivariate data, some algorithms require many

data points to do the analysis. In signal processing,
researchers often sample many times per second so
this might not be a problem.However, an ecologist
might sample an ecosystem once per year.
Nevertheless, there is reason to be optimistic about
using ICA on categorical and other types of data35–37.
The ability of an ICA algorithm to transform data in
an interesting way depends on the number of
measured variables, the number of latent variables
and the amount of data collected. 

The automated cocktail-party problem, that is,
using a machine to isolate multiple voices recorded by
multiple microphones, can be used to illustrate other
assumptions of the ICA model. First, sources must be
stationary. Guests cannot move relative to the
microphones during recording. Second, there can be
no delays, introduced, for example, because a speaker
is closer to some microphones than others. Similarly,
the method can be defeated by echoes. These
assumptions might be reasonable for the neural
cocktail party (Figs 2–6) where the recording
configuration is stationary and mixing occurs at the
speed of light, but not for sound recordings at a real
cocktail party. The ICA algorithm can be generalized
to data with time delays, but only at the expense of
introducing many more parameters that must be
estimated38,39. The ICA model also assumes that the
source of the signals are nongaussian, which should
be true for most interesting source signals. Finally,
ICA assumes that sources are mixed linearly, which
might not be true generally, but is a good first
approximation in many applications.

Who is the loudest person at the cocktail party?
Another limitation is a failure of the algorithm to
preserve sign or scale (Box 2). When recovering trains
of action potentials from optical recordings (Figs 2–5),
the size and spatial extent of the signals depend on
factors unrelated to membrane voltage (e.g., the size
of the neurons), therefore ordering of the independent
components is not critical (Box 2).

Other successes

The problem of dimensionality is fundamental to any
reductionistic science because interesting problems
almost always require the analysis of multiple
variables. If too few variables are studied, the system
cannot be adequately characterized. If too many
variables are considered, analysis and interpretation
of data become unwieldy. ICA addresses the latter
problem by eliminating redundancy such that the
independent components often occupy a lower
dimensional space than the original data. Even when
dimensionality is not reduced, that is when all of the
independent components are retained, ICA helps to
insure that the same data is not processed multiple
times by, for example, detecting and counting action
potentials from the same neuron on multiple detectors.

We have had success applying ICA to recordings
[provided by E.J. Chichlinsky (Salk Institute for
Biological Studies, CA, USA)] from planar electrode
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Fig. 5. Data
reconstructed without
artifacts. Raw data can be
reconstructed without
artifacts (Box 2). The top
trace is raw data with high
and low frequency
artifacts (2 s total; y axis
proportional to
transmitted light). The
lower trace is the same
signal after reconstruction
but without the
independent components
associated with the
artifacts. All data were
collected at 1KHz.



arrays7. However, in several other recordings from
wire-arrays, including tetrodes and octrodes,
individual wires often record from different parts of
the same neuron. This adds time delays and presents
serious challenges to ICA algorithms. As mentioned
above, new algorithms are being developed to address
the delay problem38,39. 

Because ICA algorithms use the pattern of activity
in space to compute independent components, it

would be useful to position detectors to collect
information in all three spatial dimensions. For
recordings done in an optical plane, a two-
dimensional array might be sufficient. However, the
spread of electrical signals in three dimensions could
be advantageous in processing data from wire-
electrodes40.

Besides sorting out what each individual is saying at
the neural cocktail party, ICA can also help determine
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The basic step in independent component analysis
(ICA) is a linear transformation of data, D, into
independent components, C, by a weight matrix W
(see Box 2):

WD = C

The goal of any ICA algorithm is to find the weight
matrix W. 

Infomax falls into the large category of neural-
network algorithms that minimize or maximize some
cost functiona. Input neurons represent the data,
output neurons are the independent components and
the synaptic weights between inputs and outputs
form W. The true cost function for ICA is the
independence of the outputs, but this is difficult to
measure directly. Infomax maximizes the mutual
information between the inputs and outputs to
approach independence for the outputs. [Remember
that mutual information is just a higher-order
generalization of correlation (see Box 1) and that
entropy is something like variance.]

The principle behind infomax is illustrated for one
input (d) and one output (c) in Fig. I. Output neurons
have a sigmoidal activation function. The steepest
part of the sigmoid is aligned to the mode of the input
distribution and the slope is scaled to match the
variance. This flattens the output distribution,
maximizing its entropy. Because the output is driven
only by the input, the maximum entropy state of the
output also corresponds to maximum mutual
information between the input and the output.

For multiple inputs and outputs, the outputs are
spread in a hypervolume instead of the single output
dimension shown in Fig. I. Output entropy is still
maximized, but there is a term in the cost function
that prevents two outputs from reaching the same
high-entropy state. Thus, redundancy between
outputs is also minimized, which is the goal of ICA.

Before using infomax, weights in  W are initialized
to the principal components solution, in which
outputs are uncorrelated (Box 1). Then, parameters
are adjusted or ‘learned’ in a stepwise manner
following a gradient (the derivative of the cost
function) leading to the point where the mutual
information between inputs and outputs is
maximized. 

We actually use the ‘natural-gradient’ version of
infomax because it simplifies the learning rules used
to adjust the weights:

C =WD
y = 1/(1+e−c)

∆W = ε[I+(1−2y)CT]W

where ε is a learning rate parameter, and I is the
identity matrixb. C is denoted in italics here because
the rows of C do not become the independent
components until after learning is complete. On each
step, the learning-rate parameter is reduced and the
changes in the weights (entries in W) become smaller.
Typically, the algorithm converges after 50–200 steps
on the optical recording data analyzed in the main text.

References

a Bell, A.J. and Sejnowski, T.J. (1995) An information-
maximisation approach to blind separation and blind
deconvolution. Neural Comput. 7, 1004–1034

b Amari, S. et al. (1996) A new learning algorithm for blind
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Box 3. Infomax

Fig. I. Maximizing entropy in a sigmoidal neuron. The input, d, with
the density function f(d) is passed through a nonlinear function,
c=g(d). The maximum amount of information the output can provide
about the input is realized when the entropy of the output
distribution f(c) is maximized, i.e., when the output distribution is
flat.



which neurons are speaking as a group36. Population
codes (correlated firing of ensembles of neurons)
selected with ICA can predict behavior, such as correct
and incorrect trials in a motor-learning task37.

One of the first applications of ICA to neuroscience
was to the EEG, which is simply the neural cocktail-party
problem at a different level of organization41. Although
exactly what constitutes a source in EEG recordings
remains unclear, the independent components of EEG
might turn out to be clinically useful42.

Another neuroscience application, ICA of
functional magnetic resonance imaging (fMRI) data,
has normally used the spatial as oppose to the time
domain35. Imaging data are collected from many
voxels (cubic regions of three-dimensional space) at
multiple time points. Time points, rather than
detectors, are used as the measured variables and
ICA collects signals that are redundant in time into
a single channel. The independent components of
fMRI data are spatial maps forced to be as
independent as possible that often correspond to
known brain structures or to a particular type of
artifact. 

The time course of each independent brain region can
be recovered in the same way that the spatial pattern of
activity on the detector array was recovered for each
neuron in optical recordings (Box2; Fig.3). Independent
three-dimensional fMRI maps show that widespread
brain areas can vary together, which contrasts with the
localized pattern of activity of Tritonia neurons on the
photodiode-detector array (Fig.4).

Can nervous systems find independent components?

The infomax ICA algorithm (Box 3) reflects
principles found to operate in the insect eye and
incorporates biologically realistic principles of
neurons4,43–45. However, the algorithm also depends
on a global calculation that is not realistic
biologically. Nevertheless, independent

components can be calculated in several ways and 
it seems natural to wonder if nervous systems ever
do ICA. 

The brain as a whole is able to solve the cocktail-
party problem, especially using binaural input, but
the neural mechanisms for doing so are unclear1,46.
Interestingly, there are more neurons in the
auditory cortex that monitor the location of sound
sources than there are for spatial localization per
se46. One possibility is that this information is used
to separate sources of activity so that individuals
can attend to one speaker or process one source of
sound at a time.

Barlow has emphasized the importance of
redundancy reduction in all sensory modalities48.
Redundant signals carry common information,
whereas sensory systems typically seek novel, high-
information inputs. Receptor adaptation,
habituation and predictive filtering are all
mechanisms for ignoring low-information
stimuli49,50. However, these do not necessarily result
in an ICA-like representation of the incoming
sensory information. 

The retina removes some redundancy from visual
inputs, perhaps to reduce the number of retinal
ganglion cell axons required to convey visual
information centrally51,52. Redundant information
tends to be local in visual scenes, so that redundant
information is often collected by neighboring
photoreceptors. To reduce local redundancies,
neurons inhibit their neighbors, which could be
accomplished by lateral inhibition from local
inhibitory interneurons.

The wire-length considerations discussed above
indicate that local redundancies also exist in the CNS
(Refs 21–23). It might sometimes be necessary to
remove redundancy in order to reduce wiring volume,
especially in long-distance projections from one
population of neurons to another, and redundancy
reduction might be one general function of local
inhibitory interneurons. 

Redundancy reduction in the visual pathway also
allows the cortex to use an efficient representation of
visual information47. Properties of the receptive fields
of neurons in the primary visual cortex of mammals
resemble the regularities found in natural scenes by
ICA (Refs 53–55). According to this view, the
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Fig. 6. The overcomplete problem. (a)  Two seconds of raw data from eight (1–8) nearby channels
were separated into spike trains by independent components analysis (ICA) shown in (b). The ICA
showed that traces 1–4 and 6 were clearly spike trains and trace 7 appeared to contain a mixture of
spikes from different neurons. (c) Spike trains were not separated when more time points, including
the 2 s of data in (a), were used as input to the ICA algorithm. Although ICA was carried out on a much
longer recording, only the results from the 2 s corresponding to (a) and (b) are shown. The failure in
this case was as a result of the overcomplete problem (the number of neurons and artifacts exceeded
the number of raw data channels when more time points were used for the analysis).
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connections from the thalamus to the primary visual
cortex and the neurons in the cortex itself (e.g., layer
IV pyramidal cells) form something that resembles an
ICA unmixing matrix (Box 2; Fig. 1). Cortical neurons
represent patterns of inputs that are each
approximately independent over the ensemble of
natural images.

Conclusions

Although some classical algorithms for data
analysis date back more than a century, ICA is 

only about a decade old. Until we know more about
how each of the ICA algorithms performs on
different data sets, we should be cautious when
applying and interpreting results. In particular,
assumptions, such as no time delays and as many
detectors as sources, should be checked, and 
results from a range of data sizes should be
compared. As with any other technique, ICA 
can be misused, but if it is used properly it can
provide a powerful tool for eavesdropping on
neural-cocktail parties.
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