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Abstract:
Control-dependent (multiplicative) noise makes it difficult to achieve optimal control because
large control signals amplify noise. This paper considers a minimal (one-dimensional) system
that includes multiplicative noise and solves the optimal control problem for arbitrary cost
functions. In a limit when the control-cost approaches zero, this formulation becomes analytically
solvable. The analysis reveals several important properties that are absent in traditional LQ
anlysis. In particular, multiplicative noise makes optimal solutions depend on the global features
of cost functions.
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1. INTRODUCTION

For most physical systems with noisy dynamics, the noise
statistics generally depends to some extent on the system
state and the control signal rather than being strictly
constant (additive noise). Often, such signal dependent
noise has significant effects in control systems such as
aerospace thrust control, digital feedback control, chemical
reactors, analog mechanical actuators, biological muscles,
and synaptic transmission of neural systems (see McLane
[1971], Ibrahim [1985], van Wingerden and De Koning
[1984], Wagenaar [1989], Bolotin [1984], Ruan and Choud-
hury [1993] and Harris and Wolpert [1998]). In these mod-
els, noise is often modeled as being amplified by the control
signal in a multiplicative manner.

Most control problems with multiplicative noise have
been anlayzed on the basis of linear control model with
quadratic cost functions on state and control signals
(see Wonham [1967], Willems and Willems [1976], Phillis
[1985], Kubrusly and Costa [1985], Ruan and Choud-
hury [1993], Yaz and Skelton [1994], Boyd et al. [1994],
El Ghaoui [1995], Lu and Skelton [2000], Todorov [2005]).

Multiplicative noise imposes an additional challenge in
optimal control because large control signals amplify noise.
For convex state-costs, larger noise means increased av-
erage cost, which effectively penalizes large control (ef-
fective regularization). Therefore, convex state-costs pro-
motes smaller, risk-aversive control, which is in direct
conflict with the original role of state-costs: promoting fast
transition/stabilization toward a desired state.

This naturally leads to the following questions:

? This work was supported by Howard Hughes Medical Institute.

(1) Is it better to use larger or smaller control signals
when the state-cost gets steeper? 1

(2) What if the state-cost is not everywhere convex? Is it
ideal to be risk-seeking and use larger control where
the state-cost is locally concave? 2

(3) Can the effective-regularization due to the state-cost
completely substitute the control-cost? 3

These questions cannot be answered in the tranditional
LQ settings (linear-control, quadratic-cost).

In this paper, we investigate a minimal system that in-
cludes multiplicative noise and compute optimal solutions
for arbitrary state-cost functions. Especially, we focus on
a limiting case when the control-cost approaches zero,
which reveals the trade-off between the state-cost and the
effective regularization in a most clear manner.

Organization of the paper Section 2 describes the opti-
mal control problem. An uncomplete solution is given in
section 3. Section 4 provides additional infomation neces-
sary for completing the solution. Sections 5–9 describe
complete solutions for various classes of state-costs. Sec-
tion 11 generalizes the results to the cases when control-
cost exists. Section 12 concludes the paper.

2. PROBLEM DESCRIPTION

2.1 Deterministic problem

Let us begin with describing a deterministic control prob-
lem. Consider a one-dimensional dynamical system

ẋ = f(x, u), (1)

1 Quick Answer: Smaller
2 Quick Answer: No
3 Quick Answer: Depends on the state-cost.
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which is assumed to have a unique inverse-dynamics

u = f−1(x, ẋ), (2)

where x ∈ R is the state, and u ∈ R is the control.
Then, the cost function, which is typically represented as
a function of x and u, can equally well be represented as
a function of x and ẋ:

L(x, τ ẋ), (3)

where τ — a constant with dimension of time — is shown
explicitly. Such time constant is required for dimensional
consistency within the cost function. τ can be regarded as a
weight parameter for the control-cost, because it turns out
to inversely scale the optimal state-transition-rate. (See
section 11.)

2.2 Stochastic problem with multiplicative noise

In this paper, we consider a stochastic problem in which
control-dependent (multiplicative) noise is introduced to
the dynamics:

dx = f(x, u) · (dt+ σ · dξ), (4)

where ξ(t) ∈ R is a standard Wiener process (E [dξ] = 0,
E
[
dξ2
]

= dt), and σ is the diffusion-rate constant — with

dimension of
√
time. We call

µ ≡ f(x, u) (5)

the average state-transition-rate, or simply drift.

The goal is to minimize the expectation of total integrated
cost (without temporal discount)

Eξ(·)

[∫ ∞
0

L(x(t), τµ(t))dt

]
. (6)

In this stochastic setting, the effect of control at one
state tends to diffuse out to a range of nearby states.
The extent of the diffusion is charaterized by the ratio
of time constants: β ≡ σ2/τ . In deterministic limit
(β � 1), the control problem becomes highly localized.
For larger β, the problem gets much harder to solve, as
it requires consideration of longer-range effects of control.
(See section 11.)

However, the interesting case is the limit β � 1 (or
τ → 0), in which the characteristics of control-dependent
noise is most emphasized. Ironically, this limit turns out
to simplify the control problem, because the cost-function
reduces to a pure state-cost (without control-cost):

Q(x) ≡ L(x, 0). (7)

In following sections, we analytically solve the control
problem for arbitrary state-costs in the zero-control-cost
limit (τ → 0), and extend the analysis to finite β cases in
section 11.

3. HAMILTON-JACOBI-BELLMAN EQUATION

We assume the state-cost Q(x) does not diverge to infinity
for finite x and that it has a unique global minimum (which
will be removed in section 9). Without loss of generality,
we set the global minimum to be zero at x = 0:

min
x
Q(x) = Q(0) = 0.

Evidently, optimal drift at x = 0 will be zero, since it stops
accumulation of any further cost. Therefore, the problem

is equivalent to a first-exit problem whose exit-state —
where state-transition permanently ends — is x = 0.

Solving stochastic optimal control problems typically in-
volves cost-to-go, the minimum total expected cost:

V (x) ≡ min
µ(·)

Eξ(·)

[∫ ∞
0

Q(x̃(t))dt

]
, (8)

where x̃(t) is a stochastic trajectory with initial state
x̃(0) = x.

For stochastic first-exit problems, cost-to-go satisfies the
following Hamilton-Jacobi-Bellman (HJB) equation

0 = Q(x) + min
µ

[
µ(x)Vx(x) +

1

2
σ2µ(x)2Vxx(x)

]
, (9)

where subscripts represent differentiations. This equation
is non-trivial to solve because the minimum operation
makes it a non-linear differential equation.

Once cost-to-go is obtained, optimal drift can be found in
a closed form (from the minimum operation of (9)):

µ∗(x) = − Vx(x)

σ2Vxx(x)
, (10)

and optimal control law follows from inverse-dynamics

u∗(x) = f−1(x, µ∗(x)). (11)

Note that cost-to-go must be convex (Vxx ≥ 0), since
otherwise the minimum in (9) does not exist.

3.1 Solution of the nonlinear HJB equation

Substituting (10) to HJB (9), we obtain a nonlinear
differential equation

Q =
V 2
x

2σ2Vxx
. (12)

However, if we take the reciprocal of (12), this becomes a
linear differential equation

1

2σ2Q
=
Vxx
V 2
x

= − d

dx

(
1

Vx

)
for x 6= 0, (13)

and 1/Vx can be calculated by a simple integration

1

Vx(x)
=

∫ ∞
x

dx′

2σ2Q(x′)
+ c for x > 0, (14)

where c is an integration constant, yet undetermined.

Then, according to (10) and (12), optimal drift can be cal-
culated as the ratio between cost and cost-to-go derivative:

µ∗(x) = −2Q(x)

Vx(x)
(15)

= −Q(x)

σ2

(∫ ∞
x

dx′

Q(x′)
+ 2c

)
x > 0. (16)

Solution for x < 0 can be obtained in a similar manner.
In this paper, however, we shall only consider solutions for
x > 0 for simplicity. Readers may assume state-costs being
symmetric in x, while Vx(x) and µ∗(x) anti-symmetric.

The solution obtained above will be complete once the
integration constant is determined. Initially, we guessed
this could be done by further analyzing the HJB eq (9).
Indeed a useful result can be derived from the convexity
property implied in (9):
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Lemma 1. c must be non-negative (c ≥ 0).

Proof. Remind that cost-to-go must be convex. Accord-
ing to (14), however, 1/Vx is a monotonically decreasing
function that approaches c as x → ∞. For the convexity
condition to be satisfied, Vx must be non-negative for
x > 0. Therefore, c ≥ 0. 2

Unfortunately, this is as far as one can go with HJB
equation alone. The truth is, it does not contain sufficient
information to uniquely determinine the cost-to-go func-
tion. To fill in the missing information, other properties of
cost-to-go must be investigated as well.

4. FUNDAMENTAL PROPERTIES OF V (X)

In this section, we enumerate several essential properties
of cost-to-go that follow from the definition (8). Some are
very simple, and do not require proofs.

Proposition 2. (Axes rescaling)
If two cost functions are related by

Q2(x) = Q1

(x
b

)
b > 0, (17)

then the same holds for cost-to-go functions, V2(x) =
V1(x/b), and their derivative are

V2x(x) =
1

b
V1x

(x
b

)
. (18)

Similarly, if two cost functions are related by multiplica-
tion by a positive constant

Q2(x) = aQ1(x) a > 0. (19)

then the same holds for cost-to-go functions, V2(x) =
aV1(x), and theirs derivative are

V2x(x) = aV1x(x). (20)

These properties derives from the fact that a control
problem does not change when the units change (e.g.
from meters to feet). In other words, a control problem
is invariant to axis re-scaling.

Lemma 3. If two cost functions are related by

Q1(x) ≤ Q2(x) ∀x > 0, (21)

then the same holds for cost-to-go functions: , i.e.

V1(x) ≤ V2(x) ∀x > 0. (22)

Proof. Given a drift function µ(x) and a cost function

Qi(x), define Ṽi(x;µ) as the expected total cost:

Ṽi(x;µ) ≡ E
[∫ ∞

0

Qi(x̃(t))dt

]
x̃(0) = x. (23)

Then, Ṽ1(x;µ) ≤ Ṽ2(x;µ), since

E

[∫ ∞
0

(Q1(x̃(t))−Q2(x̃(t))) dt

]
≤ 0. (24)

Then, V1(x) = minµ Ṽ1(x;µ) ≤ Ṽ1(x;µ∗2) ≤ Ṽ2(x;µ∗2) =
V2(x), where µ∗2 is the optimal drift for Q2. 2

Proposition 4. (Shifting and zero-padding)
Consider a cost Q1(x) and its cost-to-go V1(x). Then, for
the shifted and zero-padded cost

Q2(x) =

{
0 0 ≤ x ≤ x0
Q1(x− x0) x0 < x

(25)

the resulting cost-to-go gets shifted and zero-padded by
the same amount — x0:

V2(x) =

{
0 0 ≤ x ≤ x0
V1(x− x0) x0 < x

(26)

Lemma 5. If c > 0, V (x) is upper-bounded by x/c.

Proof. Since Vx(x) is a monotomically increasing function
and limx→∞ Vx(x) = 1/c, Vx(x) is upper-bounded by 1/c.
And V (0) = 0. 2

5. MONOMIAL COST

For a (superlinear) monomial cost-function

Q1(x) = x1+ε ε > 0, x > 0, (27)

cost-to-go derivative (14) is
1

V1x (x)
=

1

2σ2εxε
+ c . (28)

Here, we use the invariant property (proposition 2) to
determine the integration constant.

Lemma 6. For monomial costs, c = 0.

Proof. Consider two positive constants a, b that are re-
lated by a = b1+ε. Then, a re-scaled cost Q2(x) ≡
aQ1(x/b) is identical to the original cost Q1(x):

Q2(x) = a(x/b)1+ε = x1+ε. (29)

Then, it follows the cost-to-go’s should also be identical:
V2(x) = V1(x). According to (18) and (20), however,

1

V2x(x)
=
b

a

(
1

2σ2ε(x/b)ε
+ c

)
=

1

V1x(x)
+ c

(
1

bε
− 1

)
.

(30)

Since b is arbitrary, ∴ c = 0. 2

Therefore, we obtain following cost-to-go

V1(x) =
2σ2ε

1 + ε
x1+ε, (31)

and its derivative

V1x(x) = 2σ2εxε, (32)

Intriguingly, optimal drift is linear for a monomial cost of
any (superlinear) power:

µ∗1(x) = −2Q1(x)

V1x(x)
= − x

σ2ε
. (33)

Moreover, the slope of optimal drift is inversely propor-
tional to the power ε. This is the first evidence that a
steeper state-cost leads to a slower drift.

Note that in the limit ε→ 0 (linear monomial), cost-to-go
and its derivative (31,32) collapse to zero and optimal drift
(33) diverges to infinity.

6. SUPERLINEAR COST

In this section, we generalize lemma 6 to a more general
class of cost-functions.

Definition: A cost-function Q1(x) is superlinear, if
∃a, ε > 0, ∃x0 ≥ 0 s.t.

Q1(x) ≥ Q2(x) ∀x > 0, (34)
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where Q2(x) is a shifted monomial

Q2(x) =

{
0 0 ≤ x ≤ x0
a(x− x0)1+ε x0 < x .

(35)

Lemma 7. For superlinear costs, c = 0.

Proof. If c > 0, V1(x) is upper-bounded by a linear
function — x/c (lemma 5). Since Q1(x) ≥ Q2(x), however,
V1(x) is lower-bounded by V2(x) (lemma 3), which grows
superlinearly — eq (31). ∴ c = 0 by contradiction. 2
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Fig. 1. Examples of superlinear costs. The cost functions
and the optimal drift functions are shown in the same
order as in Table 1. σ2 = 1

Q(x)
Vx(x)

2σ2
σ2µ∗(x)

x2 + x4
1

1
x
+ tan−1(x)− π

2

− (x+x3)

(1+x(tan−1(x)−π
2
))−1

(x+ x3)2

1 + 3x2
x+ x3 −

x+ x3

1 + 3x2

sinh (x)2
tanh (x)

1− tanh (x)
− 1

2
(1− exp (−2x))

(x+ sin (x) /2)2

1 + cos (x) /2
x+ sin(x)/2 −

x+ sin (x) /2

1 + cos (x) /2

Table 1. Examples shown in Fig 1

With lemma 7, the results from monomial cost-functions
readily generalize to ”polynomial” cost-functions:

1

Q(x)
=
∑
i

ai
x1+εi

εi > 0, (36)

which covers a much broader class of cost-functions. It is
not necessary for all coefficients ai to be positive, but Q(x)
must be positive for all x > 0. Cost-to-go derivative is

1

Vx(x)
=

1

2σ2

∑
i

ai
εixεi

(37)

and optimal drift

µ∗(x) = −
∑
i ai/(εix

εi)

σ2
∑
i ai/x

1+εi
. (38)

More generally, the following compositionality theorem
holds for all superlinear cost-functions.

Theorem 8. (Compositionality Rule)
If three superlinear cost functions are related by

1

Q3(x)
=

a1
Q1(x/b1)

+
a2

Q2(x/b2)
, (39)

then cost-to-go derivative are related by

1

V3x(x)
=

a1b1
V1x(x/b1)

+
a2b2

V2x(x/b2)
. (40)

Proof. Because (13) is linear and integration constants
are identically zero for all three cost functions. 2

Of course, a cost function need not be represented in a
”polynomial” form to be solved. Table 1 and Fig 1 shows
some examples. Note that optimal drift functions are no
longer linear. Instead, they reflect the shape of state-
cost. Also note that non-convex state-costs do not lead
to infinite, risk-seeking control. All superlinear state-cost
leads to risk-aversive control.

7. SUBLINEAR COST

At the end of section 5, we showed that for linear state-
costs, cost-to-go collapses to zero and optimal drift di-
verges to infinity: a linear cost is not steep enough to
provide sufficient self-regularization. The same is true for
all sublinear state-costs.

Definition: A cost function Q1(x) is sublinear, if
∃a > 0,∃b ≥ 0 (yet finite), s.t.

Q1(x) ≤ ax+ b ∀x ≥ 0. (41)

(As one can see, this includes linear costs as well.)

Lemma 9. For sublinear costs, cost-to-go is zero.

Proof. Define Q2(x) as the shifted and zero-padded ver-
sion of Q1(x) by x0 = b/a (as in (25)). Then according to
proposition 4

Q2(x) ≤ ax ∀x ≥ 0. (42)

Since cost-to-go for a linear cost is zero, V2(x) is upper-
bounded by zero (lemma 3). ∴ V1(x) = V2(x) = 0. 2

The following example shows the process of cost-to-go
collapsing as the state-cost becomes sublinear.
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Fig. 2. Saturating cost example in section 7.1: Plot
of Q(x) (43) and Vx(x) derivative (45) for a =
20, 60, 200, 10000. Note that Vx(x) is multiplied by√

3a.

7.1 Example: Saturating cost

Consider the following cost

Q(x) =
x2

(a+ 1)− a
( √

3x/
√
a

sinh(
√
3x/
√
a)

)2 a ≥ 0, (43)

which is in fact composed of Q1(x) = x2 and Q2(x) =
sinh2(x) as in (39). In the limit a → ∞, this becomes a
saturating function

Q(x) ≈ x2/(1 + x2). (44)

According to theorem 8, the cost-to-go derivative is

Vx(x) =
2σ2x

(a+ 1)− a
( √

3x/
√
a

tanh(
√
3x/
√
a)
−
√
3x√
a

) . (45)

In the limit a→∞, this becomes

Vx(x) ≈ 2σ2x/(1 +
√

3ax) ≈ 0. (46)

Notice that as a grows large, Vx(x) becomes a step function

with amplitude 1/
√

3a. This is shown in Fig 2. Also
note that although Q(x) remains unchanged in the region
−2 ≤ x ≤ 2, Vx(x) in the same region goes through a
drastic change as a increases. This is because the optimal
solution depends not only on local features but on global
shape of state-cost.

8. ALMOST-LINEAR COST

Previous sections showed that superlinear state-costs pro-
vide sufficient self-regularization, but sublinear (and lin-

ear) state-costs do not. The difference originates from the
convergence property of the integration (14).

However, there exists a small class of cost-functions for
which such distinction is impossible.

Definition: A cost Q(x) is almost-linear, if
∃α, β > 0 s.t.

αx < Q(x) < βx1+ε ∀x, ε > 0 (47)

(after appropriate shifting and zero-padding).

8.1 Examples

Consider two almost-linear cost-functions

Q1(x) = (1 + x) · log(1 + x) (48)

Q2(x) = (1 + x) · log2(1 + x). (49)

Note that integration of 1/Q1 diverges∫ ∞
x

dx′

Q1(x′)
=
[

log(log(1 + x))
]∞
x

=∞. (50)

Despite the subtle difference, however, integration of 1/Q2

converges and returns the following optimal solution,

Vx(x) = 2σ2 log(1 + x),

µ (x) = − 1

σ2
(1 + x) · log(1 + x).

(51)

where we assumed c = 0, yet without a formal proof.

Therefore, convergence property of almost-linear cost-
functions can only be confirmed on case-by-case basis.

9. COST WITH MULTIPLE GLOBAL MINIMA

In this section, we extend our results to state-costs with
multiple global minima. Let us begin with an example.

Consider the state-cost

Q(x) = (x2 − 1)2,

which is zero at x = ±1. Integrating 1/Q returns the
following cost-to-go derivative

Vx(x) =
8σ2

2x
x2−1 + log

(
x−1
x+1

) , (52)

which is a well-behaved real function for |x| > 1, but
becomes complex for −1 ≤ x ≤ 1. In fact, this results
follows from setting c = 0, which lacks justification for
−1 ≤ x ≤ 1. A new principle is needed for state-space
between global minima.

Lemma 10. If a state-cost has multiple global minima
x1, · · · , xn s.t. Q(xi) = 0, then

V (x) = 0 x1 ≤ x ≤ xn (53)

Proof. (1) V (x1) = V (xn) = 0, (2) V (x) ≥ 0,∀x, and (3)
V (x) must be convex everywhere. 2

This lemma implies absence of self-regulation between
global minima. In this case, optimal drift diverges to
infinity in the direction of the nearby global minimum.

10. UNIQUENESS OF NON-SMOOTH SOLUTIONS

All the examples shown up to now have smooth, differen-
tiable cost-to-go solutions. However, solutions can be non-
smooth for some cost functions.
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10.1 Example

Consider the cost-function

Q(x) = x2 +
√
|x|. (54)

The corresponding cost-to-go derivative is

Vx(x) =
3

log
(
x−
√
x+1

x+2
√
x+1

)
+ 2
√

3
(
π/2− tan−1

(
2
√
x−1√
3

))
(55)

for x > 0. Notice that the cost-to-go derivative does not
become zero in the limit x → 0+, but instead Vx(x) →√

27/4π. Since Vx(x) is anti-symmetric in x, this solution
is non-smooth at x = 0.

In general, one must be cautious when admitting non-
smooth functions as potential solutions of a HJB equation,
because this relaxed notion may introduce an infinite num-
ber of possible solutions. The problem of choosing a unique
non-smooth solution is usually solved by introducing vis-
cosity condition. For the control problems here considered,
it can be shown that with all the conditions mentioned in
section 4, uniqueness of solution is indeed guaranteed by
allowing non-differentiability only at x = 0, and that these
are indeed viscosity solutions.

11. GENERALIZATION TO FINITE β USING
PERTURBATION THEORY

In this section, we extend the analysis to the cases when
control-cost is non-zero. However, the analysis becomes
very difficult when β is finite, and in fact impossible for
most forms of control-cost.

Here we focus on quadratic control-cost. Consider

L(x, µ) = Q(x) +
1

2
(τµ)2. (56)

for which the HJB equation is

0 = Q(x) + min
µ

[
µVx(x) +

1

2

(
τ2 + σ2Vxx(x)

)
µ2

]
. (57)

After explicit minimization, this simplifies to

1

2Q
=

τ2

V 2
x

− σ2 d

dx

(
1

Vx

)
. (58)

where optimal drift is

µ∗(x) = − Vx(x)

τ2 + σ2Vxx(x)
= −2Q(x)

Vx(x)
. (59)

Equation (58) is non-linear, and therefore it does not allow
closed form solutions in general. If β is either very small
or very large, however, the solution can be approximated
as a perturbation series.

11.1 Perturbation Series I

Here we expand the solution near the deterministic limit.
Equation (58) can be expressed as

1

2Q
= U2 − β dU

dx
, (60)

where U ≡ τ/Vx and β ≡ σ2/τ . We express U as a power
series of β:

U(x) = U0(x) + βU1(x) + β2U2(x) + · · · ,

where U0 represents the deterministic limit solution, and
other Uk terms describe higher-order correction. When this
is substituted in (60), we obtain

0 =

(
U2
0 −

1

2Q

)
+ β

(
2U0U1 − U

′

0

)
+ β2(U 2

1 + 2U0U2 − U
′

1 ) + · · ·
Each term in parenthesis must vanish repectively, which
leads to a series differential equations that can be solved
iteratively. The solution is summarized in Table 2.

Note that the higher order terms introduce non-local
features of state-cost, since Ui depends on the nth order
differentiation of Q(x). Therefore, as β gets larger, the
optimal solution will depend more on global features of
state-cost.

11.2 Perturbation Series II

The solution can also be expanded near the zero-control-
cost limit. We express (58) as

1

2Q
= αW 2 − dW

dx
, (61)

where W ≡ σ2/Vx and α ≡ 1/β2 = τ2/σ4. and look for
the solution of the form

W (x) = W0(x) + αW1(x) + α2W2(x) + · · ·
When this is substituted in (61), we find

0 = (W
′

0 +
1

2Q
) + α(W

′

1 −W 2
0 ) + α2(W

′

2 − 2W0W1) + · · ·

which gives out a series of 1st-order differential equations
that can be easily integrated interatively (see Table 2).

Note that in this expansion, it is the lowest order term
(W0) that introduces the global-feature dependence of the
solution, while the higher order terms gradually cancel
out the global dependence. This is apparent in (61), since
the αW 2 term acts as a non-linear filter that decays over
distance.

Note that c = 0 is assumed for each integration, which
remains to be proved.

Expansion I : Expansion II :

U(x) =

∞∑
k=0

(
σ2

τ

)k
Uk(x) W (x) =

∞∑
k=0

(
τ

σ2

)2k

Wk(x)

µ∗(x) = −2Q(x)U(x)/τ µ∗(x) = −2Q(x)W (x)/σ2

U0 =
1
√
2Q

W0(x) =

∫ ∞
x

1

2Q(x′)
dx′

U1 =
U
′

0

2U0
W1(x) =

∫ ∞
x

−W 2
0 (x′)dx′

U2 =
U
′

1 − U
2

1

2U0
W2(x) =

∫ ∞
x

−2W0W1dx
′

U3 =
U
′

2 − 2U1U2

2U0
W3(x) =

∫ ∞
x

−
(
W 2

1 + 2W0W2

)
Uk+1 =

U
′
k −

∑
i,j
UiUj

2U0
Wk+1(x) =

∞∫
x

−
∑
i,j

WiWjdx
′

1 ≤ i, j ≤ k, i+ j = k + 1 where 0 ≤ i, j ≤ k, i+ j = k

Table 2. Summary of Perturbation Series
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Example: Quadratic State-Cost .

For the quadratic cost function,

L(x, µ) = x2 +
1

2
(τµ)2,

the expansion terms are W0 = 1
2x , W1 = − 1

4x , W2 = 1
4x ,

W3 = − 5
16x , · · · , or in general

Wk =
(−1)k

2x

(2k − 1)!!

(k + 1)!
.

This perturbation series converges to a closed form

W (x) =
1

2x

(
1 +

∞∑
k=1

(2k − 1)!!

(k + 1)!
(−α)k

)
=

√
1 + 2α− 1

2αx

(62)

which is indeed the solution of (61). Optimal drift is

µ∗(x) = − 2x

σ2 +
√
σ4 + 2τ2

. (63)

This solution is valid for all range of β.

12. CONCLUSION

This paper considered optimum control of systems with
multiplicative noise. Our analysis is vastly different from
the traditional linear-quadratic (LQ) analysis: Rather
than analyzing a high dimensional system with a simple
quadratic cost function, we analyzed a one dimensional
system with complex, arbitrary cost functions. As a result,
our analysis revealed exotic, even counter-intuitive, rela-
tionships between cost functions and the corresponding
optimal feedback-control strategies.

Most importantly, we showed that multiplicative noise
makes optimal solutions depend on the global features
of cost functions, and that the extent of such global de-
pendence is determined by β — the ratio of time con-
stants. Other interesting discoveries include (1) feedback
gain must decrease as the state-cost becomes steeper, and
(2) optimality of risk-aversion vs risk-seeking strategies
depends on superlinearlity of state-cost and not convexity.
Traditional LQ anlysis cannot find these intriguing facts
because the quadratic cost function is too simple.

Previously, it was suggested that a genearlized, iterative-
LQG (linear-quadratic-gaussian) method could approxi-
mately solve non-LQG problems with multiplicative noise
(Todorov [2005]). However, it was not clear when such
methods would fail. As mentioned above, the determining
parameter is β. These methods would eventually fail as
β gets sufficiently large, since LQG approximation only
collects at most second order local information.

We also showed that analysis becomes simple in the large
β limit. This limit occurs when the cost of control is
negligible compared to the need for system stabilization.
The iterative expansion method (expansion II) provides
high accuracy solutions in such situations.

Unfortunately, the analytic approach presented here is
limited to one-dimensional problems. However, many of
the implications revealed by this analysis are expected to
generalize to higher-dimensional problems and they could
provide insights when solving practical problems.
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