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Dopamine Made You Do It

Terrence Sejnowski

DOPAMINE-RELEASING NEURONS are a core brain system that con-
trols motivation.! When enough dopamine-releasing neurons die, the
symptoms of Parkinson’s disease appear; these include motor tremor,
difficulty initiating actions, and, eventually, anhedonia, the complete loss
of pleasure in any activity. The end stage includes catatonia, a complete
lack of movement and responsiveness. But when the dopamine neurons
are behaving normally, they provide brief bursts of dopamine to the neo-
cortex and other brain areas when an unexpected pleasure (reward) oc-
curs (be it food, money, social approval, or a number of other things) and
a diminution of activity when less than expected reward is experienced
(this can be a smaller reward or no reward at all).

Your dopamine neurons can be polled when you need to make a de-
cision. What should I order from the menu? You imagine each item, and
your dopamine cells provide an estimate of the expected reward. Should
I marry this person? Your dopamine cells will give you a gut opinion that
is more trustworthy than reasoning. Problems with many different di-
mensions are the most difficult to decide. How do you trade off a sense
of humor in a mate, a good dimension, against being messy, a bad di-
mension, or hundreds of other comparisons? Your brain’s reward sys-
tems reduce all these dimensions down to a common currency, the tran-
sient dopamine signal. Dopamine neurons receive inputs from a part of
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the brain called the basal ganglia, which in turn receive input from the
entire cerebral cortex. The basal ganglia evaluate cortical states and are
involved with learning sequences of motor actions to achieve a goal.

The dark side of reward is that all addictive drugs act by increasing
the level of dopamine activity. In essence, drugs like cocaine and heroin
(as well as nicotine and alcohol) hijack the dopamine reward system,
making your brain believe that taking the drug is your most important
immediate goal. Withdrawal symptoms dominate when drugs are not
immediately available. This motivates desperate actions to obtain more
drugs, and such actions can jeopardize life and livelihood. Even after an
arduous rehabilitation process, which can take years, the brain’s reward
circuit is still altered by the experience of addiction, leaving the recover-
ing addict vulnerable to a relapse. This can be triggered by people and
places, sounds and smells previously associated with the drugs, or even
paraphernalia used to take the drugs. For an addict, dopamine is deeply
compelling. '

The basal ganglia are part of all vertebrate brains. Within the basal
ganglia the dopamine neurons mediate a form of learning called asso-
ciative learning, made famous by Pavlov’s dog. In Pavlov’s experiment,
a sensory stimulus such as a bell (a conditioned stimulus) was followed
by the presentation of food (an unconditioned stimulus), which elicited
salivation even without the bell (an unconditioned response). After sev-
eral pairings, the bell by itself would lead to salivation (a conditioned re-
sponse). Different species have different preferred stimuli to associate.
Bees are very good at associating the smell, color, and shape of a flower
with the rewarding nectar, and they use this learned association to find
similar flowers that are in season. Something about this universal form
oflearning must be important, and there was a period in the 1960s when
psychologists intensively studied the conditions that gave rise to associa-
tive learning and developed models to explain it.

Only the stimulus that occurs just before the reward becomes asso-
ciated with the reward.? This makes sense since the stimulus is more likely
to have caused the reward if it comes before the reward than a stimulus
just after the reward. Causality is an important principle in nature.

Suppose you have to make a series of decisions to reach a goal. If you
don'’t have all the information about the outcomes of the choices ahead
of time, you have to learn as you make the choices in real time. When
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you get a reward after a sequence of decisions, how do you know which
of the several choices you made were responsible? A learning algorithm
that can resolve this issue, called the temporal credit assignment prob-
lem, was discovered by Richard Sutton at the University of Massachusetts
at Amherst in 1988. He had been working closely with Andrew Barto,
his thesis adviser, on difficult problems in reinforcement learning, a
branch of machine learning inspired by associative learning in animals.
In temporal difference learning, you compare your expected reward for
making a particular choice with the actual reward you get and change your
expected reward so that next time you will be able make a better decision.
Then an update is made to the value network that computes the future
expected reward for each decision at each choice point. The temporal
difference algorithm converges to the optimal series of decisions after
you have had enough time to explore the possibilities. This is followed by
a period of exploiting the best strategy found during the exploration.
Bees are champion learners in the insect world. It takes only a few
visits to a rewarding flower for a bee to remember the flower. This fast
learning was being studied in the laboratory of Randolph Menzel in Ber-
lin when I visited him in 1992. The bee brain has around a million tiny
neurons, and it is very difficult to record their electrical signals because
they are so tiny. Martin Hammer in Menzel's group had discovered a
unique neuron, called VUMmx1, that responded to sucrose (a type of
sugar) with electrical activity but not to an odor; however, after the odor
was delivered, followed shortly by the sucrose reward, VUMmx1 would
now respond to the odor.

When I returned to La Jolla, Peter Dayan, a postdoctoral fellow in my
lab who was an expert on reinforcement learning, immediately realized
that this neuron could be used to implement temporal difference learn-
ing. Our model of bee learning could explain some subtle aspects of bee
psychology, such as risk aversion. For example, when a bee is given a
choice between a constant reward and twice the amount but at 5o per-
cent probability (on average the same amount), bees prefer the constant
reward. Read Montague, another postdoctoral fellow in my lab, took the
next leap and realized that dopamine neurons in the vertebrate reward
system may have a similar role in our brains.* In one of the most excit-
ing scientific periods of my life, these models and their predictions were
published and subsequently confirmed in monkeys with single neuron
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recordings by Wolfram Schultz and in humans with brain imaging.’
Transient changes in the activity of dopamine neurons signal reward pre-
diction error.

Temporal difference learning might seem weakly effective since the
only feedback present is whether or not you are rewarded at the end of a
sequence of actions. However, several applications of temporal difference
learning have shown that it can be powerful when coupled with other
learning algorithms. Gerry Tesauro worked with me on the problem of
teaching a neural network to play backgammon. Backgammon is a highly
popular game in the Middle East, and some make a living playing high-
stakes games. It is a race to the finish between two players, with pieces
that move forward based on each roll of the dice, passing through each
other on the way. Unlike chess, which is deterministic, the uncertainty
with every roll of the dice makes it more difficult to predict the outcome
of a particular move. The knowledge of backgammon in Gerry’s pro-
gram was captured by a value function that provided an estimate of win-
ning the match from all possible board positions as ranked by a panel of
backgammon experts. A good move can be found simply by evaluating
all possible moves from the current position and choosing the one with
the highest value.

Our approach used expert supervision to train neural networks to
evaluate game positions and possible moves. The flaw in this approach
is that many expert evaluations of board positions were needed arid the
program could never get better than our experts. When Gerry moved to
the IBM Thomas J. Watson Research Center, he switched from super-
vised learning to temporal difference learning and had his backgammon
program play itself. The problem with self-play is that the only learning
signal is a win or a loss at the end of the game with no information about
the contribution of the many individual intermediate moves during the
game to that win or loss. ‘

At the beginning of the backgammon learning, the machine’s moves
were random, but eventually one side won. The reward first taught the
program how to “bear off” and exit all of the pieces from the board at the
end of the game. Once the endgame was learned, the value function for
bearing off in turn trained the value function for the crucial middle game,
where subtle decisions need to be made about engagements with the other
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player’s pieces. Finally, after playing a hundred thousand games, the value
function was honed to play the opening, in which pieces take defensive
positions to prevent the other player from moving forward. Learning pro-
ceeds from the end of the game, where there is an explicit reward, back
toward the beginning of the game, using the implicit reward learned by
the value function. What this shows is that by back-chaining with a value
function, it is possible for a weak learning signal like the dopamine re-
ward system to learn a sequence of decisions to achieve a long-term goal.
Tesauro's program, called TD-Gammon, surprised me and many
others when he revealed it to the world in 1992.° The value function had
a few hundred model neurons in it, a relatively small neural network by
today’s standards. After a hundred thousand games, the program was
beating Gerty, so he alerted Bill Robertie, an expert on positional play in
backgammon from New York City, who visited IBM to play TD-Gammon.
Robertie won the majority of games but was surprised to lose several
well-played games and declared it the best backgammon program he had
ever played. Several of the moves were unusual ones that he had never
seen before; on closer examination these proved to be improvements on
typical human play. Robertie returned when the program had reached a
million self-played games and was astonished when TD-Gammon played
him to a draw. A million may seem like a lot, but keep in mind that after
a million games, the program saw only an infinitesimal fraction of all
possible board positions. Thus TD-Gammon was required to generalize
to new board positions on almost every move.

In March 2016, Lee Sedol, the Korean Go World Champion, played a
match with AlphaGo, a program that learned how to play Go using tem-
poral difference learning.” AlphaGo used neural networks with a much
larger value network, having millions of units to evaluate board positions
and possible moves. Go is to chess in difficulty as chess is to checkers.
Even Deep Mind, the company that had developed AlphaGo, did not
know its strength. AlphaGo had played hundreds of millions of games
with itself, and there was no way to benchmark how good it was. It came
as a shock to many when AlphaGo won the first three games of the match,
exhibiting an unexpectedly high level of play. Some of the moves made
by AlphaGo were revolutionary. AlphaGo far exceeded what I and many

others thought was possible. The convergence between biological intelli-
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gence and artificial intelligence is accelerating, and we can expect even

more surprises ahead. The lesson we have learned is that nature is more
clever than we are.

We are just beginning to appreciate the powerful impact of dopamine

on making decisions and guiding our lives. Since the influence of dopa-
mine is subconscious, the story we tell ourselves to explain a decision
is probably based on experiences no longer remembered. We make up
stories because we need to have conscious explanations. Every once in a
while we have a “gut feeling” about a choice that does not have an easy
explanation—it was the dopamine that made us do it.
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