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ABSTRACT It is generally understood that there is a preictal phase in the development of a seizure and
this precictal period is the basis for seizure prediction attempts. The focus of this study is the preictal global
spatiotemporal dynamics and its intra-patient variability. We analyzed preictal broadband brain connectivity
from human electrocorticography (ECoG) recordings of 185 seizures (which included 116 clinical seizures)
collected from 12 patients. ECoG electrodes record from only a part of the cortex, leaving large regions
of the brain unobserved. Brain connectivity was therefore estimated using the sparse-plus-latent-regularized
precision matrix (SLRPM)method, which calculates connectivity from partial correlations of the conditional
statistics of the observed regions given the unobserved latent regions. Brain connectivity was quantified using
eigenvector centrality (EC), fromwhich a degree of heterogeneitywas calculated for the preictal periods of all
seizures in each patient. Results from the SLRPMmethod are compared to those from the sparse-regularized
precision matrix (SRPM) and correlation methods, which do not account for the unobserved inputs when
estimating brain connectivity. The degree of heterogeneity estimated by the SLRPM method is higher than
those estimated by the SRPM and correlation methods for the preictal periods in most patients. These results
reveal substantial heterogeneity or desynchronization among brain areas in the preictal period of human
epileptic seizures. Furthermore, the SLRPM method identifies more onset channels from the preictal active
electrodes compared to the SRPM and correlation methods. Finally, the correlation between the degree of
heterogeneity and seizure severity of patients for SLRPM and SRPMmethods were lower than that obtained
from the correlation method. These results support recent findings suggesting that inhibitory neurons can
have anti-seizure effects by inducing variability or heterogeneity across seizures. Understanding how this
variability is linked to seizure initiation may lead to better predictions and controlling therapies.

INDEX TERMS Connectivity, eigenvector centrality (EC), electrocorticography (ECoG), latent inputs,
multivariate Gaussian, partial correlation, sparse-plus-latent-regularized precision matrix (SLRPM).

I. INTRODUCTION
Epilepsy, characterized by the sudden occurrence of unpro-
voked seizures, is one of the most common brain disorders,
affecting more than 50 million people worldwide. With the
goal of being able to predict seizures, many groups have
focused on examining signal properties during the preictal
period in hopes of finding a biomarker for the impend-
ing seizure. While results of these attempts have improved
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recently [1], we still don’t have a practicable seizure pre-
diction system for use in the clinical setting. Part of the
difficulty is that we also still don’t understand the preictal
global spatiotemporal dynamics and its intra-patient variabil-
ity very well. Recent research [2], [3] in animal models has
suggested that neuronal mechanism during the preictal period
may also directly influence the degree to which seizures
spread and therefore the degree to which they have clinical
manifestations [4], [5]. Preictal activity has the potential to
predict, to some extent, the likelihood that a seizure would
generalize [6]. One outstanding concern in seizure control
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therapy is the stereotypy of the preictal period and one of
the challenges in devising a seizure prediction system is
the heterogeneity in seizure onset patterns, even in a given
patient. Thus, in order to better understand seizure initiation
and propagation, it is of paramount importance to study
preictal dynamics and its intra-patient variability. Such an
understanding could lead to better predictions and controlling
therapies [7]–[9].

To analyze the variability of preictal dynamics of seizures
within patients, we used a network-based approach [10]
and probed brain connectivity from human electrocorticog-
raphy (ECoG) recordings of 185 seizures (including 116
clinical seizures) collected from 12 patients. Brain connec-
tivity was estimated using the sparse-plus-latent-regularized
precision matrix (SLRPM) method. The SLRPM method
calculates connectivity from partial correlations of the con-
ditional statistics of the observed regions given the unob-
served or latent regions, thus identifying observed regions
that are conditionally independent of both the observed and
latent regions. Brain connectivity was quantified using the
eigenvector centrality (EC) measure, and from this measure,
a degree of heterogeneity was calculated for the preictal peri-
ods for all seizures in each patient. Results from the SLRPM
method are compared to those from the sparse-regularized
precision matrix (SRPM) and correlation methods, which
do not account for the latent inputs when estimating brain
connectivity.

The correlation method is the most widely used method
for estimating brain functional connectivity [11]–[14]. Infer-
ring connectivity using the correlation method can be mis-
leading or inaccurate since brain regions might show high
correlation due to a common input, which may or may not
be measured or observed, and not due to strong physical con-
nections between themselves [15]–[17]. Some researchers
have suggested using partial correlations to identify direct
connections between pairs of brain regions assuming all the
regions can be measured [15], [16], [18]–[23]. Partial cor-
relations can find pairwise brain regions which are condi-
tionally independent given all the other brain regions thus
removing the influence of the common inputs. However,
the partial correlation method assumes that all the brain
regions are measured or observed, which might lead to
incorrect estimation of brain connectivity since most brain
regions remain unobserved using current recording tech-
nologies, especially in ECoG recordings, which are used
in our analysis. The sparse-plus-latent-regularized precision
matrix (SLRPM) method is appropriate when there are
unobserved or latent regions interacting with the observed
regions [24], [25]. The SLRPM method yields partial corre-
lations of the conditional statistics of the observed regions
given the latent regions thus identifying observed regions
that are conditionally independent of both the observed and
latent regions. This method is briefly described in the next
section.

II. METHODS
A. SLRPM
Assuming that the observed and latent variables jointly fol-
low a multivariate Gaussian distribution, SLRPM solves the
following regularized optimization problem (see [25] for a
derivation of this optimization problem),

argmin
X,L s.t X−L�0,L�0

[
− log det(X− L)+ tr(S(X− L))

+α‖X‖1 + β tr(L)] , (1)

where α and β are the regularization parameters balanc-
ing the error in the likelihood and the sparse and low rank
terms, S is the sample covariance matrix, X is the precision
matrix of the conditional statistics of the observed variables
given the latent variables, and L is the matrix modeling the
effect of the latent inputs. The L1 regularization term α‖X‖1
imposes sparsity on the underlying brain connectivity and the
trace or nuclear norm regularization term β tr(L) imposes low
rankness on the common inputs from the latent or unobserved
brain regions. Furthermore, these regularizations make the
optimization problemwell behavedwhenwe have finite num-
ber of samples. The optimization problem in (1) is a convex
optimization problem and we use the alternating direction
method of multipliers (ADMM) [26] to estimate the SLRPM
for our analysis.

Application of the SLRPM method on brain connectivity
estimation has been limited. In one study [22], the researchers
have applied the method to infer connectivity in the mouse
visual cortex. SLRPMmethod outperformed both correlation
and SRPM methods in simulations and also found more
physiologically interpretable functionally connected brain
regions as compared to the correlation and SRPM methods
in experimental analysis. In our previous work [25], we have
applied the SLRPM method for characterizing preictal and
ictal dynamics during epileptic seizures from human ECoG
recordings. SLRPM method performed better than the cor-
relation and SRPM methods in simulations and also was
applied for seizure detection in 5 patients.

B. PARTIAL CORRELATION
Assuming that the output (observed variables) of the
brain regions follows a multivariate Gaussian distribution,
the sparse-regularized precision matrix (SRPM) method was
used to calculate partial correlations. SRPM can be estimated
by solving the following L1 regularized optimization problem
for X

argmin
X s.t.X�0

[
− log det(X)+ tr(SX)+ λ‖X‖1

]
, (2)

where λ is the regularization parameter balancing the error
in the maximum likelihood estimate (MLE) of the precision
matrix and the sparsity (The MLE of the precision matrix is
the inverse of the sample covariance matrix according to the
invariance principle) and S is the sample covariance matrix.
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Observe that the optimization problem in (2) is a convex
optimization problem and we use the QUIC algorithm [20] to
estimate the SRPM for its relatively faster computation time
in comparison to others [27], [28].

C. EIGENVECTOR CENTRALITY (EC)
We quantified brain connectivity using the eigenvector cen-
trality (EC) measure. EC [29] is a measure of the influ-
ence or importance of a brain region in the entire brain
network. This is based on the concept that a brain regionmore
strongly connected to high influential brain regions will have
relatively higher EC.Mathematically, the relative EC ei of the
ith brain region can be written as

ei =
1
κ

∑
j

Bijej, (3)

where Bij is the strength of connectivity (obtained from
the connectivity estimation methods (SLRPM/SRPM/
correlation)) between brain regions i and j and ej is the
relative EC of the jth brain region. In matrix-vector notation,
the above set of equations can be compactly written as a
eigenvector equation as

Be = κe, (4)

where B is the estimated connectivity matrix from the meth-
ods and e is its eigenvector. The eigenvector corresponding
to the largest positive eigenvalue contains the relative ECs
of the brain regions [29] and can be obtained by using the
power method [25], [29]. We used the brain connectivity
toolbox [30] for calculating EC. The EC measure has been
previously used by researchers to quantify connectivity in
human brain imaging studies [31]–[33] and localize seizure
onset zones in epileptic patients [34].

D. ECoG DATA ACQUISITION AND PROTOCOL
Continuous ECoG recordings from 12 patients (see Sup-
plementary Table 1 for demographics, Supplementary
Figures 1-12 for electrode locations) with long-standing
pharmaco-resistant complex partial epileptic seizures were
analyzed. Recordings were performed using a standard
clinical recording system (XLTEK, Natus Medical Inc.,
San Carlos, CA) with a 500 Hz sampling rate. The reference
channel was a strip of electrodes placed outside the dura
and facing the skull at a region remote from the other grid
and strip electrodes. Subdural electrode arrays were placed
to confirm the hypothesized seizure focus and locate epilep-
togenic tissue in relation to essential cortex, thus directing
surgical treatment. The decision to implant, the electrode
targets, and the duration of implantation were made entirely
on clinical grounds with no input from this research study.
All data acquisition was performed under protocols moni-
tored by Institutional Review Board of the Massachusetts
General Hospital according to National Institutes of Health
guidelines.

E. PREPROCESSING, REFERENCING, AND ANALYSIS
PIPELINE
ECoG recordings were first low pass filtered at 125 Hz
using a 6th order Butterworth filter to remove high frequency
artifacts. Line frequencies 60 Hz and 120 Hz were then
notch filtered using a 4th order Butterworth filter. Next,
to reduce the signals from the reference electrode, at each
time point, the average signal of all electrodes was subtracted
from each electrode [35]–[37] (this process is also known
as the common average referencing (CAR)). Finally, record-
ings were z-scored (mean-variance normalization) for each
channel [38].

Methods were applied on 4 s non-overlapping time-
windows and brain connectivity was then quantified
using EC. A total of 10 minutes before the seizure onset
(as determined clinically based on unequivocal ictal activity
signatures) was used as the preictal segment. Even though
it is difficult to characterize the preictal period of seizures
which vary from seizure-to-seizure within a patient and in
seizures across patients, we define the 10 minute preseizure
period as our preictal period for all seizures in all patients.
Such a choice is also similar to those in prior work from other
research groups [8], [9], [34], [39].

The regularization parameter λ in the SRPM method was
set to 0.02 and the regularization parameters α and β in the
SLRPM method were set to 0.02 and 0.2 respectively for all
seizures and all patients. The choice of these regularization
parameters was driven in part by simulations using artificial
networks [25] and also by the fact that the SRPM and SLRPM
methods were found to be robust to changes in the regu-
larization parameters [25] and small changes in the values
of these did not significantly change the results and hence,
the conclusions of the paper.

III. RESULTS
A. HETEROGENEITY EXAMPLE FROM 2 PATIENTS
We consider seizures from 2 patients (patients 1 and 4) as
examples and demonstrate that the degree of heterogeneity
can be highly variable for seizures across patients. Electrode
locations for patients 1 and 4 are shown in Supplementary
Figures 1 and 4 respectively. We have analyzed 5 clinical and
2 sub-clinical seizures from patient 1 and 3 clinical seizures
from patient 4.

The first important observation is that, in the EC plots
of SLRPM method for patient 1 (see Figures 1 (a)-(g), also
shown are the 15 minutes post-seizure-onset segments that
we have analyzed), the brain regions are uniformly active in
the ictal period for the clinical seizures (each of these seizures
lasted for approximately 90 seconds) and to some extent,
in the sub-clinical seizures, in contrast to the preictal period,
where there is relatively more variability across electrodes.
Similar conclusions can be drawn for seizures in patient 4,
although there is less uniformity in seizure 1 (Figure 4 (a))
than the other two seizures (Figures 4 (b) and (c)) (Also
note that the duration of ictal dynamics is relatively large for
seizure 1 as compared to those for the other two seizures.).
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FIGURE 1. EC plots for the SLRPM method for clinical ((a)-(e)) and subclinical ((f)-(g)) seizures in patient 1. Also shown is the plot (h) of the latent
inputs estimated by the SLRPM method for one example seizure (corresponding to panel (c)) in patient 1. Green lines in all plots denote the
seizure onset time.

Uniformity of seizures can also be seen in both patients for the
SRPMmethod (see Figure 2 for patient 1 and Supplementary

Figure 13 for patient 4), however no such characteristics
can be observed from the EC plots of correlation method
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(see Figure 3 for patient 1 and Supplementary Figure 14 for
patient 4). Comparison of preictal and ictal dynamics and its
implications are discussed in detail in our previous study [25].

The second important observation is that there is high
heterogeneity of the preictal active electrodes (by active elec-
trodes, we refer to those electrodes which had relatively high
EC across time) across the 7 seizures for the SLRPMmethod
for patient 1. For example, the electrodes which were active
in the preictal period of seizure 1 (Figure 1 (a)) did not show
up as active electrodes for the preictal period of seizure 2
(Figure 1 (b)). This heterogeneous characteristic was present
in the results from the SRPM method, but was absent in
the correlation method. Further insights can be inferred by
analyzing the latent inputs estimated by the SLRPM method.
In order to have a measure for the latent inputs, we calcu-
lated the sum of the eigenvalues of the low rank matrix L
estimated by the SLRPM method. An example plot from one
clinical seizure (corresponding to Figure 1 (c)) of patient 1
is shown in Figure 1 (h) (also see one example plot of
latent inputs (corresponding to Figure 4 (b)) from patient 4
shown in Figure 4 (d) which shows similar characteristics
to the plot in Figure 1 (h)). We see that the putative latent
inputs are relatively high in the preictal period (and also in
the postictal period) in comparison to the ictal period and
hence it becomes essential to estimate the precision matrix
of the conditional statistics in order to remove the influence
of these latent inputs on the recorded activity. The absence
of preictal heterogeneity in the correlation results (and to
some extent, in the SRPM results) is most probably due to
their inability to model the latent inputs and hence these
methods might produce erroneous connections among the
brain regions, resulting in an erroneous estimate of EC.

In contrast, for patient 4, the preictal active electrodes
consistently showed up in all three seizures for the SLRPM
method and hence this patient will have a low degree of
heterogeneity. Surprisingly, the SRPM method shows rela-
tively high degree of heterogeneity than the SLRPM method
and also, both methods have higher heterogeneity than the
correlation method (compare Figrues 4 (a)-(c) with Supple-
mentary Figures 13 and 14). Quantification of this degree of
heterogeneity for all patients is carried out in the next section.

B. HETEROGENEITY STATISTICS FOR ALL PATIENTS
In order to calculate the degree of heterogeneity in the preictal
period of seizures for a patient, we first calculated the normal-
ized time-average EC in the preictal period of each seizure
and then averaged the resulting ECs across all seizures for
that patient. We then found theM most active electrodes from
the resulting average EC, where M is the number of onset
channels marked by the clinician team. We next calculated
the coefficient of variability (ratio of standarad deviation to
mean) of each active electrode across all seizures for that
patient [40]. We define the average coefficient of variability
across all active electrodes as the degree of heterogeneity
(DH) for the patient. Furthermore, we also reported how
many of the active electrodes corresponded to the onset chan-

nels marked by the clinician team. We also denote ‘‘A/O’’,
where ‘‘A’’ stands for active and ‘‘O’’ stands for onset, as the
ratio of the number of active electrodes corresponding to the
onset channels identified by the clinician team to the total
number of onset channels identified by the clinical team.
We also express the values of DH as percentage. For hetero-
geneity analysis, we only considered those seizures for which
the 10 minutes preictal time-segment did not contain another
seizure. The details about the number of seizures analyzed
(total 185 seizures out of which 116 were clinical seizures)
for each patient for heterogeneity analysis are shown in Sup-
plementary Table 1.

Table 1 shows the heterogeneity statistics for all patients.
We observe that DH for SLRPM is higher than that for SRPM
for all patients except one (patient 4) and DH for SRPM is
higher than that of correlation for all patients. Furthermore we
see that the SLRPMmethod is able to identify relatively more
onset channels (28) from the preictal active electrodes in all
patients than the SRPM (22) and correlation (21) methods.
For SLRPM and SRPM methods, in 5 patients, the preictal
active electrodes did not correspond to any of the onset
channels whereas for the correlation method, this number
increased to 9. Also for SLRPM, only 28 preictal active
electrodes corresponded to the onset channels whose total
number was 119 in all patients. We also notice that there is
no direct relationship between DH and A/O for SLRPM. For
example, in patient 4, there is a relatively low DH and none of
the active electrodes corresponded to the onset channels. But
in patients 2 and 9, for which the seizures have a relatively
high DH, 7 and 12 active electrodes corresponded to the onset
channels respectively. Furthermore, The DH estimated by
SLRPM covered a relatively wider range than those estimated
by the SRPM and correlation methods.

We also calculated the correlation between the DH values
and seizure severity of the patients for the three methods.
Since there were no clinical reports of seizure severity for the
patients, the percentage of the channels involved in seizures
for the patients were used as a measure of seizure severity.
The percentage of channels involved in seizures for each
patient was defined to be the total number of onset channels
expressed as the percentage of the total number of channels
for that particular patient. The correlation values between DH
and seizure severity were found to be 0.16, 0.12, and 0.80 for
SLRPM, SRPM, and correlation methods respectively.

IV. DISCUSSION
Even though considerable research has been done to distin-
guish preictal and ictal dynamics, the variability of seizures
within patients is poorly understood. We analyzed brain con-
nectivity from human ECoG recordings of seizures collected
from 12 patients. For connectivity analysis, we used the
SLRPM method, which estimates connectivity after remov-
ing the influence of the latent inputs, which can severely
confound the inferred connectivity if not accounted for.
Conventional brain connectivity estimation methods such as
correlation or Granger causality [41], [42] do not explicitly
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FIGURE 2. EC plots for the SRPM method for clinical ((a)-(e)) and subclinical ((f)-(g)) seizures in patient 1. Green lines in all plots denote the
seizure onset time.

model the latent inputs and hence can estimate spurious
connectivity between brain regions without having any direct

connections. Brain connectivity was then quantified using
the eigenvector centrality (EC) measure and the degree of
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FIGURE 3. EC plots for the correlation method for clinical ((a)-(e)) and subclinical ((f)-(g)) seizures in patient 1. Green lines in all plots denote the
seizure onset time.

heterogeneity (DH) was calculated for the preictal periods for
all seizures in each patient.

Higher DH of applying SLRPM in comparison to the
SRPM and correlation methods underscores the importance
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FIGURE 4. EC plots for the SLRPM method for seizures in patient 4. Also shown is the plot (d) of the latent inputs estimated by the SLRPM method
for one example seizure (corresponding to panel (b)) in patient 4. Green lines in all plots denote the seizure onset time.

TABLE 1. Heterogeneity statistics for seizures in each patient for the SLRPM, SRPM, and correlation methods.

of taking the latent inputs into consideration while estimating
connectivity of brain regions. In other words, the relatively
low DH in the SRPM and correlation methods is attributable
to the common latent inputs. Few of the active electrodes
estimated by the SLRPM method correspond to the onset
channels. The activity in the other channels may (1) repre-
sent activity that leads the seizures, (2) be necessary for the
seizure to start without having involvement per se (e.g. a
permissive role), and/or (3) provide background inputs that
are sufficient to maintain a seizure. Despite the fact that
all the patients included in the study had the same epilepsy
type, namely complex partial epilepsy, the DH estimated
by SLRPM covered a relatively wider range. This indicates

that the preictal cortical connectivity across seizures, after
excluding the effect of the common latent inputs, can be
highly heterogeneous. We also did not find any obvious
age or sex related differences from the DH values estimated
by the SLRPM method, i.e., both high and low DH values
were present across genders and ages. This is consistent
with previous findings [43], which suggest that there are no
gender- or age-related differences as far as partial seizures are
concerned.

Some prior research has shown that there is desynchro-
nization among neurons in the preictal period of seizures
in both human [4], [5] and animal [44] models of epilepsy.
However, in these studies, there is an implication that
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this desynchronization is consistent across seizures and the
variability of the preictal dynamics across seizures within
patients was not rigorously studied. Ours may be the first
study addressing this important question. Recent research
[40], [45], [46] has suggested that seizures originate due to the
complex interplay of excitatory and inhibitory neurons in the
preictal period. This interplay of excitatory and inhibitory
neurons which leads to seizure generation has also been con-
firmed in simulation models of seizures [47]. By including
both homogeneous and heterogeneous connectivity in their
models, the authors were able to reproduce the spatiotem-
poral dynamics of seizure generation in patients with partial
epilepsy. The presence of higher levels of inhibitory activ-
ity could possibly induce more variability or heterogeneity,
which in turn could lead to less seizure severity. Hence the
relatively low correlation between DH and seizure severity
estimated by SLRPM and SRPMmethods are consistent with
clinical implications, whereas results from the correlation
method, which did not directly model the latent inputs, have
the wrong clinical implication. Even though this inhibitory
hypothesis is one possible explanation of the low correlation
between DH and seizure severity estimated by SLRPM and
SRPM methods, we cannot rule out the possibility of other
complex mechanisms, discussion of which is beyond the
scope of this paper.

One of the limitations of our study is that we assumed the
preictal periods to be the same (10 minutes) across seizures
and patients. However, the preictal period can be highly vari-
able from seizure-to-seizure within and across patients [48]
and is, in fact, ill-defined. In order to rigorously characterize
the preictal periods, comparison of the preseizure dynamics
with that from interictal periods is necessary [48]. Such an
analysis is, however, beyond the scope of this paper and is
a topic for future research. Moreover, we have focused our
analysis on braodband power rather than individual frequency
bands (delta, theta, alpha, beta, and gamma). Such an analysis
was motivated by prior work on epileptic seizures showing
that most preictal dynamics are common, at least to some
extent, across frequency bands [49], enabling us to capture
the most salient and reproducible preictal dynamics across
all frequency bands.

Even though SLRPM provides a way to visualize the local
cortical connectivity by conditioning on the latent inputs,
it is worth highlighting some of its limitations, which mainly
arise due to its assumptions on the statistics and structure of
the signal (ECoG recordings). The assumption of Gaussian-
distributed signal need not always hold true for cortical activ-
ity [50]. However, previously we have shown that [25] the
SLRPM method is robust to the distribution of signals in
artificial networks. Moreover, the assumptions of sparsity of
observed variables (in this case, the ECoG recordings) and
low rankness of the latent inputs need not always hold true for
an epileptic brain. In our prior work [25], we also have shown
that SLRPMperformswell for a wide range of non-sparse and
non-low rank signals using simulations of artificial networks.
Furthermore, even though SLRPM is a linear method, it is

able to perform well in the presence of nonlinearity [25],
which is often the nature of neural dynamics. The robustness
of SLRPM method to its intrinsic assumptions on the statis-
tics and structure of the ECoG recordings makes it an attrac-
tive way to analyze seizure dynamics and brain connectivity
more generally.

Despite these limitations, we have shown that a network-
based approach can be used to probe the underlying spa-
tiotemporal preictal dynamics of epileptic seizures. For the
first time, we have been able to rigorously characterize local
cortical activity while simultaneously removing the effects
of the latent inputs. Methods such as the correlation or the
Granger causality, which are widely used in neuroimaging
studies do not explicitly model the latent inputs and can
estimate spurious connectivity in the presence of common
latent inputs. Calculating the conditional statistics of brain
connectivity, we have shown that there can be a very wide
range of degree of heterogeneity across patients and suggests
the critical role of inhibitory neurons for generalization of
seizures. This might open up alternating novel approaches for
predicting and controlling seizures.

V. CONCLUSION
Preictal global spatiotemporal dynamics and its intra-patient
variability in the epileptic human brain is an important area of
research, a better understanding of which has the potential to
devise practicable seizure prediction algorithms. To address
this challenge, we adopted a network based approach and
analyzed preictal broadband brain connectivity from human
ECoG recordings. Since ECoG electrodes record from only a
part of the cortex, brain connectivity was therefore estimated
using the SLRPM method, which calculates connectivity
from partial correlations of the conditional statistics of the
observed regions given the unobserved latent regions. Results
from the SLRPM method were compared to those from the
SRPM and correlation methods, which do not account for
the unobserved inputs when estimating brain connectivity.
We found that the degree of heterogeneity estimated by the
SLRPM method was higher than those estimated by the
SRPM and correlation methods for the preictal periods in
most patients. These results reveal substantial heterogeneity
among brain areas in the preictal period of human epileptic
seizures. Moreover, the correlation between the degree of
heterogeneity and seizure severity of patients for SLRPM and
SRPMmethods were lower than that obtained from the corre-
lation method, supporting recent findings which suggest that
inhibitory neurons can have anti-seizure effects by inducing
variability or heterogeneity across seizures. Understanding
how this variability is linked to seizure initiation may lead
to better predictions and controlling therapies.
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