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The advent of open access to genomic data offers new opportunities to revisit old
clinical debates while approaching them from a different angle. We examine anew
the question of whether psychiatric and neurological disorders are different from each
other by assessing the pool of genes associated with disorders that are understood
as psychiatric or as neurological. We do so in the context of transcriptome data
tracked as human embryonic stem cells differentiate and become neurons. Building
upon probabilistic layers of increasing complexity, we describe the dynamics and
stochastic trajectories of the full transcriptome and the embedded genes associated
with psychiatric and/or neurological disorders. From marginal distributions of a gene’s
expression across hundreds of cells, to joint interactions taken globally to determine
degree of pairwise dependency, to networks derived from probabilistic graphs along
maximal spanning trees, we have discovered two fundamentally different classes of
genes underlying these disorders and differentiating them. One class of genes boasts
higher variability in expression and lower dependencies (High Expression Variability-
HEV genes); the other has lower variability and higher dependencies (Low Expression
Variability-LEV genes). They give rise to different network architectures and different
transitional states. HEV genes have large hubs and a fragile topology, whereas LEV
genes show more distributed code during the maturation toward neuronal state. LEV
genes boost differentiation between psychiatric and neurological disorders also at the
level of tissue across the brain, spinal cord, and glands. These genes, with their low
variability and asynchronous ON/OFF states that have been treated as gross data and
excluded from traditional analyses, are helping us settle this old argument at more than
one level of inquiry.

Keywords: embryonic stem cells, transcriptome, neurological, psychiatric, tissues, autism, Parkinson,
schizophrenia
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INTRODUCTION

The question of whether a distinction should exist between
psychiatric and neurological disorders predates the time when
psychiatry was not even a formal discipline as we know it today.
Back then, motor movements were used as criteria to identify
mental disorders, by observing and describing patients in a
motor-informed way (e.g., catatonic, hyperactive, etc.) (Rogers,
1992). Under the spell of Freud’s psychoanalyses and following
Descartes’s dualism, this type of physical-motor criterion lost
influence in favor of elaborate descriptions of mental and
emotional states inferred by other, non-motor-based criteria.
There was more judgment added on to the perception of the
patient; for example, terms such as deviant, opposing, defiant,
socially inappropriate, behaviors, etc., entered the descriptions
of children with atypical neurodevelopment. This judgment took
place solely based on external observation, without any additional
description of internal states of their nervous systems.

The distinction broadened between mental illness and
disorders that affected the person’s function beyond dysfunction
of the central nervous system, thus prolonging the ongoing
physiological and medical debates (Mehta, 2011); it also impacted
the perception of other members of society with regards to
one or the other (Torres, 2018). A recent revival of this
debate underscores the side of the argument that psychiatric
disorders are not just “mental” but are physical, too, identifying
neurobiological substrates of mental illness (Goodkind et al.,
2015). These substrates are in line with the current US National
Institute of Mental Health Research Domain Criteria (RDoC),
a framework that cuts across research domains (Bernard and
Mittal, 2015) but still has room for improvement (Huys et al.,
2016; Torres et al., 2016; Friston et al., 2017; Torres, 2020, 2021).

An example of the brain’s affected tissues that are amenable
to separating psychiatric from neurological disorders is provided
in Figure 1A and results from this recent resurgence of the
debate (Crossley et al., 2015). Yet, others have contested such
neuroimaging distinctions between the disorders, on the grounds
that medications can alter brain structures (David and Nicholson,
2015). Specifically, the argument is centered on the ambiguity
that medication brings to the studies that are based on brain
structure by, for example, increasing basal ganglia volume or
increasing volume loss in general, in the case of traditional
antipsychotics (David and Nicholson, 2015).

The interactions between diagnosis and medication are also
mentioned in the Diagnostic Statistical Manual DSM-5 to justify
the exclusion of motor criteria from diagnosis. Nevertheless,
several of the mental disorders on a spectrum, like autism
spectrum disorder (ASD), attention deficit hyperactivity disorder
(ADHD), and schizophrenia do have functional neuromotor
issues with neurobiological bases, i.e., of the neurological type,
even when medication was never used (Torres and Denisova,
2016) or was sparsely used (Nguyen et al., 2016). Thus, the
confounds between medication and psychiatry- or neurology-
based diagnoses are palpable at the clinical level and confusing
at the level of basic brain research.

One avenue that we could explore to try and distinguish
psychiatric and neurological disorders is by re-examining brain
(and bodily tissues) from the standpoint of dynamically changing

gene expression in early embryonic stages of pluripotency, as
cells transition into neuronal classes. In this context, we could
use different levels of inquiry. For example, we could interrogate
the genes with an eye on their roles in fundamental processes at
the molecular or channel level, or perhaps at the systems level or
at the level of tissues, etc., not as a role of the gene in isolation
but rather as its role with respect to interactions with other
genes. Regardless of the framework of choice, addressing possible
differentiation between psychiatric and neurological disorders
through genes’ dynamic interactions and their expressions on
brain and bodily tissues critical for the person’s functioning may
have new utility to aid in developing targeted treatments. Such
treatments may be precisely aimed at mitigating such adverse
effects on the brain and on the control of the movements
that make up the behaviors examined by these observational
diagnoses in the first place.

In this paper we leverage recent advances in the modeling
of neurodevelopmental stages involving human embryonic stem
cells (hESC), which have made transcriptome data from early
development available to the scientific community. Such sharing
of data from cultures validated by primary developing tissue
offers new opportunities to advance analytical and visualization
tools that can potentially facilitate the study of the dynamics of
cell differentiation across multiple developmental stages. It can
help us shed light on the question of differentiating pools of genes
associated with disorders of the nervous systems that may or may
not rise to the level of mental illness.

An example of such open access work is by Yao et al. (2017),
which modeled the early stages of human brain development,
including early regional patterning and lineage specification.
These authors described cell characterizations amenable to
providing benchmark datasets to advance our understanding of
the origins of disease of the human brain. Here we use their
data to design new visualization tools inclusive of all genes’
fates in the transcriptome and genes’ states across differentiation
of self-emerging patterns recorded several times over 54 days.
The results available from single-cell RNA sequencing (scRNA-
seq) or single cell transcriptomics offer gene-expression data
from tens of thousands of genes across hundreds of cells
evolving and differentiating toward neuronal stages. These data,
combined with identification of disease-associated genes and
their expression on human brain and bodily tissues, may help
us track the origins of differentiation between psychiatric and
neurological disorders.

Analyses of such data often entails dimensionality reduction
and visualization of the reduced set [e.g., after Principal
Component Analyses, PCA initialization and t-distributed
stochastic neighbor embedding, t-SNE (van der Maaten and
Hinton, 2008)]. Often, during several of the steps leading to
the embedding and visualization in much lower dimensional
spaces (of two or three dimensions), thousands of genes may
be discarded owing to low variability and/or asynchronous
expression across various reading days. These data that are
discarded may, however, be key to cases where atypical
development takes place. Consequently, genes that may be
critical to early development toward neuronal stages could
be potentially disregarded by current popular methods like
t-SNE. This approach would miss an opportunity to examine
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FIGURE 1 | Different lines of inquiry to study the differentiation between psychiatric and neurological disorders. (A) Brain structural differentiation reported by
Crossley et al. (2015) (Figure from Crossley et al., 2015 with permission). (B) Approach used in this work, from simpler to more complex levels of interrogation and
the consideration of important dynamically changing statistical co-dependencies across genes’ expressions. Marginal distributions of different genes’ expression
across cells followed by studies of pairwise genes’ relations and evaluation of degree of genes’ co-dependencies in joint distributions, followed by analyses of
complex, dynamically changing, interconnected networks of genes, across days of embryonic stages of cell differentiation toward neuronal states.

the transcriptome data from the vantage point of inter-related
nodes in a network, using a stochastic approach that goes
beyond locally selected neighboring interactions of genes with
systematic variability to leverage (and understand) the dynamic,
asynchronous nature of many otherwise discarded genes during
pluripotent neuronal differentiation.

We propose new methodologies (Figure 1B) that treat a
set of genes as a network entity whose parts interact with
each other over the course of cell development. To that
end, we use a layered approach. First, we identified genes
associated with a plurality of psychiatric and neurological
disorders, and which also overlapped, thus being associated with
phenotypes that are considered comorbid with, for example,
autism spectrum disorders (ASD), attention deficit hyperactivity
disorder (ADHD), cerebral palsy (CP), etc. (Torres, 2020, 2021).
Then, we consider the cumulative expression of the genes across
four readings through 54 days, as the cells transition to neuronal
classes. For each gene, we derived marginal distributions of
expression across cells and tracked pairwise dependencies to
interrogate the full transcriptome dynamically on each reading
day. We did so within another layer of inquiry, as the genes
formed part of a probabilistic interconnected graph.

This network of interacting interconnected genes associated
with a plurality of psychiatric and neurological disorders cannot
be separated into a disjointed collection of data points, since the

topological properties of the graph determine expression and
differentiation. We therefore found relationships between local
and global properties of this network by defining metrics that
quantified the “fate” of each gene during cell differentiation and
the degree of interdependency between all cells. Furthermore,
our approach was dynamic, i.e., we looked at gene expressions
on multiple days for a culture of cells. This approach allowed
us to shed some light on how changes in the “state” of the
expressions of different genes during the embryonic stages
determined the clinical phenotype and characterized different
pathologies of the CNS.

This characterization based on the fate and state of the genes’
expressions led to the proposition of a general mechanism and
new paradigm that traces the origins of differentiation and
commonalities between neurological and psychiatric disorders
back to the early stages of embryonic development. This is
the point when cells differentiate and become fully matured
neurons that will make up the different systems of the
nervous system. In this sense, we transformed the current
psychiatric vs. neurological disorders debate into an opportunity
to explore when, during these early embryonic stages, the genes
expressed as one disorder or another as a function of their
degree of interdependencies. We discuss the implications of
our results while considering the notion that gross data such
as low-variability and asynchronous genes expression, which
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are often discarded as superfluous, may in fact hold the key
to many unknown aspects of neurological and/or psychiatric
disorders. Developing new methods to harvest and utilize their
dynamically changing stochastic activities may be critical to
understanding the mechanisms guiding us in the design of
treatments to cure diseases.

DATASETS AND CODES

Single-cell RNA-seq data during neural differentiation of hESCs
were provided by the study of Yao et al. (2017). They revealed a
multitude of neural cell classes with a range of early brain regional
identities. They analyzed 2,684 cells with >20,000 transcripts,
as assessed by unique molecular identifiers (UMIs). Cell types
were named by point of origin as progenitor (P), transitional (T),
neuronal (N), or other tissue (O). We focussed on the evolution
of 24,046 genes’ expression across the neuronal type examined at
days 12, 19, 40, and 54.

The code that implemented the Kernel Statistical Test of
Independence and was used for the present analysis is available in
Gretton and Gyorfi (2010) as free source material on their website
(https://www.gatsby.ucl.ac.uk/~gretton/).

MATERIALS AND METHODS

Disorders
From the genetic database of the Simons Foundation Research
Initiative (SFARI) we gathered the set of genes that, according
to the literature, are linked to the behavioral diagnosis of
Autism. We also compiled several sources found in the DisGeNet
portal and identified the lists of genes linked to a variety
of neurological [Fragile X-Associated Tremor/Ataxia Syndrome
(FXTAS), Dystonia, Cerebral Palsy (CP), Ataxia Syndrome,
Tourette’s, and Late and Early Onset Parkinson’s disease
(White et al., 2012)] and psychiatric disorders [Schizophrenia,
Depression, Obsessive Compulsive disorder (OCD), bipolar
disorder, and Post-Traumatic Stress Disorder (PTSD)]. The
psychiatric disorders under consideration are defined in the
DSM, whereas the neurological ones are comorbid with autism
spectrum disorders (ASD) across the human life span. Some
disorders like CP and Tourette’s are also included in the DSM.

Transcriptome Data
Data matrices expressed as M cells × N genes containing at
each entry transcription in log Counts/million. The matrix is
transposed to express each of the 24,046 genes as it expresses
across cells. This is represented as XD

N×M , where N is the number
of genes and M the number of cells for day D. Figure 2A
shows the counts across neurons at day 40 (top) and at day 54
(bottom) for one gene. Notice that cells may not necessarily be
the same on each day, but we work on the genes’ expression
space. Next, we took the expression of each gene at each cell
as peaks in a series (shown in red) and normalized them using
Eq. 1. Notice that the cell order is preserved from the original
matrix of cells by genes. It is not a temporal order (it is not

a time series), and as such, order does not matter in our
calculations:

Normalized Count =
counti

counti +
AvrgGlobalCount
MaxGlobalCount

(1)

here counti is the count value of the genei and AvrgGlobalCount
is the overall average of the matrix of values taken along
the columns and the rows. MaxGlobalCount is the maximum
count value, also taken globally across the matrix values. We
take each such value and apply Eq. 1 to scale all expressions
of that gene across all cells, each day. The output of the
normalization is shown in Figure 2B for cells with expression
close to 1. These are cells where the ratio of AvrgGlobal Count
to MaxGlobal Count is very small, so the denominator is only
a small margin greater than the numerator. The inset stem
plot in Figure 2C (inside the top and bottom histograms)
represents all values of the gene across all the cells, scaled
as spikes ranging between 0 and 1. These include values for
which the ratio of AvrgGlobal Count to MaxGlobal Count is
large and the overall normalized value is small. There is not
a temporal order, it is just a series of fluctuations whereby
the frequency histogram of all those values (smaller and
larger) is of interest.

We then obtained the similarity distance between the two
frequency histograms corresponding to the gene (across all cells
read out each day) using the Earth Mover’s Distance (EMD)
(Monge, 1781; Rubner et al., 1998).

Genes’ Fate: Quantifying It Through the
Cumulative Earth Mover’s Distance
The EMD is a measure of the distance between two probability
distributions and is the 1st Wasserstein distance from the family
of Wasserstein distance metrics. Essentially, the EMD is the
minimal cost of transforming one distribution into the other.

Consider the unknown probability spaces(
[0,+∞], FDA

i , PDA
i

)
and

(
[0,+∞], FDB

i , PDB
i

)
that define

the statistical behaviors and corresponding probability
distributions for a gene on two different days, DA, and DB
during cell differentiation. The probability distributions can
be approximated through histogram fitting from the available
normalized cell expression data. Then, EMDi,A→B is the EMD
between PDA

i and PDB
i and is indicative of the departure of the

statistical behavior of the gene i as we move from day DA to DB.
Consider the days 12, 19, 40, and 54 of hESC differentiation.
Then we define the quantity:

CumEMDi = EMDi,12→19 + EMDi,19→40 + EMDi,40→54 (2)

as the cumulative EMD distance of the gene or the “fate” of the
role of that gene throughout embryonic stem cell development
and differentiation. Then, the average EMD or “fate” of a set
of genes i=1,...,N associated with a particular pathology is the
quantity:

AverageCumEMD =
∑N

i=1 CumEMDi

N
(3)
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FIGURE 2 | Pipeline to estimate genes’ fates according to expression across cells. (A) Sample gene’s raw count across 496 cells on day 40 and day 54.
(B) Normalized gene expression series for range of values obtained using Eq. 1. (C) Frequency histogram of scaled values across all neurons (represented as spikes
between 0 and 1 in the inset). (D) The earth mover’s distance (EMD) is taken between the frequency histogram of consecutive readings (e.g., between the
histograms of Day 40 and Day 54) and obtained for each gene (across the columns of the matrix). EMD values range according to the color bar. (E) The cumulative
EMD from day 12–54 is then obtained for each gene and a frequency histogram of all genes reveals the distribution of all values in fate space. Each bin in this
histogram boasts a level of its genes’ expression as they accumulated along the developmental trajectory of the cells. Which genes make up each bin can be easily
obtained to further understand genes’ interactions according to fate.

Figure 2D shows a color matrix with all genes across the
columns (horizontal axis) and three rows representing, for each
gene, the EMD obtained between two consecutive days.

We focused here on graphical modeling techniques and
kernel-driven statistical independence hypothesis testing to
determine the level at which these genes co-depend (Gretton
and Gyorfi, 2010). This kernel technique was used to build a
parameter space representing 16 disorders sorted out according
to their levels of statistical co-dependency at the earliest and
latest stages of the cell evolution. Our data of interest were the
cumulative EMD traveled representing the gene’s fate.

Kernel Statistical Test to Determine the
Level of Interdependence Between
Genes Associated With Each Disorder at
Different Times During Cell Maturation
On a specific day during cell maturation, for any two genes
A and B we had available their expression levels in N cells.
We wanted to test whether the expression of gene A was
statistically independent from the expression of gene B. Before
we present the solution to this problem, let us first introduce
the general framework for measuring independence, based
on cross-covariance operators in Reproducing Kernel Hilbert
Spaces (RKHSs).

Cross-Covariance Operator and Hilbert–Schmidt
Independence Criterion
Different methods for measuring statistical independence
between random vectors have been proposed over the past

decades. Non-parametric approaches to this problem can be
traced back to Hoeffding (1948), when he proposed a test
statistic that depended on the rank order of the identically
and independently distributed sample data. Techniques
that constructed statistics based on empirical characteristic
functions were later developed. Modern methods introduced
the concept of Kernel Independence Measures, which have
found applications in Independent Component Analysis (Bell
and Sejnowski, 1996, 1997), fitting graphical models and
feature selection. However, such measures do not necessarily
ensure statistical significance. Hence, we decided to use a
Kernel Statistical Test of Independence that was developed
by Gretton and Gyorfi (2010), which allowed us to perform
hypothesis testing on whether two datasets were independent,
and which we applied on the gene expression dependence
problem. We briefly present their methodology in the
next few paragraphs.

Consider the Hilbert space F of functions from a measurable
space X→ R. To each point x ∈ X there corresponds an
element ϕ(x) ∈ F such that < ϕ(x), ϕ(x

′

) >F= k(x, x
′

) where
k : X × X→ R is a positive definite kernel. If we assume that F
is separable, then F is a RKHS.

Note, that F is the completion of the set of all functions that
are linear combinations of these feature functions. To evaluate
the value of any function f ∈ F at some point x ∈ X one can
simply take the inner product between the function f and the
feature function ϕ(x) mapping of the point x. This is known as
the Reproducing Property, hence the term Reproducing Kernel
Hilbert Space. Similarly, we define a RKHS space G of functions
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from a measurable space Y → R with feature map ψ(.) and
kernel l(.).

Now, assume the probability spaces (X,Fx, Px) and
(Y,FY , Px) where Fx, FY are the Borel σ-fields on X, Y,
respectively, and Px, Py the corresponding probability measures.
Then, for any two functions f ∈ F and g ∈ G the cross-covariance
operator Cxy : G→ F is defined as:

< f , Cxyg >= E
([

f (x)− E
(
f (x)

) [
g (x)− E

(
g (x)

)]])
(4)

Or with respect to the feature mappings ϕ (x) , ψ (x):

Cxy = Exy
[
(ϕ (x)− Exϕ (x))⊗

(
ψ
(
y
)
− Eyψ

(
y
))]

(5)

It can be shown that X and Y are independent if and only if the
largest singular value of the operator Cxy is zero. As a measure of
independence, the authors consider the Hilbert–Schmidt norm
(i.e., the Hilbert–Schmidt Independent Criterion, HSIC) of Cxy,
which is equal to the sum of squared singular values of Cxy and
has a population expression (Gretton and Gyorfi, 2010):

HSIC
(
Pxy, F, G

)
= Exx′yy′

[
k
(
x, x′

)
l
(
y, y′

)]
+ Exx′

[
k
(
x, x′

)]
Eyy′

[
l
(
y, y′

)]
− 2Exy

[
Ex′
[
k
(
x, x′

)]
Ey′
[
l
(
y, y′

)]]
(6)

where x′ denotes an independent copy of x and k(.) and
l(.) are the kernels previously defined. The authors derive an
empirical estimate of this independence criterion that follows the
V-statistics and has expression:

HSICb (Z) =
1

m2 trace (KHLH) (7)

where Z is a sample of
(
x, y

)
pairs drawn independently from

the distribution of X × Y , with size m, K is the m×m matrix
with entries kij, L is the m×m matrix with entries lij and H =
I − 1

m
E1E1T , where E1 is a row vector of ones.

Then, they proceed to construct a statistical hypothesis
testing protocol to test whether X is independent of Y
based on samples

(
x, y

)m drawn from the probability space(
X × Y,Fx × Fy, Pxy

)
. The null hypothesis is H0 : Pxy = PxPy

and the alternative hypothesis H1 : Pxy 6= PxPy
Finally, they approximate the independence criterion with a

gamma distribution:

mHSIC(Z) ∼ xk−1e−
x
θ

kθ0(k)
,

where k = (E(HSICb(Z)))2

var(HSICb(Z)) , θ =
mvar(HSICb(Z))

E(HSICb(Z))

(8)

If mHSIC (Z) is above the threshold determined by the level
of significance that we choose for the test, the null hypothesis is
rejected. Supplementary Figure 0 depicts this pipeline.

The Construction of Gene Expression Statistical
Dependency Networks for Days 12, 19, 40, and 54 of
Neural Cell Maturation
For each disorder, we have a set of genes associated with
it (extracted from DisGeNet). On a particular day D of cell

maturation, we have the data XD
N×M , where N is the number of

genes and M is the number of cells. Each row of our data refers to
a specific gene and each column to a specific cell.

Define the unknown probability spaces ([0,+∞) , Fi, Pi)
and

(
[0,+∞) , Fj, Pj

)
for the expressions of any two

genes i and j, (i, j = 1, . . . , N) and the probability space(
[0,+∞)2, Fi ×Fj, Pij

)
for the joint expression of the two

genes. Here, [0,+∞) and [0,+∞)2 are the measurable spaces
for the gene expressions and joint gene expressions, respectively,
Fi,F j the Borel σ-fields generated by the measurable spaces of
gene expressions of i and j, Pi, Pj the corresponding probability
measures for the two genes and Pij the joint probability measure.

Consider the sample Z =
(

XD
i,∗, XD

j,∗

)
, i.e., the pairs of the two

gene expressions in the cells. Choosing a level a of statistical
significance, we can apply the Kernel method on the sample Z
and determine whether the genes i and j are independent of each
other on that specific day.

We perform the independency test on all undirected pairs(
i, j
)
, i = 1 . . . N − 1, j = i+ 1, . . . , N of genes and we

construct the graph:
G = (V, E), V is the set of nodes and E the set of edges, |V| =

N, where |.| denotes the cardinality of a set. An edge belongs to
the graph, i.e., eij ∈ E if and only if the genes i and j are statistically
dependent according to the kernel independency test.

If the graph were fully connected it would have number
of edges N(N−1)

2 , and in this case all genes would be fully
dependent upon one another. In search of a metric that shows
how interconnected the genes related to the disorder of interest
are, we define the dependency index:

DI =
2 |E|

N (N − 1)
(9)

Therefore, for a specific disorder d, by constructing the
dependency graphs Gd

12, Gd
19, Gd

40, Gd
54 for each day

of the disorder we can derive the dependency indexes
DId

12, DId
19, DId

40, DId
54. Furthermore, we define:

initial state = DId
12

final state = DId
54

Dependency Increase = DId
54 − DId

12

(10)

Then, we can map each disorder to a parameter space of
dependencies throughout the course of the cell development to
track how the interdependence between the genes associated
with each disorder evolves through time, from the state of
pluripotency to the state of full neural maturation. This allows us
to stratify the spectrum of neurological and psychiatric disorders
with regards to the complexity of their genotypical expressions.

Using the database DisGeNet, we identified the genes
that are associated with each of the following disorders:
Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS),
Dystonia, Cerebral Palsy, Ataxia Syndrome, Tourette’s,
Late Onset Parkinson’s disease (Late PD) and Early Onset
Parkinson’s disease (Early PD) and Schizophrenia, Depression,
Obsessive Compulsive disorder (OCD), bipolar disorder, and
Post-Traumatic Stress Disorder (PTSD).
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For days 12, 19, 40, and 54 of the hESC differentiation to
neural cells, we had the expressions of 24,046 genes from the
human genome in log TCM (log transcripts count per million).
For days 12, 19, 40, and 54, we had available the expression
of all those genes in 263, 168, 346, and 495 different cells,
respectively. Therefore, for the sets of genes associated with each
of the disorders of interest, we had the datasets XD

N×263, XD
N×168,

XD
N×346, and XD

N×495 for the 4 days, where D denotes the disorder
of interest and N the number of genes associated with it. From
these datasets we calculated the Dependency Indexes (see Section
“Materials and Methods”) for each day. Figure 3A shows the
schematics of this procedure.

Network Analyses
Undirected Graphical Modeling for Evaluating the
Dependency Between Gene Expressions
Graphical models have been extensively researched and used
to describe statistical dependencies between random variables.
These models can be either undirected graphs or directed graphs;
in the latter case, we could derive cause-effect relationships
between the variables. In the current project we were interested
in undirected graphical models.

Formally, for any set of random variables X =
(X1, X2, . . . , XN) , a graphical model attempts to associate
the joint random vector X drawn from the probability space
(�1 ×�2 × . . .×�N, F1 × F2 × . . .× FN, PX ) with a graph
G = (V, E), where V stands for vertices and E for edges.
Here, �1, �2, . . . , �N are the sample spaces for each random
variable and �1 ×�2 × . . . �N the joint space of the random
vector X. F1, F2, . . . , FN are the corresponding generated
Borel σ-fields to denote the sets of all possible random events
for each random variable and PX is the probability measure
on the random vector X. The set of nodes V represents the
random variables X1, X2, . . . , XN drawn from the probability
spaces

(
�1, F1, PX1

)
,
(
�2, F2, PX2

)
, . . .

(
�N, FN, PXN

)
,

with their respective Borel σ-fields and probability measures.
An edge eij ∈ E if and only if the random variables Xi and Xj
depend on each other.

If two nodes ui and uj are not connected with an edge it implies
that the two variables Xi and Xj are conditionally independent,
i.e., statistically independent given all other nodes:

Xi⊥Xj| XV/{ui,uj}

This property of the graphical model is known as the global
Markov property.

General Estimation of a Graphical Model
Using Chow–Liu Trees
If we want to factorize the joint probability distribution in a
dependency graph that has a tree structure, i.e., every two nodes
are connected by no more than one path (in other words there are
no loops in the graph), then the joint density of the random vector

X factorizes with respect to the pair-wise joint and marginal
densities as:

f (x) =
∏
eij∈E

fij(Xi, Xj)

fi (Xi) fj(Xj)

∏
ui∈E

fi(xi) (11)

It turns out that, in the case in which all variables are
categorical and take values from a finite set, it is very easy to find
the optimal tree that factorizes the joint distribution. Let Nx be the
number of times a realization x of the random vector X appears
in a collection of independent and identically distributed (i.i.d.)
samples. The tree G that optimally factorizes X, given the sample
data Z of size n, will be the one with the maximum log-likelihood
(MLE):

G = argmax L (G) =
∑
x∈Z

Nx log
(

f̂G (x)
)

(12)

which turns out to be:

L (G) = n
∑
eij∈E

I(f̂ij
(
Xi, Xj

)
)+ C (13)

where C is a constant and I(f̂ij
(
Xi, Xj

)
) the empirical mutual

information between Xi and Xj. Therefore, by choosing the
appropriate subgraph G that maximizes the sum of the empirical
mutual information estimates, we obtained the optimal tree
structured graphical model. Since the model is a tree, we simply
needed to find the Maximum Spanning Tree from the mutual
information network, for example, by using Kruskal’s algorithm.
The process we just described is known as the Chow–Liu
algorithm and the extracted conditional dependency tree that
factorizes X is the Chow–Liu tree.

Gene’s Co-dependencies Graphical Models
Spanning (Chow–Liu) Trees
For a specific set of diseases, in this case neurological and
psychiatric, we had a set of genes associated with them. On a
particular day D of cell maturation, we had the data XD

N×M , where
N is the number of genes and M the number of cells. Each row
of our data referred to a specific gene and each column to a
specific cell. We treated each column (corresponding to a cell)
as an i.i.d. sample drawn from the joint probability space of the
expressions of that set of genes, and we wanted to generate the
undirected graphical networks G12, G19, G40, and G54 for days
12, 19, 40, and 54.

In the case of continuous variables, the methods used to
estimate the Chow–Liu tree usually involves Kernel Density
Estimation (KDE) of the joint and marginal probability densities
(Gretton et al., 2007). However, in our case we wanted to factorize
the joint probability density of a gene expression network with
number of cells on the order of magnitude∼102. The application
of KDE, given the dimensionality of the data (number of genes),
would require in this case several samples far exceeding the
available number of ESCs. Therefore, we resorted to extracting
the Chow–Liu Trees by estimating the mutual information
through binning and histograms on the available data (Drton and
Maathuis, 2017). Once the Chow–Liu Tree corresponding to the
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FIGURE 3 | (A) The construction of a graphical model after performing the Kernel Statistical Independency Test on every pair of gene expressions associated with a
particular disorder on a specific day of cell differentiation. The Dependency Index characterizes the degree of interdependence of genes that define the nodes of the
graph. (B) Proposed pipeline for the factorization of the joint probabilistic behavior of a network of genes and for determining the significance of each gene in the
network.

factorization of the gene set of interest was obtained, we ordered
the nodes in ascending degree. The proposed methodology can be
appreciated in Figure 3B of the Section “Materials and Methods.”

What do we achieve with this ordering? It is obvious that
the higher the degree of a gene is, the more co-dependent its
expression is with the expression of other genes in the network.
This implies, in a statistical sense, that mutation or deletion of this
gene is bound to immediately affect the expressions of many other
genes. Note that this rationale simply states the co-dependency
between the gene expressions, but the actual (causal) mechanisms

through which this statistical relationship takes place are open to
investigation.

The Gene’s State Through a Binary Code
We obtained the average degree across the network’s nodes each
day. We then set it as the threshold value to determine ON or
OFF state for the gene each day. Across 4 days, we had 16 possible
binary states (24) that provided the state trajectory of the gene
(in addition to its fate). This information served to classify cells
according to the genes type. To that end, for each cell, we obtained
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FIGURE 4 | Dynamic gene’s motion trajectory in fate space. (A) The distributions of EMD obtained for each measurement between days (top frequency histograms)
for all 24,046 genes and bottom values across genes each day. EMD based on normalized counts using Eq. 1. (B) Sorted values of change in EMD across genes
showing the trajectory from measurement to measurement, for each gene (horizontal axis). Order is based on the cumulative EMD at day 54; then we plotted the
values of EMD at each stage (D12–D19, D19–D40, D40–D54). (C) Full transcriptome representation on fate space is obtained by representing each point as the
empirically estimated Gamma PDF moments for the best fitting shape and scale parameters (in an MLE sense). The mean µ is represented along the x-axis, the
variance σ along the y-axis and the skewness along the z-axis. The kurtosis is proportional to the marker size (larger represents more kurtotic distribution). Color bar
reflects the value of the cumulative EMD at day 54 when the cells are neurons. Then, we trace back where the gene was in fate space at the initial stages, D12, D19,
and D40.

the frequency histogram of counts corresponding to each class of
genes, [0000], [0001],. . ., [1111]. Then, we used MLE to obtain
the probability distribution best characterizing the histogram and
obtained a parameter space to represent the shape and scale
parameters thus determined as points along a scatter. Since each
gene has a binary configuration, for a given day, we could then
retake the cells × genes matrix and ask which cells cluster in this
space according to the 16 possible states.

RESULTS

Cumulative Earth Mover’s Distance
Captures Dynamic Evolution of the
Genes’ Expression in Fate Space
The contributions of each gene to the overall evolution of the
hESCs as they reached neuronal stages were well captured by
the stochastic characterization of their normalized count taken
for each gene across cells each day. These marginal distributions
can be seen evolving across all genes in Figure 4A, which shows
the frequency histogram of all EMD values obtained for each
comparison. Figure 4B shows the values sorted out across the

genes, providing a sense of the overall trajectory of changes in
gene expression across all cells. Also notice that, since each day
the number of cells changes, we normalized the EMD quantity
to range between 0 and 1 when superimposing the data across
days (Figure 4B).

We then accumulated the EMD value by summing up to day
54 and building a colormap to visualize the change across all
genes in the transcriptome. For each gene, we took the frequency
histogram of the normalized gene expression across the cells
and, using maximum likelihood estimation (MLE), we obtained
the continuous family of probability distributions that best fit
the histogram in an MLE sense. This was the Gamma family,
which spans a broad range of shape (a) and scale (b) values
(ranging from the memoryless exponential a = 1, to distributions
with heavy tails, to symmetric, Gaussian-like distributions). We
estimated the Gamma moments of the empirical distribution
corresponding to each gene. Each day we plotted them on a
parameter space, whereby the mean is represented along the x-
axis, the variance is represented along the y-axis, the skewness
is represented along the z-axis, and the kurtosis is proportional
to the size of the marker (higher kurtosis represented by larger
marker size). We then colored each gene with the cumulative
EMD at day 54, when the cells had reached neuronal state. This
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enabled us to visualize the “motion” dynamics of the 24,046 genes
in the transcriptome and, retrospectively, see where the most
active and least active genes were located. This information is
shown in Figure 4C, as the cells evolved to neuronal stages.

Different Evolution of the Dependency
Index Values Throughout Human
Embryonic Stem Cells Maturation for
Psychiatric vs. Neurological Disorders
We obtained the quantity Dependency Increase, as explained
in the methods, by taking the shift in the Dependency Index
at Day 12 versus the increase in the Dependency Index until
full neuronal maturation at day 54. We then plotted that value
for each disorder along the y-axis of a parameter space, as
a function of the Dependency Index at the initial stage and
at the final stage. This is represented as a vector field (rate
of change) in Figure 5A. A pattern emerged across disorders
whereby all disorders that were classified as neurological, except
for Late Onset Parkinson’s Disease, tended to be characterized by
a lower dependency during the first stage of cell differentiation
and a high increase in dependency at the neuronal stage. The
genes associated with these neurological disorders tended to
increase their co-dependencies as the cells matured into neurons,
but early in the process they were less co-dependent (lower
values of Dependency Index on the x-axis). These results can be
appreciated in Figure 5B.

In contrast, disorders classified as psychiatric in the DSM-
5, as well as Late Onset Parkinson’s Disease (and except for
Infantile Schizophrenia), tended to be characterized by a higher
dependency during the first stage (higher values along the x-
axis) but a lower increase in dependency as the cells matured
into neurons. Tourette’s, a psychiatric disorder according to
the DSM-5, was also traditionally classified as neurological and
often labeled as ASD. In this parameter space, ASD seemed
to lie on the border between neurological and neuropsychiatric
disorders, whereas infantile schizophrenia (which used to be
defined as autism earlier in DSM history) lined up with ASD
along the early value of the Dependency Index, but with a
much higher dependency increase as cells matured into neurons.
We highlight this duality with the black edge of the marker in
CP and Tourette’s on panel 5B using a parameter space that
we explain next.

Negative Correlation Trend
Characterizes Genes Associated With
Neurological and Psychiatric Disorders,
With Complementary Features in Autism
Spectrum Disorder and Parkinson’s
Disease Associated Genes
For the genes associated with each disorder, we calculated
the average cumulative EMD at Day 54 (y-axis) and plotted
it as a function of the Dependency Index at Day 54 (x-
axis) in Figure 5B. We noticed a negative trend whereby the
variability of expression, as quantified by the cumulative EMD
from measurement to measurement, tended to decrease for

Depression, PTSD, OCD, CP, Tourette’s (all DSM disorders). In
this cluster, early and late PD, which are neurological disorders,
appeared amid psychiatric DSM-classified disorders.

Neurological disorders such as FXTAS, FX, Dystonia, and
Ataxia were high in cumulative EMD, thus implying higher
cumulative changes in variability of genes’ expression. However,
these genes tended to have lower dependency indexes than
DSM-classified disorders. ASD, currently classified as a DSM
psychiatric disorder, appeared among the neurological cluster
with a high cumulative EMD at day 54, but a lower dependency
index during this final state.

Infantile schizophrenia and bipolar disorder, both DSM
disorders, were the exception to this negative trend, as they were
both high in EMD expression and dependency index. Further
details are shown in Supplementary Figure 1 comparing the two
classes of genes at final fate and state.

Visualization in Fate Space of Genes
Associated With Psychiatric and
Neurological Disorders
Using the visualization in Figure 4C, we tracked the evolution
of the genes associated with the neurological and psychiatric
disorders in fate space. We found that they moved from a spread-
out configuration in earlier days toward more localized regions
along a path of high variability in EMD and an opposite region
of low variability in EMD. As explained previously, the EMD
measured the change from one frequency histogram (marginal
distribution) on gene’s expressions across the cells on one day, to
the frequency histogram on the next day. As such, cumulatively
they reflect the overall variability in gene expression toward the
cells’ fate. We call those with the higher cumulative EMD High
Expression Variability (HEV) genes and those with the lower
cumulative EMD, Low Expression Variability (LEV) genes.

By day 54, two distinct lobes are obvious in Figure 6, which
we projected in Figure 7 along the plane spanned by the first
two empirically estimated Gamma moments, mean vs. variance.
There we saw the high mixture between the neurological (green)
and psychiatric (black) disorders. We then asked if there were
distinctions across the genes that we could visualize using
the Chow Liu maximal spanning trees, treating their network
interactions according to probabilistic graphs.

The results from the visualization prompted us to further
examine these intermixed genes and their evolution along the
Gamma mean (µ) and Gamma variance (σ) dimensions of fate
space. Projecting these values on a mean, variance parameter
plane, clearly showed their evolution and convergence to two
distinct lobes in Figure 7 (Day 54), whereby the lobe of HEV
genes with higher variability in EMD quantifying probability
transitions, separated from the lobe of LEV genes with lower
variability. The composition of these lobes was highly intermixed,
with 2,613 genes total, 946 in the lower, line like shaped lobe,
and 927 in the upper, curved shaped lobe. That count included
all disorders, whereby a gene could be counted multiple times if
it was associated with multiple disorders. We then extracted 512
unique HEV genes and 927 unique LEV genes. These genes might
be associated with more than one psychiatric and/or neurological
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FIGURE 5 | Dynamic evolution of genes’ co-dependencies in neurological vs. psychiatric disorders. (A) A negative trend is observed between Dependency Increase
and Dependency Index value at the initial state. Psychiatric (green arrows) disorders tend to cluster away from neurological (black arrows) disorders and exhibit a
high degree of dependency in the initial state. ASD lies on the border between most neurological and psychiatric disorders with regards to the dependency metric.
Late PD lies among the psychiatric (DSM) disorders. Vector represents the change from Day 12 to Day 54. (B) Disorders diagnosed by the DSM (green squares) as
psychiatric tend to cluster toward high interdependency and lower variability and level of expression. These include depression, OCD, CP, Tourette’s, and PTSD,
which group with late and early PD (neurological disorders). CP and Tourette’s are also considered neurological by some physicians, so the edge of the marker is
colored black to represent the mix. At the other end, neurological disorders (FX, FXTAS, Dystonia, and Ataxia) cluster with ASD (a DSM disorder with neurological
underpinnings). ADHD is separable from ASD in this parameter space, despite their allowed comorbidity by the DSM-5. ADHD is closer to schizophrenia, whereas
bipolar and infantile schizophrenia stand on their own in the middle of the graph and away from the general trend. These disorders have associated genes with
mid-level of interdependencies and high EMD at fate, signifying higher variability in expression profile.

disorder, or just with one or the other (see Supplementary
Table 1 and expanded Supplementary Table 2). Supplementary
Figure 1 shows the dependency indexes and fate across disorders
split according to genes in these different lobes. We further
analyzed the composition of the two lobes, but first, we had a look
at the network analyses.

Differentiation of Network Evolution of
High Expression Variability vs. Low
Expression Variability Genes in
Psychiatric (DSM) vs. Neurological
Disorders
The Chow Liu maximal spanning trees for each of the lobes
identified in Figures 6, 7 were obtained and the degree associated
with each gene was quantified to represent in Figures 8, 9 the
network evolution of the HEV and LEV genes, respectively. These
graphs show the genes blindly, without the disorders’ labels,
to give a sense of the differentiation between the two lobes of
intermixed genes in both neurological and psychiatric disorders.

Several important conclusion emerge from these
representations of the genes’ fate evolution. First, these two lobes
have fundamentally different evolution in genes’ interactions.
Second, the network has a handful of genes with high number
of genes connected to it (the network’s hubs). These hub genes
are such that if a link is disrupted between two of these hubs, the
network is disconnected with potential cascade effects (Figure 8).
In this sense, this is a fragile architecture that remains so at
each registered day. Third, days 12 and 54 have fewer hubs than
intermediate days. The latter is true in both lobes but more so
in the lobe of HEV genes. The lobe of LEV genes has a far more
distributed network in intermediate days 19 and 40, suggesting a
more robust architecture. This result reveals the importance of

such genes in the overall evolution of the transcriptome toward
neuronal states.

The network patterns prompted investigation of the hubs’
evolution across neurological and psychiatric disorders. For each
lobe, we built matrices of hub genes along the rows, sorted
by graph degree, and disorders across the columns, sorted
by neurological (early PD, late PD, Dystonia, Ataxia, FXTAS,
and FX) and psychiatric (DSM diagnosed including infantile
Schizophrenia, Schizophrenia, ADHD, ASD, Bipolar, PTSD, CP,
Depression, OCD, and Tourette’s). Each entry was color coded
with the node’s (gene’s) degree (in log scale) to help visualize
the colors better, since they ranged non-linearly from 1 to 470.
In the case of degree 1, two genes co-depended on each other’s
expression patterns. In the case of degree 2 or more, the node
had an edge with co-dependency with two or more genes. In
Figure 10 we focused on the HEV genes from the curved lobe
(with genes colored in green representing those associated with
psychiatric disorders and those colored black associated with
neurological disorders).

Here the numerator sums over the number of genes with
degree above 3 in each of the neurological disorders under
consideration and the denominator sums over the number
of genes with degree above 3 in each of the psychiatric
disorders under consideration. If in a psychiatric disorder (in
the denominator) 0 genes participate, the contribution of the
denominator is e0 = 1. Otherwise, the ratio will reflect the balance
of genes in one vs. the other, obtained for HEV and LEV genes
separately.

Figure 10 (HEV genes) and Figures 11, 12 (LEV genes) depict
the matrices whose entry is the scalar value of the ratio (plotted
as a color map in logarithmic scale). Supplementary Figure 2
depicts the HEV genes values and Supplementary Figures 3, 4
do so for the LEV genes. Figure 10B shows the HEV genes lobe
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FIGURE 6 | Visualizing the trajectories of genes associated with psychiatric (black) and neurological (green) disorders as they evolve in fate space. Color gradient
represents the cumulative EMD at day 54, with yellow representing low values owing to low variability and lower expression whereas red represents high variability
and higher expression across cells. At day 54, two lobes emerge along the high values space (higher µ) and central tendency (toward 0 skewness) with higher
concentration in lower variance regions (along the σ dimension). Notice the high change from Day 19 to Day 40, with clearly two lobes with intermixed genes from
both classes of disorders in day 54. (A) Day 12. (B) Day 19. (C) Day 40. (D) Day 54.

FIGURE 7 | Projection of transcriptome genes associated with neurological (green) and psychiatric (black) disorders on the Gamma moments plane spanned by the
empirically estimated Gamma µ and Gamma σ reveals two classes of genes. At each measurement day the genes move to eventually form two distinct lobes
corresponding to the HEV and LEV genes on the curved and line-like scatters, respectively. (A) Day 12. (B) Day 19. (C) Day 40. (D) Day 54.
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FIGURE 8 | Evolution of statistical dependencies of the HEV genes. Hubs with two or more nodes but fewer than 10 are cyan; those with more than 10 degrees but
not the maximum are colored green. The maximum degree is colored red. In the inset in the lower right panel, the arrow points at the lobe of HEV genes comprising
the dynamically evolving network. The Chow Liu Maximal Spanning Tree represented as an interconnected network evolving from Day 12 to Day 54, for the HEV
genes (located on the line like lobe as marked by the lower right-hand inset). The inset in the lower right panel indicates the lobe of HEV genes comprising these
dynamically evolving networks. (A) The network has two main hubs on Day 12. (B) More major hubs appear on Day 19. (C) As the network evolves most genes are
concentrated once again around two main hubs. (D) On Day 54 we have one major hub.

FIGURE 9 | Evolution of statistical dependencies of the LEV genes. Hubs with two or more nodes but fewer than 10 are cyan; those with more than 10 degrees but
not the maximum are colored green. The maximum degree is colored red. In the inset in the lower right panel, the arrow points at the lobe of LEV genes comprising
the dynamically evolving network. The Chow Liu Maximal Spanning Tree represented as an interconnected network evolving from Day 12 to Day 54, for the LEV
genes (located on the line like lobe as marked by the lower right-hand inset). The inset in the lower right panel indicates the lobe of LEV genes comprising these
dynamically evolving networks. (A) On Day 12 the network is centralized with genes tightly concentrated around few major hubs. (B) On Day 19 the network is more
distributed with a high number of small hubs. (C) This behavior persists on Day 40. (D) On Day 54 the network is once again centralized but there are more major
hubs than on Day 12.
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FIGURE 10 | Evolution of genes’ degree distributions across neuropsychiatric and neurological disorders. (A) Days 12–54 evolution of gene hubs (≥3 degrees) on
the curved lobe of HEV genes indicated in panel (B). Rows are genes and columns are disorders (neurological followed by DSM psychiatric). (B) The arrow marks
the lobe of LEV genes used to build the matrices. (C) Index r of Eq. 14 was obtained to ascertain the involvement of each disorder type per lobe. The marker size is
proportional to this index, with larger markers representing more involvement in neurological disorders. Both lobes are represented, and, despite the larger number of
psychiatric disorders, a higher proportion of neurological involvement is featured in HEV genes. This is represented in the probability distribution graph in panel (D).

as depicted on Figures 6, 7 for day 54, whereas Figure 10C
provides the same plot (rotated) for genes in DisGeNet found
on the transcriptome at day 54. In this figure, the size of the
marker is proportional to the scalar ratio, reflecting the balance
between neurological and psychiatric genes for each class of
genes. Figure 10D provides the probability graphs depicting the
higher probability for HEV genes in neurological conditions.
This higher proportion comes despite the far larger number
of DisGeNet genes associated with psychiatric disorders like
Schizophrenia [as captured by the colormap matrices in 10A
(HEV genes) and 11–12 (LEV genes)].

Similarly, for the LEV genes, we plotted the color map matrices
involving disorders along the columns and genes along the rows.
To aid with visibility, these are split between Figure 11 for Days
12 and 19, and Figure 12 for Days 40 and 54. In days 19 and
40, more genes partake as hubs and sub-hubs, with a more
distributed network topology than in the case of HEV genes
(as shown by the networks in Figures 8, 9 for HEV and LEV
genes, respectively).

We saw that schizophrenia (being the disorder associated
with the highest number of genes across these disorders) was
the one with the highest number of hubs. We also observed
the involvement of a hub across multiple disorders of the
neurological class and of the psychiatric class. Furthermore,
we noted that psychiatric disorders in general spanned more
hubs, and these hubs had a higher degree than neurological
disorders. Hubs with degree of 3 and above that were common
to both classes of disorders and / or in only one class
abounded and are listed in Supplementary Table 1 and in the
expanded Supplementary Table 2 listing also function and other
information about the genes.

To further investigate the balance between HEV and LEV
genes in neurological vs. psychiatric disorders, we quantified the
disease ratio,

r =
e

genes∑
i=1 NeuroDegree

e

genes∑
i=1 PsychDegree

(14)

Results From Binary Barcode (State Space) and
Cells’ Subtypes
Figure 13 shows representative results of tracking the gene’s state
according to a binary code that sets the state ON if the node’s
degree at a given day is above the average degree of the network
that day, and OFF otherwise. With four readings we have 24,
16 possible states, and each gene is assigned one possible state
according to its network dynamics. In this figure (for simplicity)
we plot two examples of genes with state [1111] remaining each
day above the average degree of the network, taken across all
nodes. Likewise, the example of [0100] is of a gene that only
raises above the average degree of the network in day 19. The
other configurations (dashed trajectories) on each plot reflect the
trajectories of other genes in other binary state vectors.

Using this information, we could build clusters of the cells that
primarily had genes in a binary state. The use of both the fate and
state dynamics of the gene enabled the tracking of the stochastic
activity over time.

Further Similarities and Differences Between
Neurological and Psychiatric Disorders
Besides tracking genes expression and their variability in fate
space along with the binary ON/OFF states of each gene and
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FIGURE 11 | Tracking the LEV genes in the lower (line-like) lobe in Days 12 and 19 according to disorder (as in Figure 10) reveals the participation of several hubs in
both neurological and psychiatric disorders. (A) Day 12 LEV genes with hubs having less than 342 connections. (B) Day 10 LEV hub genes with up to 4
connections. (C) LEV hub genes with up to 5 connections. (D) Day 19 LEV hubs with up to 8 connections. (E) Day 19 LEV hub genes with up to 167 connections.
(F) Lobes of HEV and LEV genes with arrow pointing to the LEV genes used to build these color map matrices and those in the next figure.

their involvement in neurological vs. psychiatric conditions,
we selected the following clusters of tissues to evaluate genes’
involvement:

• Cortical Regions: Cortex, Frontal Cortex.
• Neuromotor System: Caudate Basal Ganglia, Cerebellar

Hemisphere, Cerebellum, Nucleus Accumbens, Putamen
Basal Ganglia, Substantia Nigra.
• Limbic System: Amygdala, Anterior Cingulate Cortex,

Hippocampus, Hypothalamus.
• Spinal Column: Spinal Cord Cervical C1, Nerve Tibial.
• Glands: Adrenal and Pituitary gland.

We found statistically significant differences at the alpha 0.05
level (p < 0.04, t-test). Figure 14 shows the bar plots comparing
the outcomes for HEV and LEV genes for psychiatric (red) and
neurological (blue) disorders.

The psychiatric disorders included ADHD, ASD,
Schizophrenia, Bipolar, Depression, Infantile Schizophrenia,
PTSD, and OCD. The neurological disorders included FXTAS,
Early PD, Late PD, Ataxia, FX, Dystonia and CP, and Tourette’s,
given the involvement of the neuromotor systems in the last two
disorders. Maximal differences in percentile change and in the
reshuffling of disorders (which we plotted sorted by percentile
in Figure 14) accounted as well for statistically significant
differences between the tissues for the HEV vs. LEV genes
(p < 0.04, t-test).

DISCUSSION

This paper uses genomic information to reframe a recently
revived debate on the possible differentiation between
neurological and psychiatric disorders. We reframed the
question by addressing whether, despite a shared genomic pool,
psychiatric and neurological disorders could be differentiated
at very early embryonic stages. To pursue our question, we
took advantage of the validation strategies used by Yao et al.
(2017) (i.e., the fact that they compared their two-dimensional
in vitro model to primary tissues from atlas data and cortical
cells from mid-gestation human fetal embryos). Their work
generated a transcriptome-based lineage that allows for studies
of human brain development and for the modeling of human
neurodevelopmental disorders.

With these results in mind, we here developed and
implemented a three-level approach that interrogated the
early development human transcriptome trajectories of
hundreds of hESCs as they reached neuronal state. Each
level of inquiry offered new insights on the complex genetic
origins of psychiatric and neurological disorders, highlighting
fundamental differences between the two types of disorders.
We uncovered and characterized two classes of genes with
essentially different dynamics (distinct ON/OFF states) and
fate (cumulative expression variability) featured throughout
differentiation. Furthermore, using these classes of genes,
we pointed at commonalities between the motor and limbic
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FIGURE 12 | Low expression variability genes Days 40 and 54 (same format as Figure 11). (A) Day 40 LEV hub genes with up to 4 connections (degree). (B) Day
40 LEV hubs with up to 7 connections. (C) Day 40 LEV hubs with 3 connections. (D) Day 40 LEV hubs with 3 connections. (E) Day 40 LEV hubs with more than 7
and up to 179 connections. (F) Day 54 LEV hubs with over 3 and up to 342 connections. Color bar is in log (degree).

systems for one class (but not the other) that could possibly
explain the current confounds in observational criteria. These
analyses provide evidence supporting the notion that psychiatric
disorders have substantial neurological underpinnings and
yet their associated genes’ network interdependencies are
significantly different at the early embryonic stages of cell
differentiation. We next discuss each level separately.

Level 1: Marginal Distributions
Traditionally, transcriptome interrogation aims at uncovering
different classes of cells with some genomic composition. This
general approach tends to do away with genes that have low
variability or asynchronous behavior, i.e., they may be turned
OFF in the initial stages, or have such low expression that
their contribution is presumed negligible. We thought differently
here and, instead of first trying to uncover cells’ classes, we
transposed the cells × genes matrix and expressed each gene as
a function of the cells’ expressions. Then the question was, for
each gene, how was the gene’s expression across cells cumulatively
contributing to the final neuronal fate. Furthermore, how was
the gene’s state evolving across these different readings? We
reasoned that some registered cells might not be the same
from day to day, yet the expression of the genes would change
across the transcriptome in some way that would lead to self-
emergent patterns, found without discarding any genes. For
each gene we then obtained the marginal probability distribution
of its expression to neuronal fate and measured across days
the departure in expression variations, using the EMD metric

appropriate to quantify differences or similarities between such
frequency histograms.

Tracking this information without discarding any genes
allowed us to visualize the genes associated with psychiatric and
neurological disorders embedded in the full transcriptome. The
new visualization tool revealed two fundamental subtypes of genes
(as depicted in the two lobes of Figure 7). Both lobes had a mixed
composition of genes associated with psychiatric (according
to the DSM-5) and neurological disorders. The question that
emerged then was, what contribution was each set of genes
(neurological vs. psychiatric) making to each lobe? We will defer
that question to the third level of inquiry.

One lobe is characterized by genes of highly varying
expression and high cumulative EMD whereas the other contains
genes of low expression variability and low cumulative EMD.
Here it may be worthwhile mentioning that traditional methods
such as PCA and t-SNE would have likely missed the LEV genes
of the second lobe, with lower expression and lower variability.
And as we will see at the third level of inquiry, that would have
missed an opportunity to capture the real evolution of these
genes from the vantage point of probabilistic nodes interacting
across a network.

Level 2: Co-dependent Genes
Moving on to a higher level of complexity, we studied the pairwise
interactions between genes by focusing on the joint probability
distributions of all possible pairs for each distinct group of
genes associated with the various psychiatric and neurological
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FIGURE 13 | Genes’ states and cells’ hierarchical trees. (A) Matrix of 495 cells × 24,046 genes at day 54 of neuronal stages of hESCs. Each entry of the matrix is
the counts in transcripts per million capturing the genes’ expressions at day 54. (B) Sample genes states [1111] and [0100] whereby the gene’s degree in the
network is above the average degree each day (always ON, above connectivity threshold) and the case whereby the gene is OFF on day 12, then ON day 19, and
OFF the remaining time. (C) Dynamic trajectory reflecting the log of the maximal degree of the node (gene) on the y-axis and time (days 12–54) under consideration
on the x-axis. Dashed trajectories reflect the profile of all genes across binary space. Continuous lines on the top graph reflect the genes that remained ON above
threshold (average degree) across all days vs. top graph genes with [0100] OFF/ON profile.

disorders, according to sources found in the DisGeNet portal.
By employing a robust statistical independency test, we were
able to quantify the average degree of pairwise dependencies
in each network of gene expressions. The initial degree
of interdependence between genes associated with different
pathologies (Figure 5A) allowed us to differentiate between
neurological and psychiatric disorders.

Two main clusters appeared in this vector field, representing
the increase in dependency from the initial to the final states.
One cluster boasting a higher dependency increase was primarily
neurological: early onset PD, Ataxia, Dystonia, FX and FXTAS.
Yet, several DSM (psychiatric) disorders appeared at that level
as well. These included disorders that are detectable in infancy,
such as infantile schizophrenia, CP, OCD, and Tourette’s. They
share a highly compromised somatic-sensory-motor system and
profound issues with the limbic system that without a doubt
will impact the overall neurodevelopment of the individual. This
pool of genes with high dependency gains across early embryonic
stages of neuronal cell differentiation suggests rather early origins
of such disorders and the highly interconnected evolution of their
associated genes. They also showed a larger rate of change from
the initial to the final state.

At a lower level of dependency increase, we saw mostly DSM
psychiatric disorders, except for late onset PD. This is interesting
considering the high incidence of dementia, hallucinations,
and other altered mental states in late PD and other related
tauopathies (Koga et al., 2022; Tu et al., 2022). These rates of

change were more modest than those in the other group of
disorders with a higher dependency increase. In particular, ASD,
which lies approximately midway along this vector field, had
the lowest dependency increase, signaling an altogether different
signature of genes’ co-dependency during early embryonic stages
of neuronal differentiation.

Indeed, ASD seems to lie on the border between the
class of neurological and psychiatric disorders, which confirms
at the genetic level that the spectrum of autism comprises
pathologies of the nervous system that underlie its phenotypic
conceptualization as a behavioral/mental disorder. This is
supported by extended research showing biorhythmic patterns in
autism with a unique signature of noise-to-signal ratio derived
from fluctuations in signal amplitudes and timing. This motor
code is bound to impact the kinesthetic reafferent feedback
from the periphery to centers of central control (Torres et al.,
2013a, 2020; Torres and Denisova, 2016; Wu et al., 2018; Torres,
2021). Here we observed the origins of such departures at
these early embryonic stages of neuronal cells’ differentiation,
whereby the genes associated to ASD manifested the smallest
shift in dependency index value from the initial to the final
state, accompanied by the smallest increase in genes’ statistical
dependency. The change in dependency index (i.e., the range of
values where the arrow denoting rate of change lands) overlapped
with those ranges in FX, FXTAS, Ataxia, Dystonia, and Early PD
along the neurological disorders, and with infant Schizophrenia,
along the psychiatric ones. This is interesting in view of recent
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FIGURE 14 | Differentiating psychiatric from neurological disorders by genes’ expression in tissues, for the HEV and LEV genes classes. For each disorder in each
clinical category (psychiatric or neurological) we removed the genes that would maximally express on tissues from the brain, the spinal cord, and glands, as
described above. Upon removal, we calculated (as in Torres, 2020) the resulting normalized changes in overall gene expression across these tissues. Then, we found
in which percentile, taken over all tissues, each cluster of tissues belonged and identified the range of the change obtained within each cluster of genes (HEV vs.
LEV). We computed the difference in percentile for each cluster of tissues to compare neurological vs. psychiatric disorders. (A) Percentile of change in genes
expression on tissues for each disorder (red psychiatric vs. blue neurological) for tissues reported by the Consortium atlas of genetic regulatory effects across human
tissues, GTEx v8 atlas of 54 tissues (GTEx Consortium, 2020) here grouped into regions, cortical, spinal cord, limbic and neuromotor systems and glands (see text).
(B) Changes in percentile between psychiatric and neurological disorders are statistically significant at the 0.05 level and reflect the differences between HEV
(“Htissue”) and LEV genes (“Ltissue”) for each set of tissues comprising these regions of interest. The changes in limbic and motor tissues were minimal in HEV
genes, but appreciable in the LEV genes (often discarded).

work examining digital biomarkers of FX carriers who, despite
their young age, manifested gait patterns present in Ataxia
and FXTAS much like participants in the autism spectrum did
(Torres et al., 2020; Bermperidis et al., 2021). In this recent
work, according to causal stochastic analyses, the kinesthetic
feedback loops estimated from their gait largely departed (in both
ASD and young FX carriers) from the neurotypical age-matched
controls. They resembled instead the gait of patients with PD
(Bermperidis et al., 2021). Our results here confirmed that the
presence or absence of a disorder was not due to the mutation
of a specific gene but rather resulted from the degree of co-
expression among multiple genes. Therefore, in the context of the
evolving human transcriptome, what truly separates neurological
from psychiatric disorders is that the latter show much higher
complexity of co-expression and interconnectedness in the early
stages of cell differentiation, as compared to the genes associated
with the former.

This hypothesis is reinforced if we observe the relative
positions on this plane of Infant Schizophrenia and
Schizophrenia, Schizophrenia and Bipolar Disorder, Tourette’s
and OCD, PTSD and Depressions as well as ASD and ADHD,
and ASD and Infant Schizophrenia. Once again, we have
a transition in the initial degree of dependency from what
characterizes Infant Schizophrenia as a neurodevelopmental
disorder to what characterizes Schizophrenia as a disorder
appearing in early adulthood. Also, OCD and Tourette’s have a
high comorbidity, and symptoms of the latter may appear in the
symptomatology of OCD. The same is true for Depression and

PTSD, whereas both Schizophrenia and Bipolar Disorder belong
in the psychotic spectrum of psychiatric diagnoses, according to
the DSM-5. Hence, the proven clinical proximity in all three pairs
recapitulates here in their proximity in our parameter space.
Interestingly, ASD was once labeled as “Infantile Schizophrenia,”
a clinical labeling that receives support in our parameter plane:
ASD and Infantile Schizophrenia have nearly the same initial
degree of dependency in our parameter space. Finally, Tourette’s
is clustered among the psychiatric disorders. Indeed, there
is ample debate on whether Tourette’s is a psychiatric or a
neurological disorder, despite generally being classified as the
latter (Sandor, 1993; Kerbeshian et al., 1995; Brovedani and Masi,
2000).

When examining the cumulative changes in expression
variability according to the EMD, a negative trend emerges
in both types of disorders. The higher the genes’ variability
accumulated toward Day 54, the lower the dependency index in
this final state. However, ASD appears among the neurological
disorders and Early and late PD appears among the psychiatric
(DSM) ones (near to PTSD, Depression, OCD, CP, and
Tourette’s). Furthermore, ADHD and Schizophrenia lie midway
of this scatter and Infantile Schizophrenia and Bipolar disorders
depart from the psychiatric group along the axis of variability, i.e.,
their average cumulative EMD expressions are among the highest
levels, along with those of the neurological disorders, at Day 54.

From these patterns, it may be possible to perceive that
networks that reach a highly interconnected and complex state
are characterized by genes that have more constancy in their
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statistical behavior. We revisit this proposition shortly, at the
third level of inquiry. We reasoned here that, intuitively, this
would make sense, since highly interconnected networks could
dictate a gene’s behaviors in a distributed way, whereas more
disjointed networks would allow genes to behave in a more
independent manner.

Our second level of inquiry considers pairs of genes, isolated
from the rest of the network, and then integrates over all pairs
to derive the degree of interdependency. We next explore a full
probabilistic graphical model and visualize the global behavior
of these genes. We characterize the topology of this network
and identify the importance and role of different genes in the
evolution of the network and subsequently on the origins of
different disorders. To that end, we consider the multivariate
probabilistic behavior of the two different subtypes of genes that
we discovered at the first level of analysis.

Level 3: Genes’ Networks
By employing factorization techniques and graphical modeling,
we were able to capture the evolutions of the networks of HEV
genes (Figure 8) and LEV genes (Figure 9). In both graphical
trees, we observed a hierarchical structure, with genes that were
central (hubs) and associated with many other genes as well as
genes that were leaf nodes. One key difference between HEV and
LEV genes was that the latter have a less hierarchical organization
on Days 19 and 40, with many small hubs and “clouds” of genes
forming around the dominant hubs of the network. Note that
the topology of the networks implies fragility, since removing a
central hub or removing edges that connect large hubs would
result in disconnected graphs, with the network of HEV genes
being the most fragile of the two.

We then cataloged the degrees of genes that were significant
in each of the eight networks (two networks × 4 days
for each genes’ class) and belonged to different neurological
and psychiatric disorders (see Figures 10–12). Despite a vast
majority of high degree genes being consistently associated with
psychiatric disorders such as Schizophrenia (owing to the very
high number of associated genes reported in DisGeNet), we
found a far higher proportion of neurological involvement in
HEV genes (Figures 10A,D showing the probability distributions
along with Supplementary Figures 2–4). This result, along
with those in Figures 11, 12 for the LEV genes, pointed to
a degree of overlapping of genes associated with neurological
disorders with those associated with psychiatric disorders. This
is captured as well on Supplementary Table 1, which we
expanded Supplementary Table 2, to catalog the genes’ function,
location, and phenotypes. The results also unambiguously
separated genes involved in neurological disorders from those
associated with psychiatric disorders in that the former were
probabilistically more HEV (Figure 10D). In contrast, the
latter tended to be (probabilistically) LEV, yet forming more
robust and distributed networks. From the network analyses
and the index ratio quantifying neurological over psychiatric
predominance, we concluded that, probabilistically, underlying
psychiatric disorders have more LEV genes and underlying
neurological disorders have more HEV genes.

The Level of Average Genes’ Expression
on Tissues
The fundamental differences quantified between psychiatric and
neurological disorders using the different lobes of HEV vs.
LEV genes extended to the tissues, as we probed these genes’
expressions on the 54 tissues from GTEx. Here we grouped tissues
into brain regions (cortical, motor-subcortical and limbic), the
spinal cord, and glands (see main text for details) and measured
the percentile change in HEV vs. LEV genes upon removal
of those genes in each of the disorders under consideration.
We then grouped these disorders according to psychiatric and
neurological clinical classification and compared the change in
percentile between the two types of disorders.

Our analysis showed that, across different groups of tissues
that typically serve different roles in the autonomic, central, and
peripheral nervous system, fundamental differences emerged
between the two types of disorders under consideration. The
genes associated with psychiatric disorders expressed on these
tissues differently than they did in neurological disorders. These
differences were statistically significant between HEV and LEV
genes in general. They were also statistically significant when
considering the genes as part of psychiatric or neurological
disorders. To that end we pooled the changes in percentile across
all tissues and genes’ type of each disorder class (psychiatric
or neurological) and found that the HEV vs. LEV genes
classification served to separate psychiatric from neurological
disorders. Furthermore, motor, and limbic regions were
minimally different in HEV genes (relative to LEV genes) when
comparing psychiatric to neurological disorders (Figure 14B).
This suggests that LEV genes, traditionally discarded, contribute
to such statistically significant differences between psychiatric
and neurological disorders. This result, paired with the
probabilistically higher prevalence of neurologically associated
genes across the HEV lobe and their presence in psychiatric
disorders, supports the notion of motor involvement in mental
pathologies. It is in this sense that one could argue that
psychiatric disorders are also neurological disorders.

A main corollary of these results is that the LEV genes, which
under traditional methods are likely discarded and excluded
from the analyses, make an important contribution to the
distinction between psychiatric and neurological disorders. This
can be appreciated in Figure 14B whereby HEV genes (likely
the ones entering the analyses under traditional techniques) do
not separate motor and limbic systems between the two disorder
types. It is the LEV genes that do so in the motor and limbic
systems, and in other tissues as well. Further development of
new analytical techniques that also include these genes with
lower expression variability and asynchronous ON/OFF states
may open new lines of inquiry across diseases in general.

Considering the Gene’s State Through a
Binary Barcode
Interrogating the fate of the genes gave us a sense of ways to
automatically cluster groups of genes according to the evolution
of their expression variability. But, what about the changes in
gene’s state? Once we reached the third level of inquiry and
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determined the gene’s degree of codependency at the network
level, it was possible to examine the average degree of the gene
to determine its hub activity level as above or below that average
threshold (on a logarithmic scale to capture the non-uniform
degree distribution). In 4 days of measurements (in this case),
we found genes that were always ON [1 1 1 1] in their hub
networking role. These stood in contrast to those that were
always OFF [0 0 0 0] in this role. Then, we found genes in
other categories, thus building a barcode of binary states that
allowed further examination of the genes embedded in the full
transcriptome. Here we studied these pools of genes associated
with neurological and psychiatric disorders, but the same type
of method could be employed to interrogate the network’s
state dynamics of genes associated with other disorders, with
different frequency of recordings (here 24 in 4 days of recordings,
yielding 16 types that resulted in different cell classes expressing
those main types). However, other refinements of this method
might offer new dynamics information with higher granularity
of cell’s state that includes the low- and odd-varying genes with
asynchronous states (such as the class of LEV genes uncovered
here). In this sense, further work is warranted to formalize a
new embedding algorithm that considers the full transcriptome
fate and state code, to reveal topological invariants of the genes’
classes associated with known diseases.

Recapitulating Phenotypical Information
Cataloged From Multiple Sources
We took our investigation one step further and compiled
information from the OMIM online source for genes of degree
>3 of both gene lobes (HEV and LEV). Accordingly, we
examined three categories of genes that, according to their
association with both neurological and psychiatric disorders
(overlapping roles), were associated with neurological disorders
only and those associated with psychiatric disorders only. The
“Neurological only” category consisted of only two such genes
with degree higher than 3. Information about these classes of
genes can be found in the Supplementary Table 1 and in the
expanded version of this table, including the inheritance of the
identified genes and the functional properties of the proteins they
encode in the Supplementary Material.

Both sets of genes associated only with psychiatric disorders
and those associated with both the neurological and psychiatric
ones were found to play critical roles in the developing nervous
systems overall, fetal brain development, neurogenesis, neuronal
differentiation, neuromodulation, synaptic organizations,
healthy function of the senses, cortical development,
and neuronal migration in the context of development.
The psychiatric only-type genes were mainly associated
with serotonin (5-HT), glutamate (NMDA), and nicotinic
acetylcholine receptors (nAchRs), whereas the neurological
and psychiatric-type genes were associated with adrenergic
(norepinephrine) and dopaminergic pathways. In both groups,
specific genes were important for the GABAergic system.

In an interesting outcome (summarized in Supplementary
Figure 5), genes with a high network degree (large hubs) turned
out to be crucial to the immune system. These genes are

associated with autoimmune disorders and neurodegeneration,
synthesis of growth factors, cancer and metastasis, inflammatory
responses, and allergies. Notable cases are the HEV gene ELAVL4,
with a network degree of 165. This hub is associated with Late
Onset Parkinson’s disease and Schizophrenia and is related to
paraneoplastic neurological disorders (PND) and autoimmune
neuronal degeneration. Another gene, LIF, in the LEV genes lobe,
with a network degree of 4, has been hypothesized to play a
functional role at the interface between the immune system and
the nervous system. Here we recapitulated its association with
Schizophrenia and Depression.

According to the OMIM literature, many of the identified
high-degree genes (the hubs) play key roles in basic molecular
and cellular functions, such as signal transduction, ATP synthesis,
mitosis, cell-to-cell adhesion, intracellular signaling pathways,
differentiation, proliferation, and transcription regulation. These
large hubs also participate in these processes by influencing
other genes’ functions (as predicted by the network’s topology)
implicated in the formation of key components of the cell, such
as the cytoskeleton and the extracellular matrix. These hub genes
are crucial to the survival of the eucaryotic cell.

These findings imply that the genes associated with neurological
disorders are no more fundamental than the genes associated
with psychiatric disorders or that are at the intersection of
both disorders. According to the transcriptome data used here,
validated using primary tissues from atlas data and cortical cells
from mid-gestation human fetal embryos, and to the analyses that
we performed, the origins of both types of disorders can be traced
back to the embryonic stages of differentiation and development.
These involve the emergence of fundamental neural pathways
and general biochemical cascades that characterize eucaryotic cell
life. Moreover, in both types of disorders, key genes support the
role and interaction of the immune system with the developing
nervous system. The interaction between the two sub-systems is
being explored and investigated by various researchers (Ashwood
and Van de Water, 2004; Ashwood et al., 2006; Michel et al.,
2012; Meltzer and Van de Water, 2017), and their findings
will shed light not only on the mechanisms of emergence of
neurodevelopmental and neurological disorders but also on what
the DSM-5 characterizes as “mental disorders.”

Amidst such heated debate on differentiating between
neurological and psychiatric pathologies, perhaps, as synthesized
by the OMIM literature behind their associated genes in
our networks, a fundamental distinction is delineated by the
neurotransmitter receptors and pathways linked to these
genes. For example, the degeneration of dopaminergic
pathways in the striatum is responsible for Parkinson’s
disease-associated tremor, which is, at some point of
the disorder’s progression, observable to the naked eye,
thus shifting the focus to the “neurological” nature of
PD (while ignoring the progressive dementia associated
with it). In contrast, low serotonin in Depression leads
to a “psychiatric” phenotype that sidelines motor control
issues in these patients. On the other hand, high dopamine
levels in Schizophrenia seem characteristic of this disorder,
which despite being labeled “psychiatric” has a definite
motor component (Rogers, 1992; Walther and Strik, 2012;
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Nguyen et al., 2016; Slowinski et al., 2017; Walther and Mittal,
2017; Walther et al., 2020, 2022).

Possible Utility of Reframing the
Question of Psychiatric vs. Neurological
Disorders From the Genomics
Standpoint
Two important theoretical constructs could be proposed to
further disentangle these disorders at the level of modeling
system’s behaviors. One theoretical construct would have to
borrow mechanisms from the immune/autoimmune systems to
frame models of possible mechanisms. Given the synthesis of
OMIM information, this line of inquiry will be important in
future computational work.

Another avenue of theoretical inquiry explaining mechanisms
to differentiate neurological from psychiatric disorders at the
behavioral level would be related to the general framework
comprising internal models of action (IMA) in the field of
neuromotor control (Kawato and Wolpert, 1998; Wolpert
and Kawato, 1998). We refer specifically to the “principle of
reafference” (Von Holst and Mittelstaedt, 1950) and related
computational modeling. According to this basic principle,
every time a movement is initiated by the nervous system,
information is sent to the motor system and a copy of
the signal is created, known as the efference copy. This
enables the CNS to distinguish sensory signals stemming from
(exogenous) external environmental factors from (endogenous)
sensory signals coming from the body’s own actions (Jekely
et al., 2021). According to the IMA, the efference copy is
provided as input to a forward model, which predicts the
sensory consequence of a motor command and measures
the error between desired and attained outcome (Kawato
and Wolpert, 1998; Wolpert and Kawato, 1998). Although
IMA focuses only on error-correction and targeted-directed
actions, complex movements are richly layered (Brincker
and Torres, 2018). As such, endo-afference can be further
separated into at least two components based on different
classes of movements (Torres, 2011). One type of endo-
afference is classically associated with voluntary actions, i.e.,
those deliberately aimed at a goal and operating under an
error correction code (Kawato and Wolpert, 1998; Wolpert
and Kawato, 1998). Another type of endo-afference, however, is
associated with spontaneous or incidental actions, encompassing
signals that transmit information about contextual variations
associated with exploratory learning (Torres, 2013; Vaskevich
and Torres, 2022). Reafferent signals also include pain and
temperature afference, a far more complex and elusive code
that needs to be distinguished from the motor code in
current biosignals’ analytics, e.g., as revealed in Elsayed (2021)
and Ryu et al. (2021).

The principle of reafference allows us to distinguish between
different levels of mental intent (Torres, 2013; Torres et al.,
2013b; Choi and Torres, 2014; Ryu and Torres, 2020)
and physical volition (Torres and Lande, 2015; Nguyen
et al., 2016; Torres, 2016, 2017). This distinction can be
conceptually mapped onto psychiatric and neurological issues,

respectively, to inform hypothesis testing and theoretical
modeling, possibly expanding criteria beyond subjective
observation and opinion. However, we feel that the theoretical
mechanisms stemming from immune/autoimmune systems
will non-trivially add to our understanding of genomic
differentiation between these classes of disorders. As such,
they should be incorporated in a new internal model
framework amenable to address different genes’ classes
analogous to deliberate vs. spontaneous or error-corrective
vs. exploratory modes of neuromotor control and learning,
respectively (Torres, 2011; Vaskevich and Torres, 2022). Here
understanding recurrent loops of genes modulating other
genes will be critical to forecast and track the onset timing of
these disorders.

In summary, we have demonstrated at the level of hESCs
that there are fundamental differences between psychiatric and
neurological disorders when considering the full transcriptome.
The inclusion in our analyses of genes associated with these
disorders that nevertheless present odd or low variability
and asynchronous ON/OFF states proved essential to making
this differentiation. Considering only HEV genes would have
missed this dichotomy. Furthermore, these distinctions extended
to human tissues commonly studied in genomics. It is our
hope that the multilayered, more inclusive approach offered
in this work paves the way to open new lines of inquiry
and help advance basic research in mental and physical
health in general.
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