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Introduction 

A "graphical model" is a type of probabilistic network that has roots in 
several different research communities, including artificial intelligence 
(Pearl 1988), statistics (Lauritzen 1996), and neural networks (Hertz, 
Krogh, and Palmer 1991). The graphical models framework provides a 
clean mathematical formalism that has made it possible to understand 
the relationships among a wide variety of networ-k-based approaches to 
computation and,  in particular, to understand many neural netwosk 
algor-i thms atid architectures as  instances of a broader probabilistic 
methodology. Mot-eo~rer, this formal fsatnework has mndc i t  possible> 
to identify thaw features of neural network algosithms and architec- 
tures that arc no\lel and to extend them to other more gencral graphical 
models. This inter-play Lwtween the genesal f'osmal fsamewosk of grapli- 
ical models a n d  the exploration of new algorithnxs and architectures is 
exennplified in the chapters included in this volume. These chapters, 
chosen from Nctlrcll Corl~p~it-afiorl, include many foundational papers of 
historical importance as well as  papers that are a t  the research frontier. 
The volume is intended for a broad range of students, researchers, and 
practitioners who are interested in understanding the basic principles 
underlying graphical models and in applying them to practical problems. 

Probabilistic and information-theoretic approaches have become 
dominant in the neural network literature, as  researchers have attempted 
to formalize "adap tivity" in neural computation and understand why 
some adaptive methods perform better than others. 'The probabilistic 
framework has also provided a guide in the exploration of new algo- 
ri thms and architectures. At the same time, the no tion of "locality" has 
continued to exert a key constraint on  neural network research, restrict- 
ing the kinds of architectures and algorithms that are studied. The par- 
ticular relevance of graphical models to this research effort is that the 
graphical models framework provides formil definitions o f  both adap- 
tivity and locality. I t  does so by forging a mathematical link between 
probability theory and graph theory. 

Graphical models use graphs to represent and manipulate joint prob- 
ability distributions. The graph underlying a graphical model may be 
directed, in which case the model is ollen refesred to as  a l~c~lic~f i~c~l~oor,k or 
'1 Bnl/c>sin~r ~ic'tulork, or- the graph may he undircctcci, in \~~I i i ch  casc tlic' 
model is genesally referred to a s  a Mur.ko71 rlll~dotri ficllj. A graphical 
model has both a str~lctural con~ponent-encoded L7p the pattern oI 
edges in the gsapl1-and a paramctr-ic compo~ient-encoded by ~iumcl-- 
ical "potentials" associated with sets of cdgcs in thc graph. The selation- 
ship between these components underlies the computational machincq~ 
associated with graphical models. In particular, gencral i r~ f i~ ro~cc~  ( 7 1 ~ 0 -  
ritlr~~rs allow statistical quantities (such as likelihoods a n d  conditional 
probabilities) and information-theoretic quantities (such as mutual infor.- 
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mation and conditional entropies) to be computed efficiently. Leari~iilg 

r7lpritl1lil.s build on these inference algorithms and allow parameters and 
structures to be estimated from data. All of these probabilistic computa- 
tions make use of data structures associated with the graph-in partic- 
ular, an important data structure known as a j ~ r ~ ~ c f i o l l  frcc (see chapter 1 ) .  
The junction tree groups nodes into clusters and defines probabilistic 
"messages" that pass among the clusters; this essentially amounts to a 
graph-theoretic characterization of computational "locality" for general 
probabilistic inference. 

Many neural network architectures, including essentially all of the 
models developed under the rubric of "unsupervised learning" (Hinton 
and Sejnowski 1999) as well as supervised Boltzmann machines, mix- 
tures of experts, and normalized radial basis function networks, are 
special cases of the graphical model formalism, both architecturally and 
algorithmically. Many other neural networks, including the classical 
multilayer perceptron, can be profitably analyzed from the point of view 
of graphical models. 

The graphical model literature in A1 and statistics has contributed the 
general formalism for understanding relationships between graphs and 
probabilities; the neural network literature has contributed a rather 
far-flung exploration in the space of architectures and algorithms. This 
exploration is the principal subject matter of this book. Before turning to 
specific examples, let us give a brief overview of some of the general 
themes that have characterized this exploration. 

Classical graphical model architectures in A1 have often used localist 
representations, in which a smgle node represents a complex concept, 
such as "chair." Neural network researchers, on the other hand, have 
explored ~iistriblifcil or frrctorinl representations in which single nodes 
represent simpler properties that are broadly tuned and oveslapping. 
This has allowed much larger problems to be tackled. Also, the graphical 
model literature has ~eneral ly  focused on exact probabil~stic inference or 
sampling-based inference methods, whereas neural network research 
has studied a wider- class of approximate inference methods. For exam- 
ple, the rrrctl~l-hclri, or iwriatio/r(ll, methodology developed first for- the 
Boltzmann machine and related undirected models, has flowed into 
the general graphical formalism and yielded fast new algorithms for 
approximate probabilistic inference. Finally, the neural network liter- 
ature has delved deeply into nonlinear classification m d  regression, 
contributing a variety of new methods for parameter estimation and 
regularization in graphical models, with a particular focus on "on-line 
algorithms" (which can be viewed as defining another, temporal, notion 
of "locality"). In general, the bi-directional flow of ideas between these 
two fields has led to a significantly broader understanding of network- 
based computation. This understanding is reflected and pursued in the 
following chapters. 

Readers new to the topic of graphical models should start with the 
first three sections of the chapter by Smyth, Heckerman, and Jordan 
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(chapter I), which provide a short overview. A full presentation can be 
found in any of several recent textbooks (e.g., Cowell et al. 1999). See 
also Jordan (1999) for several tutorial articles that provide basic back- 
ground for the chapters presented here. 

The Boltzmann Machine -- 

The Boltzmclt7n nzncllii7c (chapter 2 )  is a probabilistic network of binary 
nodes. Historically, the Boltzmann machine played an important role in 
the development of the neural network field, as the first general multi- 
layer architecture to employ hidden units between the input and output 
nodes. As we discuss in this section, the Boltzmann machine is a special 
case of an undirected graphical model, or Mar-kou rxrlrlor~l field (MRF). 
The inference and leal-ning algorithms for Boltzmann ~nachines, a n d  in 
particular the treatment of hidden units, ex&nrplify nioi-c gawral solw 
tions to the problem of inference and learn in^ in graphic;ll models 1~1th 
latent variables. 

While general MRF's reprcserif joil;f probability clislributions as 
products of arbitrary local functions ("potentials") on the cliques of the 
graph,' the Boltzmann machine adopts a restricted par, meterimtion in 
which the potentials are formed from pairwise factors. These pairwise 
factors take' the form exp{Ji,SiSi), where I,, is the weight on the edge 
between unit i and j, and S, and S, are the (binary) values of units i 
and j, respectively. (In a general MRF, higher-order interactions such 
as JijkSiS,Sk would be included-when the nodes Si, S,, and Sk are in a 
clique, namely, are mutually interconnected). Taking products of these 
local potentials yields the total potential e~p{C;, ,~  [i,S,S,}, which, when 
normalized, defines a Boltzrnann distribution: 

i i lf 

for a quadratic er lerg  firtlctiotr E ( S )  = JijSiSj. From this joint 
probability distribution, we can define arbitrary conditional probabilities 
of one set of nodes given another set of nodes. Calculating these condi- 
tionals defines the ir~feret~ce yroblerll for Boltzmann machines. 

For general Roltzmann machines, in particular for the fully connectelci 
Boltz~nann machines that have generally been studied in the litera ture, 
there are no structural properties (conditional independencies) to take 
advantage of, and the inference problem is intractable. Approximate 
inference tecl~niques have generally been emp1oyc.d-in pa I-ticula r, sto- 
chastic sampling (Gibbs sampling) enhanced with simulated annealing. 
Although these methods do provide a way t o  st.udy thc Bol tzman~i  

' A  cliqrrc is a fully connected subgraph. A clique consisting of r r  binary nodes can  L x  
in one of 2" configurations, where a cor$~yrrr-llfic,r~ is an  assignment of a binary value to 
each node in the clique. A l~ofcrrlinl is a function that assigns a nonnegative real nirmhel. 
to each configuration. 
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machine empirically, they are slow and are generally viewed as complex 
(particularly when used in the setting of learning algorithms, where 
multiple simulated annealing passes are required). Historically, when 
the multilayer perceptron became popular, Boltzmann machines lost 
their luster. 

The fact tha t the worst-case, fully connected Boltzmann machine 
presents no opportunities for fast inference does not imply that Boltz- 
mann machines in general present no such opportunities. This point 
of view was emphasized by Saul and Jordan (chapter 3), who studied 
Boltzmann machines in which the hidden units form a tree. They 
showed that in such architectures i t  is not necessary to resort to Gibbs 
sampling to solve the inference problem; rather, a simple deterministic 
recursion known as clecrmafio\~ can be employed to calculate the condi- 
tional probabilities. The time requ~red for the computation is propor- 
t~onal to the width of the graph These are Boltzmann machines that can 
be "solved." 

Ihe decimation rule can be generalized beyond the pairwise inter- 
actions that characterize the classical Boltzmann machine, yielding an 
exact calculation method for general MRFs. Interestingly, this rule is a 
special case of the junction tree methodology that has been developed 
for inference in arbitrary graphical models (Cowell et al. 1999). There 
appears to be no particular advantage to the decimation approach, and 
indeed the junction tree approach has the advantage of providing an 
explicit method for estimating the time complexity of inference-the time 
complexity is exponential in the size of the largest clique in the triar~gcr- 
lafed grnplr of the network. Thus i t  is possible to identify systematically 
the classes of Boltzmann machines for which exact inference is efficient. 

Mean Field Approximation - - - - - -. - - - 

in 1987, Peterson and Anderson (1987) presented an alter-native approach 
to inference for the Boltzmann machine that has had substantial impact. 
Their approach was based on an approximation known in physics as 
the "mean field" approximation. Under this approximation, the (ap- 
proximate) mean value of the conditional probability distribution at 
each node is written as a function of the (approximate) mean values of 
its neighbors, and a so-called self-consistent set of mean values is 
obtained by iteratively evaluating these functions. For the Boltzn~ann 
machine, these iterative equations turn out to take a simple classical 
form in which each node's value is the logistic function of a weighted 
sum of its neighbors' values. These are the standard nonlinear equations 
proposed by I-Iopfield (1984) for the "continuous Hopfield network," 
and they can be shown-via Lyapunov theory-to be locally convergent 
(Cohen and Grossberg 1983; Hopfield 1984). 

Peterson and Anderson's idea has been taken in two somewl~at dif- 
ferent directions. One line. of research has focused on optimization 
problems, where the mean field approach has given rise to a general 
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methodology known as  dcter.~ilirrisfic arzncalitlg (Yuille a n d  Kosowsky 
1994). In deterministic annealing, the focus is o n  the energy function 
rather than the distribution that it defines; in particular, the goal is to 
find the minima of the energy function. (The probabilistic framework 
serves the subsidiary role of smoothing the energy function.) The mean 
field equations are generally derived from the point of view of saddle 
point approximation, which gives rise to a free "temperature" parameter 
that controls the degree of smoothing. In a procedure reminiscent of in- 
terior point methods, the mean field equations are solved for a gradually 
decreasing set of temperatures. It is possible to relate the limiting solu- 
tion of these equations (as the temperature goes to zero) to the minima of 
the energy function (Elfadel 1995). 

111 ,I second bsanch of research, the focus hc?s been on  mean ficlci 
thcor). ,I.; J n~ctliodology fos approximatio~i probabilistic inference in 
g u w r , ~ l  gsapliical models. Here the> ernpliasis Ilas been o n  extending tlic 
basic apprc).~ch to a \vicier class of arc1iitectu1-c~ ci~icl on developing more 
1-efincd vessions of the approxim;ltion. A diifcscnt point of view has 
p s ~ ~ i f c d  to L ~ c  fruitful i n  whicli tlic mean field ;~ppsoximntion is viewed as  
the expression of a u o r ; o / ; o ~ ~ o l  prj~lcjplc. Given a distl-ibution P(S) that is 
costly to calculate, approximate P(S) by choosing a distsibution Q(SI/() 
from a family of approximating distributions, where tlie zmr-infior~ol p -  
r-or~refer- ,i1 indexes the family. The variational parameter is chosen so as to 
minimize the Kullback-teiblel- ( K L )  di~ler-gence between Q and P: 

where tlie sum is taken over all configurations of S (assumed discrete for 
simplicity). 

When Q(SI/() is taken to be the completely factorized distribution, 
namely, Q(S) = n, Q(Sil/lj), and when P(S) is the Bolt-zmann distribu- 
tion in equation ( I ) ,  then one obtains the mean field equations of  Peter- 
son and Anderson. That is, the Peterson and Anderson equations arise 
by taking the derivative of the KL di\rerg?nce wit11 respect to /(,  and  set- 
ting to zero. 

Saul and Jordan (1996) obser\'ed that wider class of approximations 
could be obtained by cl~oosing a wider class of a p p r o x i a t i n  distribu- 
tions Q(S1,u). Note that a completely factorized Q(SI/l) corresponds to a 
subgraph of the original graphical model in which all edges are omitted. 
13y consider-ing subgsaplis that retain some of tlic edges of tlic original 
graph, while maintaining tractability by restricting, thc subgsapl~  to be 
a sparse graph (sucli as a chain 01- ;I trc>e), niol-c refined v,~siational 
approxima lions can be obtained. Mor-eo\lcs, in n~ in i~n iz ing  tlie K1, cl ivcr-- 
gence for sucli appr-oxi:nations, i t  is ncccss;lsy to solve thc inference 
problem for the tractable subgraph. Thus exad inference algorithms 
(such as tlie junction tree algorithm) hecome suhroutines within an 
overall variational approximation. Several of the chapters included in 
the collection reflect this point of view. 
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There are other refinements to mean field theory that have been 
studied in the context of graphical models. Kappen and Rodriguez 
(chapter 6) studied the lirlcnr response correctiol? (Parisi 1988) to the naive 
mean field approximation, which provides an improved approximation 
to the second-order statistics. Applying this correction to mean field 
equations for the Boltzmann machine, they found significant improve- 
ments in inferential accuracy. 

Thus far we have focused on inference, but an equally important 
problem is that of learning the parameters of the model. In the setting of 
graphical models, the learning problem and the inference problem are 
closely related and learning algorithms generally make use of inference 
algorithms as an "inner loop." In the context of the Boltzmann machine, 
the classical approach is to use Gibbs sampling as an inner loop to obtain 
the statistics that are needed for the gradient descent procedure (the 
"outer loop"). There is, however, no reason to focus exclusively on sam- 
pling methods. For tractable architectures, it is preferable to calculate the 
necessary statistics exactly (using the junction tree algorithm). Alter- 
natively, as shown by Hinton (chapter 4), the approximation provided 
by the mean field approach provides an appropriate inner loop for a 
gradient descent algorithm for learning. This idea has been taken further 
by Neal and Hinton (1999), who develop a link between approximate 
inference and approximate "E steps" for the EM algorithm. In general, 
approximate inference algorithms can be used to increase a (tractable) 
lower bound on an (intractable) likelihood. 

Another point of contact between the neural network 1iter-a ture and the 
graphical model literature was made by Neal (chapter 7; see also Neal 
1992 for a fuller presentation). Neal observed that ccstain so-called 
asymmetric Boltzmann machines are actually special cases of dir-ccfcd 
grnplzicnl I I I O C I ~ I S ,  also known as hclief ~letxlor-ks or Bnyclsint~ 17ct:oorks. 
Directed graphical models define their joint probabilities by taking 
products of local t-oi~iliiior~nl pi.obabilities. In many ways this yields a 
simpler entry point into the graphical model framework than the undi- 
rected formalism of Boltzmann machines. 

The general definition of a joint probability distrib~ition for a directed 
graphical model is given as follows: 

where n, represents the set of parents of node S,. Note in particular that 
there is no need for a normalizing cor~stant Z in this approach to defining 
the joint probability. 

For the special case of binary S,, one interesting possibility is to take 
P(S , ]n , )  to be the logistic function of a linear weighted sum of the parent 
nodes. This yields a directed graphical model known as a sigttloid belief 
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rxtwork. As observed by Neal, a sigmoid belief network is a close cousin 
of the multilayer perceptron. Neal proposed using Gibbs sampling as the 
inferential engine for sigmoid belief networks, but, as in the case of the 
Boltzmann machine, for certain architectures (e.g., trees) one can per- 
form exact inference efficiently using the junction tree algorithm. 

Saul, Jaakkola, and Jordan (1996) derived the analog of the Peterson 
and Anderson mean field theory for sigmoid belief networks. The 
directed nature of the graph yields additional terms in the mean field 
equations that are not present in the undirected Bol tzmann machine. 
Saul and Jordan (cl~apter 5) took this approach further in the context of 
large layered networks, where a central limit theorem expansion is jus- 
tified. An interesting feature of their work is that the (approximate) 
maximum likelihood learning algorithm that they derive includes 
"weigl~t-clcc'~y" tel-ins tlia t are familiar from stn t-ist-icallv niotivatecl reg- 
ularization methods. Thus approximate inference based o n  n si~nplifying 
variational distribu tion can be preferable to exact inference for the pur- 
poses of parameter- cstima tion. 

Although most of the research on variational approxima tion a lgo- 
rithms has been carried out for networks of discrete nodes, Frep and 
Hint-on (chapter 8) have developed variational algorithms for several 
kinds of continuous nodes. The derivation presented in their chapter 
includes piecewise linear nodes and nodes with continuous sigmoidal 
nonlineari ties. 

Latent Variable Models - -. -- 

The Boltzmann machine, sigmoid belief networks, and mean field or 
variational algorithms have provided a set of links to the graphical 
models literature; another link has been provided by mixture models 
and more general latent variable models. In the s~mplest  cases these 
models are handled via exact inference methods, but in more complex 
cases the models shade into the layered graphical niodels discussed in 
the previous section, where sampling or variational methods are gener- 
ally required. 

Mixture models provide a probabilistic setting for the development 
of clustering algorith~ns, both unsupervised (Duda and Hart 1973; 
Nowlan 1990) and supervised (Jacobs et al. 1991). Each data point is 
assumed to be drawn from one of a fixed set of classes, but the class label 
is assumed to be "missing" or "latent" and must bc ~nftrsed from the 
model. 

As a grapl~ical model, a classical mlxture model for unsupervised 
clustering has a particularly simple representatron (see frgure I ) .  The 
unsliaded ("hidden") node rep resents the class label, (I), and the shaded 
node represents the observed data point y. The inference problem for 
this graphical model is that of calculating the probability of the hidden 
node given the observed node, namely, P(co(y). The calculation of this 
posterior probability is the "inner loop" in a procedure (the expectation- 
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Figure 1: The graphical model representation for- a mixture model, where the 
node labeled y represents an observed d a t a  point and the node labeled 
(!I represents the (Intent) class. The joint probability is gi\,en by P((~)l '(yJ(,o); 
marginalizing over tu yields a mixture. 

n~aximization or "EM" algorithm) that estimates the parameters of the 
model. 

An alternative latent variable model is provided by factor analy- 
sis (FA), where the underlying variable is a continuous rather than a 
discrete vector. This model can also be represented as the two-node 
graphical structure in figure 1 (although this representation hides the 
independencies among the components of the vectors). The model is 
parameterized by letting the latent variable be Gaussian with diagonal 
covariance matrix, and by letting the observed variable be Gaussian with 
a mean that is a linear function of the latent variable. 

Factor analysis provides a teclmique for dinicnsionality reduction in 
which the data are assumed to lie near a low-dinlensional hyperplane. 
A closely related model involving a probabilistic variant of principal 
component ;~nalysis (PCA) has been developed by Roweis (1998) and 
Tipping ancl Bishop (chapter 9); this model can also be represented as the 
two-node graphical structure in figure 1. 

A number of authors, including Gl~ahran~ani and Hinton (1998), 
Hinton, Dayan, and Revow (1997), and Tipping and Bishop (chapter 9), 
have studied mixtures of FA or PCA models. We have reprinted the 
latter paper, which is representative of this line of research. The basic 
model can be rendered as a graphical model as shown in figure 2. As in a 
mixture model, the latent node o is a discrete node representing the 
hidden class label. For each value of m, we obtain a FA or PCA model, 
where the latent node y is a continuous node representing the FA or PCA 
subspace. Under this model, data are assumed to form clusters, where 
each cluster is represented as a lower-dimensional linear manifold. 

Independent components analysis (ICA) is another latent variable 
model with links to FA and PCA (Cornon 1994; Bell and Sejnowski 1995). 
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As in FA, a vector of observed values IS assumed to arise as a linear 
function of a continuous latent vector, and the components of the latent 
vector are assumed to be mutually independent. Whereas in FA the 
latent vector is assumed to be Gaussian, in ICA the latent vector is 
assumed to have a more general probability density-in particular, one 
for which the independence assumption has stronger consequences than 
mere decorrelation. In a nonlinear generalization of ICA (Lee, Lewicki, 
and Sejnowski 2000), mixtures of ICA can be used to both represent and 
classify data. Attias (chapter 10) proposes another generalization in 
which the latent density models are represented flexibly via mixture- 
of-Gaussian densities. Conditional on the choices of mixture compo- 
nents of these underlying densities, one has a FA model. The graphical 
model is again a three-layer directed model with a discrete node repre- 
senting the mixture components in the top level and continuous nodes 
in the two lower levels. The exact inference algorithm for this model 
scales exponentially in the number of components of the latent vec- 
tor. To handle large models, Attias (chapter 10) develops a variational 
approximation. 

Finally, another line of research involving mixture models is the rrlls- 
tlcr-r of csperts architecture (Jacobs et al. 1991), wl~ich is a conditional 
density model appropriate for supervised learnmg. In this model both 
the "mixing proportion," namely, P(co), and the "mixing components," 
namely, P(y]w), are conditioned on the input vector x. The mixture 
model thus takes the form P(ylx) = C,,  P(tolx)P(ylw, x) .  The condition- 
ing allows the input space to be partitioned adaptively into a set of 
regions (via the P ( o l x )  term) in which different regression or classifica- 
tion surfaces are f i t  (the P(ylo), x) term). 
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Figure 3: (a) The graphical representation of a mixture of experts model. This is a 
mixture model in which the distributions of the hidden variable w and the output 
vector y are both conditioned on the input vector x. (b) The graphical model 
representation of a three-level hierarchical mixture of experts model. This model 
mvolves a sequence of hidden variables, w , , c l ~ , , ,  a n d  o), ,k,  corresponding to a 
probabilistic, nested partition of the input space. 

The mixture of experts is shown as a graplucal model in figure 3(a). 
Here we see the conditional dependence of both the discrete latent varl- 
able and the observable y on the input vector. Note that both the input 
vector and the output vector are observed (shaded). 

Jordan and Jacobs (chapter 11) generalized the mixture of experts to a 
hierarchical architecture (the hierarclzicnl nzixltire of expcrls, or "HME"), in 
which a sequence of latent decisions are made, each of which is condi- 
tional on the input vector x and the previous decisions. The correspond- 
ing graphical model is shown in figure 3(b). Geometrically, the HME 
corresponds to. a nested partitioning of the input space (the HME is 
essentially a probabilistic decision tree). 

Jordan and Jacobs also proposed using the EM algorithm to fit the 
parameters of mixture-of-experts architectures. For the HME, the inner 
loop of this algorithm involves a recursive pass upward in the tree to 
compute the posterior probabilities of the latent decision nodes (condi- 
tioned on both x and y). As should be expected from figure 3(b), this 
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Figure 4: A hidden Markov model represented as a graphical model. I3cli hor- 
izontal slice corresponds to a time step and is isomorphic to thc mixture model 
shown in figure 1 .  Th~s distribution n is the ir~ilial s tn fc  d i s l r . i l~r i t io~~ a n d  A is the 
s tn fc  trnnsifiorl rrln11Ys. The oiltj711/ S C ~ I ~ P I I C C  (yo :  y,. . . . , yI.) is obscwed a n d  the s fn l c  
seqlic~zcc ( q O ,  ql , . . . , q.r) is unobserved. 

recursion is a special case of the general inference algorithms for graph- 
ical models. 

The hidden Markov model (HMM) is a paradigm exampie of a tractable 
graphical model. As shown in figure 4, the I-IMM can be viewed as a 
dynamical generalization of the basic mixture model in wl~ich the mix- 
ture model is copied and there are additional edges joining- the hidden 
nodes. Each such node can be in one of M states, and there is an M x M 
transition matrix parameterizing these edges. The inference problem is 
that of calculating the probabilities of the hidden nodes given the entire 
sequence of observed nodes. This problem is solved via a recursive 
algorithm (the "alpha-beta algorithm") that proceeds forward and back- 
ward in the graph. 

Smyth, Heckerman and Jordan (chapter 1) review the general graph- 
ical model formalism, describing in particular the jrrirctiolr tree rrlgoritlinr 
for exact inference in graphical models. They then discuss HMMs, 
deriving the alpha-beta algorithm from the point of view of the junction 
tree framework. Several variants of the basic HMM architecture are also 
presented. 

The technique of copying a basic underlying gr,~phical model and 
linking nodes in the copies to obtain a Markovian dynamical model is 
widespread (Dean and Kanazawa 1989). Pursuing this approach in the 
case of factor analysis yields the classical linear-Gaussian Markov model, 
much studied in systems theory (cf. Roweis and Ghahramani 1999). The 
inference problem is solved by an analog of the forward-backward al- 
gorithm in which the "forward" algorithm is the classical Kalman filter. 
Both this forward recursion and any of a number of backward algo- 



xxii Introduction 

ritl~ms (e.g., the Rauch-Tung-Striebel smoother) can be derived from the 
perspective of the junction tree algorithm. 

While the HMM and the linear-Gaussian model provide paradigm 
cases of graphical model technology, they also suffer from a number of 
limitations, and much research has been devoted to exploration of wider 
classes of graphical models. 

One such extension involves the notion of discr imi~~nt iue  trairling. 
HMMs are widely used in classification problems, such as in speech 
recognition, where one HMM is trained for each class. The classical 
approach to training such a bank of HMMs is to train each HMM sepa- 
rately (via the EM algorithm) with data from its class. A more successful 
approach in practice (Juang and Rabiner 1991) is to liecrease the proba- 
bility for the incorrect HMM models while increasing the probability for 
the correct I-IMM model. As shown by Krogh and Riis (chapter 12), this 
discriminative approach can be accommodated in the graphical model 
framework by considering a single global model in which the class labels 
are explicitly incorporated. The undirected graphical model (MRF) for- 
malism provides a more satisfactory framework in which to express this 
model. Moreover, given that the potential function representation of 
MRFs does not require local normalization, it is straightforward to uti- 
lize (unnormalized) neural networks for the transition matrices and 
emission matrices of the HMM (see also Baldi and Chauvin 1996). The 
result is an interesting merger of graphical model and neural network 
methodology. 

Ghahramani and Hinton (chapter 13) review other architectural 
extensions to the classical EHMM and linear-Gaussian Markov models 
and present a new hybrid model that combines HMM and linear- 
Gaussian dynamics. In their model, a discrete Markovian switching 
variable determines which of several alternative linear-Gaussian Markov 
~nodels produces the output at any given time step. While exact infer- 
ence is exponentially costly under this model, a variational approach 
that decouples the discrete and continuous dynamics provides a corn- 
putatlonally tractable approxima tion. 

Some of the most challenging time series problems are those involv- 
ing nonlinear models and arbitrary patterns of missing data. In these 
problems stochastic sampling methods are often the inference methods 
of choice, due to their simplicity and generality. Tresp and Hofmann 
(chapter 14) address missing data problems and the problem of assessing 
prediction accuracy for nonlinear time series, in both cases demonstrat- 
ing the virtues of stochastic sampling approaches. 

Probability Propagation - - .. .- -. 

An alternative to stochastic sampling and variational approaches to 
a y proxima te inference is the probability propagation method discussed by 
Weiss (chapter 15). This approach is based on the existence of a simple 
algorithm for exact inference in graphs without (undirected) cycles 
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(Pearl 1988). In the case of graphs with undirected cycles, rather than 
forming cliques and propagating in a junction tree as in the exact infer- 
ence methods, the probability propagation approach simply ignores the 
cycles and iterates the propagation equations. Such an approach turns 
out to work empirically in a number of cases. In particular, for "turbo 
codes" and "Gallager codes," which are graphical models for error- 
correcting coding, probability propagation is quite successful (McEliece, 
MacKay, and C11eng 1998). Weiss (chapter 15) gives an analysis of prob- 
ability propagation for graphs wit11 a single loop, providing an analytical 
expression relating the approximate and correct conditional proba- 
bilities. 
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