Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3

Affiliation:
1. Department of Cognitive Science, University of California San Diego, La Jolla, CA
2. Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
3. Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA
4. Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA
5. Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA
6. Department of Psychiatry, University of California San Diego, La Jolla, CA
7. Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA
8. Current address: Department of Human Genetics, University of California, Los Angeles, CA

Keywords: Epigenetics; DNA methylation; Dnmt3a; H3K27me3; RNA-seq; excitatory synapse; working memory

*These authors contributed equally
Li, Pinto-Duarte et al. “Dnmt3a knockout in excitatory neurons...”

†Corresponding authors:

mbehrens@salk.edu (Lead Contact); emukamel@ucsd.edu; ecker@salk.edu
Summary:

Two epigenetic pathways of transcriptional repression, DNA methylation and Polycomb repressive complex 2 (PRC2) are known to regulate neuronal development and function. However, their respective contributions to brain maturation are unknown. We found that conditional loss of the de novo DNA methyltransferase Dnmt3a in mouse excitatory neurons altered expression of synapse-related genes, stunted synapse maturation, and impaired working memory and social interest. At the genomic level, loss of Dnmt3a abolished postnatal accumulation of CG and non-CG DNA methylation, leaving adult neurons with an unmethylated, fetal-like epigenomic pattern at ~222,000 genomic regions. The PRC2-associated histone modification, H3K27me3, increased at many of these sites. Our data support a dynamic interaction between two fundamental modes of epigenetic repression during postnatal maturation of excitatory neurons, which together confer robustness on neuronal regulation.

Epigenetic modifications of DNA and chromatin-associated histone proteins establish and maintain the unique patterns of gene expression in maturing and adult neurons (Kundakovic and Champagne, 2015). Neuron development requires the reconfiguration of epigenetic modifications, including methylation of genomic cytosine (DNA methylation, or mC) (Guo et al., 2014; Lister et al., 2013a; Stroud et al., 2017) as well as covalent histone modifications associated with active or repressed gene transcription (Fagiolini et al., 2009; Putignano et al., 2007). While mC primarily occurs at CG dinucleotides (mCG) in mammalian tissues, neurons also accumulate a substantial amount of non-CG methylation (mCH) during postnatal brain development in the first 2–3 weeks of life in mice and the first two decades in humans (Lister et al., 2013a). Accumulation of mCH, and the gain of mCG at specific sites, depend on the activity of the de novo DNA methyltransferase DNMT3A (Gabel et al., 2015). In mice, the abundance of
Dnmt3a mRNA and protein peaks during the second postnatal week (Lister et al., 2013a; Stroud et al., 2017), a time of intense synaptogenesis and neuronal maturation. Despite evidence for a unique role of Dnmt3a and mCH in epigenetic regulation of developing neurons, the long-term consequences of Dnmt3a-mediated methylation on brain function remain largely unknown (Stroud et al., 2017).

One challenge in investigating the developmental role of Dnmt3a has been the lack of adequate animal models. Deleting Dnmt3a around embryonic day 7.5 driven by the Nestin promoter dramatically impaired neuromuscular and cognitive development and led to early death (Nguyen et al., 2007). This early loss of Dnmt3a specifically affects the expression of long genes with high levels of gene body mCA (Boxer et al., 2019; Kinde et al., 2016). By contrast, deletion of Dnmt3a starting around postnatal day 14 driven by the Camk2a promoter caused few behavioral or electrophysiological phenotypes (Feng et al., 2010), with only subtle alterations in learning and memory depending on genetic background (Morris et al., 2014). These results suggest that Dnmt3a may play a critical role during a specific time window between late gestation and early postnatal life. During these developmental stages, regulated gains and losses of DNA methylation throughout the genome establish unique epigenomic signatures of neuronal cell types (He et al., 2017; Luo et al., 2017; Mo et al., 2015).

To address the role of Dnmt3a-dependent epigenetic regulation in the functional maturation of cortical excitatory neurons, we created a mouse line using the Neurod6 promoter (Schwab et al., 2000) (Nex-Cre) to delete exon 19 of Dnmt3a (Okano et al., 1999). In this conditional knockout (cKO), Dnmt3a is functionally ablated in excitatory neurons in the neocortex and hippocampus starting in mid-to-late gestation (embryonic day E13–15) (Goebbels et al., 2006). In Dnmt3a cKO animals, DNA methylation was substantially disrupted in excitatory neurons, leading to altered behavior and synaptic physiology without early life lethality or overt brain morphological alterations. We generated deep DNA methylome,
transcriptome and histone modification data in Dnmt3a cKO and control pyramidal cells of the frontal cortex (Supplementary File 1), enabling a detailed assessment of the molecular basis of neurophysiological and behavioral phenotypes. We found that the Polycomb repressive complex 2 (PRC2) associated chromatin modification, H3K27me3, increases during postnatal development following the loss of mCH DNA methylation in Dnmt3a cKO neurons primarily at sites where mCG is also depleted. Our data support a dynamic interaction between two fundamental modes of epigenetic repression in developing brain cells.

Results

Dnmt3a conditional knockout in pyramidal neurons during mid-gestation specifically impairs working memory, social interest, and acoustic startle

Previous studies of Dnmt3a KO mice yielded results ranging from little cognitive or health effects (Feng et al., 2010; Morris et al., 2014) to profound impairment and lethality (Dura et al., 2022; Nguyen et al., 2007). These studies suggest the developmental timing and cell-type of Dnmt3a loss may determine the extent of subsequent phenotypes. Here, we took a targeted approach by functionally ablating Dnmt3a in cortical pyramidal cells starting during mid-gestation (Figure 1A). We took advantage of the developmental onset of Neurod6 expression between embryonic day E11 and E13, after the onset of Nestin expression (Thompson et al., 2014) but well before the major postnatal wave of reprogramming of the neuronal DNA methylome (Figure 1 — figure supplement 1) (Lister et al., 2013a). We confirmed that Neurod6-dependent Cre recombination occurred only in excitatory neurons using the INTACT (isolation of nuclei tagged in specific cell types) (Mo et al., 2015) mouse (Figure 1 — figure supplement 2). The deletion of Dnmt3a exon 19 was faithfully captured in cortical excitatory neurons of cKO animals (Figure 1B and Figure 1 — figure supplement 3A), which was known to produce a deletion of 50 amino acids in the methyltransferase domain of the DNMT3A protein (Lyko,
2018). We also verified the reduction in DNMT3A protein in whole tissue extracts at early postnatal time points (P5 and P13) when Dnmt3a mediated accumulation of mCH normally begins in the frontal cortex (Lister et al., 2013b) (Figure 1 — figure supplement 3B). Dnmt3a cKO animals survived and bred normally, without overt morphological alterations in the brain (Figure 1 — figure supplement 3C). We found no impairments in gross motor function in an open field test: cKO mice traveled more during the first 5 minutes of testing (Figure 1 — figure supplement 4A) while performing fewer rearings associated with exploratory interest (Figure 1 — figure supplement 4B). Moreover, cKO mice had no signs of increased anxiety-like behavior on three separate behavioral tests (Figure 1 — figure supplement 4C–E), in contrast with the reported anxiogenic effects of Dnmt3a knockdown in the mPFC of adult mice (Elliott et al., 2016). The absence of major impairments in overall health, motor function, or anxiety-like behavior established a baseline for investigating the role of Dnmt3a in specific cognitive and social behaviors.

We focused on cognitive domains associated with neurodevelopmental illness, including working memory and sensorimotor gating (Habib et al., 2019) and social interest (Dodell-Feder et al., 2015). Dnmt3a cKO mice did not alternate spontaneously between the arms of a Y-maze (p = 0.0079 for males, p = 0.011 for females, Figure 1C), indicating impaired spatial working memory. Moreover, when tested in a three-chamber box in which one of the sides contained a novel mouse and the opposite a novel object, male Dnmt3a cKO animals spent less time in the former, opting, instead, to remain significantly longer in the center (empty compartment), which is suggestive of reduced exploration and social interest (Figure 1D, left panel; p = 0.01048). Male Dnmt3a cKO mice also had significantly attenuated acoustic startle reflex (p = 0.0019, Figure 1E and Figure 1 — figure supplement 5A). We observed increased prepulse inhibition (PPI) in male Dnmt3a cKO mice, but this may be driven by the reduced startle reflex (Figure 1 — figure supplement 5B, p < 0.05). It is noteworthy that the observed deficits in startle response...
were not due to impaired hearing, since *Dnmt3a* cKO mice displayed intact hearing in tests of prepulse inhibition and fear conditioning.

Li et al., Figure 1

Figure 1 | *Dnmt3a* conditional knockout (cKO) in cortical pyramidal neurons during mid-gestation impaired working memory, social interest and acoustic startle responses. **(A)** An experimental model of the conditional loss of *Dnmt3a* in excitatory neurons. P0 and P39, postnatal day 0 and 39. FANS, fluorescence-activated nuclei sorting. **(B)** RNA-seq confirmation of the deletion of *Dnmt3a* exon 19 in P39 excitatory neurons. RPKM, reads per kilobase per million. R1/2, replicate 1/2. *, t-test *p* = 0.014. **(C)** *Dnmt3a* cKO mice made fewer spontaneous alternations in the Y-maze test of working memory (Wilcoxon test, ***, *p* = 0.0079; *, *p* = 0.011; *n* =15 male control, 15 male cKO, 11 female control, 10 female cKO). **(D)** Male *Dnmt3a* cKO mice spent less time interacting with an unfamiliar mouse, indicating reduced social interest (Wilcoxon test; *p* =0.01048; **p**=0.006833; *n* =14 male control, 15 male cKO, 11 female control, 10 female cKO). **(E)** Male *Dnmt3a* cKO mice had decreased startle response to a 120 dB acoustic pulse (Wilcoxon test, ***, *p* = 0.0019; n.s., not significant).
To test whether these deficits in specific neurocognitive domains reflect generalized impairment in brain function, we assessed long-term memory using a fear conditioning paradigm. There were no significant differences between Dnmt3a cKO and control male mice in acquisition or recall of fear memory following re-exposure to the context or conditioned stimulus after 24-48 h (Figure 1 — figure supplement 5C–E), or in extinction (Figure 1 — figure supplement 5F). Altogether, these behavioral results indicate that Dnmt3a cKO in excitatory neurons impairs working memory, social interest and acoustic startle, without generalized cognitive disruption.

Loss of Dnmt3a impairs synapse maturation and attenuates neuronal excitability

To test the impact of Dnmt3a cKO on dendritic morphology, we quantified the number and structure of 1,278 Dil-labeled dendritic spines (NexCre/C57: n = 701 from 5 mice; cKO: n = 577 from 4 mice) of layer 2 pyramidal neurons of the mouse prelimbic region (~2 mm anterior to Bregma) (Figure 2A; Methods), a region critical for working memory (Yang et al., 2014) and social approach behavior (Lee et al., 2016). While the overall density of dendritic spines was equivalent in control and Dnmt3a cKO neurons (Figure 2B), the spines were significantly longer (mean length 2.219±0.052 µm in cKO, 1.852±0.034 µm in control) and narrower (mean width 0.453±0.008 µm in cKO, 0.519±0.008 µm in control) in Dnmt3a cKO neurons (Figure 2C, KS test p < 0.001; Figure 2 — figure supplement 1). Consistent with this, a larger proportion of spines in Dnmt3a cKO mice were classified as immature filopodia, and fewer were mushroom-shaped mature spines (Figure 2D) according to pre-established morphometric criteria (see Methods). The proportion of spines with other morphologies, including branched spines with more than one neck (data not shown), was not significantly different between genotypes (Figure 2D). These data indicate a role for Dnmt3a in dendritic spine maturation.
Li et al., Figure 2

Figure 2 | Immature spine morphology and reduced excitability of layer 2 excitatory neurons following Dnmt3a cKO. (A) Example dendritic segments of layer 2 pyramidal neurons in the prelimbic region labeled with DiI and visualized using a 63x objective coupled to an Airyscan confocal microscope. Arrowheads show filopodia, which were more abundant in Dnmt3a cKO mice. (B) The density of membrane protrusions was unchanged in the Dnmt3a cKO (Wilcoxon test, n.s., not significant). (C) Membrane protrusions were significantly longer and narrower in the Dnmt3a cKO (K-S test, p < 0.001). (D) More spines were classified as immature filopodia, and fewer as mature mushroom-shaped spines with large postsynaptic densities (Wilcoxon test, ***, p = 0.0015; *, p = 0.046 and 0.011 for Thin and Mushroom, respectively). (E) Example whole-cell patch-clamp recordings from prelimbic layer 2 pyramidal neurons following 60 pA current injections, the minimal current necessary to trigger an action potential (rheobase) in Dnmt3a cKO. (F) The median rheobase was significantly higher in the Dnmt3a cKO (t-test, ***, p = 0.0042). (G) Action potential frequency vs. injected current (mean ± s.e.m) showed reduced excitability in Dnmt3a cKO (Wilcoxon test, *, p < 0.05). (H) and (I) Dnmt3a cKO neurons were slightly hyperpolarized at Vrest when compared to control (Wilcoxon test, *, p = 0.049) and had lower membrane resistance (Wilcoxon test, *, p = 0.023).
To test how the loss of *Dnmt3a* and subsequent stunting of spine maturation affect intrinsic neuronal excitability and synapse sensitivity, we next performed patch-clamp experiments in visually identified layer 2 pyramidal neurons from the prelimbic region (Figure 2E). Whole-cell current-clamp recordings showed that *Dnmt3a* cKO neurons (n = 22 cells from 11 mice) required greater current injections than control (n = 17 cells from 12 mice) to trigger an action potential (higher rheobase, t-test p = 0.0042, Figure 2F), though there was no difference in membrane potential at the firing threshold (Figure 2 — figure supplement 2A). *Dnmt3a* cKO neurons also produced fewer spikes in response to injected current (Figure 2G). These neurons were slightly hyperpolarized at rest (mean -70.90 ± 0.8 mV in cKO, n = 22 cells from 11 mice vs. -67.22 ± 1.4 mV in control, n = 17 cells from 12 mice, Wilcoxon test p = 0.049, Figure 2H), which could reflect differential expression of ion channels at the plasma membrane. Consistent with this, *Dnmt3a* cKO neurons had a lower input resistance (Wilcoxon test p = 0.023, Figure 2I), suggesting increased expression of functional transmembrane ion channels. Whole-cell voltage-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) showed slight, yet significant, increased amplitude variability in *Dnmt3a* cKO mice (Figure 2 — figure supplement 2B, 8.77±0.32 pA in cKO, n = 8 cells from 4 mice vs. 8.67±0.089 pA in control, n = 8 cells from 5 mice, F-test, p = 0.0032), consistent with disruption at postsynaptic sites. However, we found no alteration in the mean amplitude (Figure 2 — figure supplement 2B) or frequency (Figure 2 — figure supplement 2C) of mEPSCs recorded at the soma.
200 Altered gene expression in \textit{Dnmt3a} cKO excitatory neurons
To investigate the impact of epigenetic disruption on gene expression, we compared the transcriptomes of cKO and control excitatory neuron nuclei in mature mice (postnatal day 39) (Supplementary File 2). We isolated nuclei from excitatory neurons in frontal cortex by backcrossing the Dnmt3a cKO animals into the INTACT mouse (Mo et al., 2015) on a C57BL/6J background, followed by fluorescence-activated nuclei sorting (FANS) and RNA sequencing. Although sorted nuclei contain only a subset of the cell’s total mRNA and are enriched in immature transcripts, nuclear RNA-seq is nevertheless a quantitatively accurate assay of gene expression that is robust with respect to neural activity-induced transcription (Bakken et al., 2018; Lacar et al., 2016). All of the molecular assays were applied to at least two independent biological samples, with each sample being derived from a pool of tissue from 1 or 2 mice (Supplementary File 1). Nuclear RNA abundance was highly consistent across independent replicates within the same group (Spearman correlation $r = 0.93–0.94$, Figure 3 — figure supplement 1A). Given the repressive role of DNA methylation (mCG and mCH) in regulating gene expression in neurons (Guo et al., 2014; Lister et al., 2013a), we expected to find increased gene expression in the cKO. Consistent with this, we detected 46 differentially expressed (DE) genes with higher expression in the cKO (FDR < 0.05, Figure 3A–B and Figure 3 — figure supplement 1B, Supplementary File 2). We also detected significantly lower expression of 24 genes in cKO neurons (Figure 3A). Several of the differentially expressed genes had annotated roles in dendrite morphogenesis (Elavl4, Hecw2, Ptprd), as well as in the regulation of Na$^+$ (Hecw2, Scn3b) and Ca$^{2+}$ levels (Cacnb3) (Figure 3B). Early life experiences were shown to alter the expression of Dnmt3a and hence the DNA methylation levels in some transposable elements in the hippocampus (Bedrosian et al., 2018). We examined the expression of transposon families or classes in our data but found no significant changes between cKO and control in the cortical excitatory neurons (two-sample t-test, FDR > 0.05; Figure 3 — figure supplement 2).
Li et al., Figure 3

A 70 genes were differentially expressed (DE) (false discovery rate FDR < 0.05) in P39 pyramidal neurons in Dnmt3a cKO vs. control. Top, fold-change (FC) between cKO and control; bottom, heatmap showing normalized expression of the DE genes in each sample. Z-scores were computed using mRNA counts per million (CPM) for each DE gene. **B** Differential gene expression in control vs. Dnmt3a cKO excitatory neurons at P39. Significant up-regulated and down-regulated DE genes are shown in red and blue, respectively. DE genes associated with dendrite morphogenesis (Elavl4, Hecw2, Ptprd), and regulation of Na+ (Hecw2, Scn3b) and Ca2+ levels (Cacnb3) are labeled. **C** Non-CG DNA methylation (mCH) is eliminated, and mCG is reduced, in P39 Dnmt3a cKO pyramidal cells, while mCG and mCH levels are not changed in P0 (t-test: *, p < 0.05; n.s., not significant). P0 and P39, postnatal day 0 and 39, respectively. Each bar represents the methylation level in one replicate. **D** non-CG DNA methylation (mCH) in P39 pyramidal cells in control samples, in 1 kb bins in the flanking region around the
transcription start (TSS) and end site (TES) of DE genes and non-DE genes with matched expression levels. The lines denote the means across genes in each gene set, and the shared areas represent the 95% confidence intervals of the means. (E) The difference in gene body methylation vs. fold-change of gene expression between P39 Dnmt3a cKO and control. The plots show mean ± SEM gene expression fold-change for genes in 10 non-overlapping bins (deciles of mC difference). (F) The Nedd4 promoter locus contains five differentially methylated regions (DMRs, yellow horizontal rectangles and shaded in blue boxes) with naive, fetal-like mCG in P39 Dnmt3a cKO. Ticks show mCG at CG sites. Four out of the five P39 Dnmt3a cKO DMRs overlapping developmental gain-of-methylation DMRs (red horizontal rectangles) are marked with arrows. CGI, CpG island. R1 and R2, replicates 1 and 2. (G) Overlap of P39 Dnmt3a cKO DMRs and developmental DMRs. (H) P39 Dnmt3a cKO hypo-DMRs are significantly enriched (depleted) in DMRs that normally gain (lose) methylation during development (Fisher test, p < 0.05).

Dnmt3a cKO abolishes postnatal DNA methylation

Deletion of Dnmt3a during mid-gestation should disrupt the subsequent gain of DNA methylation at specific genomic sites during development (He et al., 2017; Lister et al., 2013a), without affecting sites that maintain or lose methylation after E14.5. Using single base-resolution, whole-genome MethylC-seq (Lister et al., 2008) in biological replicates with strong consistency (Figure 3 — figure supplement 3A), we confirmed that non-CG DNA methylation (mCH) in excitatory neurons is absent at birth (<0.1% of all CH sites at P0), and accumulates by postnatal day 39 (1.98% at P39) (Lister et al., 2013a). The cKO all but eliminated mCH (<0.1% at P0 and P39) (Figure 3C and Figure 3 — figure supplement 3B). While mCH increases in neurons during postnatal life, the genome-wide level of mCG in the brain remains high throughout the lifespan (Lister et al., 2013b). We found that the genome-wide mCG level was 12.5% lower in mature (P39) cKO neurons (60.1% in cKO vs. 72.6% in control). There was no difference in mCG in newborn mice (P0, 73.1% in both cKO and control, Figure 3C). mCG at P39 was reduced in 92.2% of all genomic bins (10kb resolution), and was significantly lower in introns, 3’ UTR and intergenic regions (Figure 3 — figure supplement 3C). The reduction in mCG was strongly correlated with reduced mCH (Spearman correlation r = 0.805, p < 10^{-3}, Figure 3 — figure supplement 3D). These data support a role for Dnmt3a in postnatal de novo
Reduced DNA methylation does not fully explain altered transcription in Dnmt3a cKO

We investigated whether the altered gene expression in Dnmt3a cKO neurons correlated with loss of DNA methylation at specific sites. We first analyzed DNA methylation around DE genes in mature neurons (P39). The simple model of DNA methylation as a repressive regulator of gene expression predicts that genes that lose the most mC should be most transcriptionally up-regulated in the cKO. Consistent with this, we found mCH was strongly enriched in the gene body of up-regulated genes in control neurons (Figure 3D and Figure 3 — figure supplement 4A). By contrast, genes with similar expression levels in the control neurons which were not transcriptionally up-regulated in the cKO (Figure 3 — figure supplement 4B) had significantly lower gene body mCH (Figure 3D). Moreover, down-regulated genes had low gene body mCH. These data support a causal role for gene body mCH in repressing gene expression. The relatively lower mCH level in down-regulated genes could make them less sensitive to the loss of Dnmt3a. The dysregulation of their expression may be due to secondary effects subsequent to the direct loss of DNA methylation.

We also examined the pattern of mCG at the promoter and gene body of DE genes. In contrast with the pattern of mCH, mCG was not significantly different between DE and control genes (Figure 3 — figure supplement 4C).

The difference in gene body methylation (cKO - Control) was negatively correlated with gene expression changes, consistent with repressive regulation (Gabel et al., 2015; Lavery et al., 2020) (Figure 3E). This correlation accounted for 0.46% of the variance of differential gene expression, whereas the total explainable variance (R² between biological replicates) was
1.30% (Figure 3 — figure supplement 4D). The strength of the association between mCH and mRNA changes may be limited by the use of only two biological replicates in our dataset.

We next sought to determine if up- and down-regulated genes differ in ways that could explain their different responses to the loss of Dnmt3a. Up-regulated genes were on average longer than down-regulated genes (Figure 3 — figure supplement 4E, Wilcoxon rank-sum test p<10^-4) and non-DE genes (p<0.01), consistent with the reported enrichment of mCA and MeCP2-dependent gene repression in long genes (Boxer et al., 2019; Gabel et al., 2015; Kinde et al., 2016). However, there was a broad distribution of gene lengths for both up- and down-regulated genes (Lavery et al., 2020).

In addition to promoters and gene bodies, distal regulatory elements such as enhancers are major sites of dynamic DNA methylation where epigenetic regulation can activate or repress the expression of genes over long genomic distances through 3D chromatin interactions (Malik et al., 2014). We investigated gene regulatory elements by identifying differentially methylated regions (DMRs) where mCG is altered in cKO compared to control neurons. We found a limited number of DMRs in newborn mice (P0: 1,087 DMRs with lower, 164 with higher mCG in cKO; ≥30 difference in %mCG; FDR<0.01). In mature neurons (P39), by contrast, we found 222,006 DMRs with substantially lower mCG in cKO compared with controls (Figure 3 — figure supplement 5A; Supplementary File 3). Only 89 DMRs had ≥30 higher %mCG in cKO. To illustrate, we found five DMRs in a ~40 kb region around the promoter of the differentially expressed gene Nedd4 (Figure 3F). Four of these DMRs were also unmethylated in excitatory neurons in newborn mice, showing that the loss of Dnmt3a blocked the developmental gain of mCG at these sites. However, the density of P39 cKO DMRs around the DE genes was not significantly different in the up- and down-regulated genes and the non-DE genes (Figure 3 — figure supplement 5B).
The majority of P39 cKO DMRs (68.0%) were distal (≥ 10kb) from the annotated transcription start sites. These DMRs were significantly enriched in both active enhancers and repressed chromatin, suggesting they have a regulatory role (Figure 3 — figure supplement 5C; see also below). We found 113,557 developmental DMRs that gain mCG between P0 and P39 in control neurons (≥30 difference in %mCG, FDR<0.01). These DMRs strongly overlapped (83.2%) with the cKO DMRs in mature neurons (Figure 3G–H, Supplementary File 3). Moreover, the P39 cKO DMRs were enriched in DNA sequence motifs of multiple transcription factors associated with neuronal differentiation, including Rest, Lhx2, Pou3f2(Brn2) and Pax6 (FDR<0.05, Figure 3 — figure supplement 5D, Supplementary File 4). Notably, the DMRs in Dnmt3a cKO neurons represent only a part of the global reduction in mCG that we observed throughout the genome. Indeed, we found that mCG is reduced by ~10% in all genomic compartments, even after excluding P39 DMRs (Figure 3 — figure supplement 3C). These results suggest that Dnmt3a is essential for the methylation and subsequent repression of neuronal enhancers that are active during prenatal brain development.

Increased PRC2-associated repressive histone modification H3K27me3 in Dnmt3a cKO

Given that the cKO loses DNA methylation throughout the genome, we were surprised that the expression level of many genes was not disrupted. We, therefore, explored other potential epigenetic regulators which could contribute to maintaining gene expression. To identify transcription factors (TFs) and chromatin regulators with experimental evidence of binding at cis-regulatory regions of the DE genes, we performed Binding Analysis for Regulation of Transcription (BART) (Wang et al., 2018). Chromatin regulators associated with Polycomb repressive complex 2 (PRC2), including Ezh2, Suz12, Eed and Jarid2, were among the top DNA binding proteins enriched near the promoters of both up- and down-regulated DE genes.
(Figure 4A). Several TFs associated with chromatin organization, including the histone deacetylase (Hdac) and demethylase (Kdm) families, and Ctcf, were also enriched (Figure 4 — figure supplement 1, Supplementary File 5). These results suggest Dnmt3a cKO impacts the chromatin landscape in excitatory neurons, potentially via altered PRC2 activity.

Figure 4 | Polycomb repressive complex 2 (PRC2) associated histone modification H3K27me3 is upregulated following the loss of DNA methylation. (A) Transcription factors (TFs) predicted to regulate P39 Dnmt3a cKO differentially expressed genes include many proteins associated with PRC2. The functional TF rank score was assigned by Binding Analysis of Regulation of Transcription (BART)(Wang et al., 2018). PRC2-associated TFs are labeled and highlighted in gold circles. (B) Browser view of the Mab21l2 locus, where increased H3K27me3 (differentially modified regions, bottom red bars and highlighted in blue shaded box) coincides with the loss of DNA methylation (Dnmt3a cKO DMRs, orange bars under the “P39 cKO” track and highlighted in blue shaded box) in P39 Dnmt3a cKO. This region loses H3K27me3 during normal development in control pyramidal neurons (blue bars, P39 < E14). DMR, differentially methylated region; E14, embryonic day 14; P0 and P39, postnatal day 0 and 39. (C) Quantification of the increase in H3K27me3 ChIP-seq signal in each replicate at the H3K27me3 differentially modified region between P39 control and cKO at the Mab21l2 locus shown in (B). Each bar shows the DEseq2 normalized counts in each replicate, and the triple asterisks denote a significant increase (FDR = 1.33e-4, fold-change = 2.41). (D) Histone modification ChIP-seq peaks for active marks (H3K4me3, H3K27ac) are largely preserved in the Dnmt3a cKO, while repressive H3K27me3 peaks expand. The Venn diagrams denote numbers of peaks that overlap between cKO (yellow) and control (black) (numbers in the center), and numbers of peaks that are unique to one of the conditions (numbers on the edges).
To experimentally address this, we performed chromatin immunoprecipitation sequencing (ChIP-seq) in excitatory neurons at embryonic day 14 (E14) and postnatal days 0 and 39 to measure trimethylation of histone H3 lysine 27 (H3K27me3), a repressive mark whose deposition is catalyzed by PRC2 and is important for transcriptional silencing of developmental genes. In P39 neurons, we also measured two histone modifications associated with active chromatin: H3K4me3 (trimethylation of histone H3 lysine 4, associated with promoters) and H3K27ac (acetylation of histone H3 lysine 27, associated with active promoters and enhancers) (Heinz et al., 2015). For each mark, we performed sequencing on two independent samples, each of which used pooled tissue from two mice. The active and repressive marks had positive and negative correlations with mRNA expression, respectively (Figure 4 — figure supplement 1B). In addition, we noted regions where increased H3K27me3 concurred with the decreased DNA methylation. For example, at the *Mab21l2* locus (Figure 4B) we observed a 2.41-fold increase (Figure 4C) in H3K27me3 in P39 *Dnmt3a* cKO neurons, coinciding with the loss of CG methylation at multiple DMRs spanning the gene body and surrounding region. The *Mab21l2* gene was lowly expressed (TPM < 3) in both control and cKO neurons, consistent with a role for the gain of H3K27me3 in maintaining the repression of this gene.

Using a conservative strategy to call ChIP-seq peaks (Zang et al., 2009), we found that marks associated with transcriptional activity (H3K4me3 and H3K27ac) were largely conserved in the P39 cKO and control (Figure 4D). By contrast, we found 51.9% more H3K27me3 peaks in mature (P39) cKO than in control neurons (Figure 4D, Supplementary File 6). When we directly identified differentially modified (DM) regions, we found no DM for H3K4me3 and H3K27ac between the cKO and control in P39 neurons (Figure 4 — figure supplement 1C). By contrast, we found 4,040 regions with significantly increased H3K27me3 in the P39 cKO, covering ~31.05 MB of the genome (Figure 4 — figure supplement 1D, FDR<0.05, Supplementary File 7).
Differential H3K27me3 appears late during brain maturation: only 3 DM regions were found in earlier development stages (E14 or P0; Figure 4 — figure supplement 1D), and the signal differences of cKO and control did not show clear correlations between P39 and earlier stages (Figure 4 — figure supplement 2). These DM regions have a medium but non-zero level of H3K27me3 in the P39 control (higher than random shuffles across the whole genome but lower than random shuffles within the peak regions, Figure 4 — figure supplement 3A), and hence presumably fine-tunable after Dnmt3a cKO. Genes associated with these DM regions were enriched in development-related functions (Figure 4 — figure supplement 3B, Supplementary File 8). These results suggest that the increase of H3K27me3 in Dnmt3a cKO excitatory neurons occurred post-natally, following the major impact of the loss of Dnmt3a on neuronal DNA methylation.
Li, Pinto-Duarte et al. “Dnmt3a knockout in excitatory neurons...”

Li et al., Figure 5

Figure 5 | Increased H3K27me3 correlates with the loss of postnatal DNA methylation. (A) Most of the P39 H3K27me3 peaks (57.1% and 66.2% of control and cKO peaks), but only some of the P39 H3K27ac peaks (28.9% and 33.1%), overlap with P39 Dnmt3a cKO DMRs. (B) Significant enrichment (red) or depletion (blue) of P39 Dnmt3a cKO DMRs in the histone modification ChIP-seq peaks (Fisher test, p < 0.05). E14, embryonic day 14; P0 and P39, postnatal day 0 and 39. (C) Histone modification ChIP-seq signal around the center of DMRs. RPKM, reads per kilobase per million. ***, Wilcoxon rank-sum test of the differences at the center, p < 0.001. (D) Correlation of P39 H3K27me3 signal fold-changes and P39 CG methylation levels differences between Dnmt3a cKO and control in H3K27me ChIP-seq peaks. The smoothed line is fitted using a generalized additive model, and the shaded area shows the 95% confidence interval of the fit. r, Spearman correlation coefficient. (E) P39 Dnmt3a cKO down-regulated DE genes (FDR < 0.05) with overlapping P39 Dnmt3a cKO DMRs show small but significant increases of H3K27me3 in P39 cKO (upper panel). *, Wilcoxon rank-sum test against zero, p < 0.05. No such differences were observed in DE genes that do not overlap with P39 cKO DMRs (bottom panel). H3K27me3 signal was calculated as the RPKM fold-change between H3K27me3 and IgG.
The increase in H3K27me3 was closely associated with regions that lost CG DNA methylation in the Dnmt3a cKO. The majority (66.2%) of the regions marked by H3K27me3 in the cKO overlapped with P39 cKO DMRs (Figure 5A, Fisher test p < 1e-100). Likewise, P39 cKO DMRs were significantly enriched in peaks (22.4% overlapped H3K27me3 peaks in cKO, p<1e-100, Figure 5B) and DM regions of H3K27me3 (Figure 4 — figure supplement 3D). The DM regions of H3K27me3 had significantly more overlaps with DMRs compared to the non-DM control regions (Fisher exact test p < 2.2e-16, OR: 2.70, Figure 4 — figure supplement 3C–D). The DM regions also have larger decreases in both mCG and mCH when compared to non-DM regions (Wilcoxon rank-sum test p < 0.0001, Figure 4 — figure supplement 3E). Conversely, the DMRs were depleted in regions marked by H3K27ac (12.7%, p < 1e-100) or H3K4me3 (0.98%, p = 1.73e-149) (Figure 5A–B). Moreover, H3K27me3 was more abundant at the center of DMRs in cKO compared to control neurons at P39 (∆ = 0.15 in the unit of fold enrichment vs. IgG, 5.04% increases, Figure 5C). There were much smaller changes of H3K27me3 at these DMRs in newborn (P0, ∆ = 0.0075, 0.27% changes) or fetal (E14, ∆ = -0.028, -1.02% changes) neurons (Figure 5C), and the increases were not seen in randomly shuffled regions (Figure 5 — figure supplement 1A). The signal of H3K4me3 and H3K27ac at the DMRs was also elevated in the cKO, to a lesser extent (H3K4me3: ∆ = 0.068, 2.92% changes; H3K27ac: ∆ = 0.13, 4.64% changes). Going beyond overlaps of regions, we found a quantitative association between the changes in DNA methylation and H3K27me3 in mature (P39) neurons (Figure 5D). At H3K27me3 peaks, the ChIP-Seq signal intensity fold-change between cKO and control correlated with the loss of mCG in cKO (Spearman r = -0.26, p < 2.2e-16). When accessing the H3K27me3 changes as a function of baseline H3K27me3 levels in the control across the genome tiled in 1kb bins, we observed bigger H3K27me3 increases in bins with overlapping DMRs compared to bins without overlapping DMRs (Wilcoxon rank-sum test p < 0.001 in each
bin, Figure 5 — figure supplement 1B). These results indicate that DMRs are particularly unique in showing increased H3K37me3 signal.

We further examined whether the increased H3K27me3 could account for the reduced expression of some genes in the Dnmt3a cKO neurons. We found that down-regulated genes that overlap DMRs and the non-DE genes selected with matched expressions of up-regulated DE genes that overlap DMRs showed a small but significant median increase of H3K27me3 in the cKO (Wilcoxon rank-sum test p-value < 0.05; Figure 5E upper panel). When we considered a larger set of DE genes with a more relaxed threshold (FDR<0.2), we observed that down-regulated DE genes containing DMRs accumulate significantly more H3K27me3 than non-DE genes containing DMRs and up-regulated genes containing DMRs (Wilcoxon rank-sum test p = 0.0029, Figure 5 — figure supplement 2A). By contrast, up-regulated genes had no significant accumulation of H3K27me3 and were not significantly different from the control genes (Figure 5 — figure supplement 2A). No such differences were observed between DE and non-DE genes without overlapping DMRs (Figure 5E lower panel and Figure 5 — figure supplement 2A).

These results suggest that the effect of H3K27me3 is likely specific to genes containing DMRs and the effect is stronger in the down-regulated DE genes, which may partially explain the fact that 24 genes were significantly down-regulated after the loss of repressive DNA methylation in the Dnmt3a cKO (Figure 2A–B).

We next analyzed how changes in H3K27me3 related to the loss of mCH. In all non-DE genes (FDR ≥ 0.05), we observed a larger increase of H3K27me3 signal in the gene body of genes that lost most mCH in the cKO (Figure 5 — figure supplement 2B). Indeed, when we grouped all genes by the extent of the loss of mCH, we found that genes that lost the most mCH had a negative correlation between the changes in gene body H3K27me3 signal and gene expression fold-change. Such correlation was not observed in genes that did not lose mCH...
These results suggest that H3K27me3 may have a role in repressing expression specifically in regions that lose repressive non-CG DNA methylation.

Developmental changes in H3K27me3 are not affected by Dnmt3a cKO

Our finding that Dnmt3a cKO disrupts the normal developmental gain of DNA methylation prompted us to ask whether the changes in H3K27me3 in the cKO are likewise associated with developmental regulation of H3K27me3. Indeed, our ChIP-Seq data from E14, P0 and P39 excitatory neurons revealed striking developmental dynamics in H3K27me3. We identified 12,994 developmentally regulated H3K27me3 DM regions between E14 and P39, with a similar number of regions that gain (6,774) and lose (6,220) H3K27me3 (Figure 6A and Figure 6 — figure supplement 1A, Supplementary File 9). We also examined DM regions at P0 vs. E14 and P0 vs. P39 (Figure 6 — figure supplement 1A). However, due to greater biological variability at the perinatal time point, the two replicate ChIP-Seq datasets at P0 were less consistent than the E14 and P39 samples (Figure 6 — figure supplement 2). As a result, our data were not well powered to detect changes at P0 and we chose to focus on the E14 vs. P39 DM regions as sites of developmental chromatin remodeling. Genes associated with these DM regions were enriched in biological processes involved in development such as nervous system development and neurogenesis (Figure 6 — figure supplement 1B). The developmental H3K27me3 DM regions overlapped developmental DMRs, with a notable overlap of regions gaining both mCG and H3K27me3 (Figure 6B). Both modifications may thus act together to repress thousands of genomic regions during development.
Figure 6 | Developmental dynamics of H3K27me3. (A) Heatmap of developmentally regulated H3K27me3 regions in E14 and P39 control samples. CPM - counts per million; R1/2 - replicates. (B) Bar plots show the numbers of developmental differentially modified H3K27me3 regions (E14 vs. P39) that overlap developmental DMRs (P0 vs. P39, left panel), and the numbers of developmental DMRs that overlap developmental differentially modified H3K27me3 regions (right panel). (C-E) Normalized H3K27me3 signal (fold-changes compared to P39 Control), and mCG, mCH differences (compared to the average of the two replicates from P39 Control) in peaks that overlaps with E14 vs. P39 developmental loss-of-H3K27me3 regions (C), developmental gain-of-H3K27me3 regions (D), or increased H3K27me3 in P39 Dnmt3a cKO (E).
The P39 *Dnmt3a* cKO changes of H3K27me3 signal were weakly correlated with the developmental changes of H3K27me3 signal (*r* = -0.12, *p* < 2.2e-16, Figure 6 — figure supplement 1C). Moreover, there was little appreciable difference between the H3K27me3 signal fold-changes between P39 and E14 cKO samples compared with those of control samples (Spearman *r* = 0.67, *p* < 2.2e-16, Figure 6 — figure supplement 1D).

To further stratify the joint distribution of developmental and *Dnmt3a* cKO-dependent changes in both H3K27me3 and DNA methylation, we assigned peaks to three groups (Figure 6C–E and Figure 6 — figure supplement 1E–G). “Group DevLoss” and “Group DevGain” peaks lose or gain H3K27me3 during development, respectively (Figure 6C–D and Figure 6 — figure supplement 1E–F). “Group cKO” peaks have higher H3K27me3 in the *Dnmt3a* cKO compared to control at P39 (Figure 6E and Figure 6 — figure supplement 1G). We found that developmental peaks (DevLoss and DevGain) were relatively unaffected by the cKO (ΔH3K27me3 = 0.02, -0.03 respectively, in units of log10(CPM+1)), whereas Group cKO had 4.5-fold larger mean effect (ΔH3K27me3 = 0.09 respectively). Group cKO peaks also experienced greater loss of mCG (ΔmCG = -23.5%) than Group DevLoss (-13.0%) or DevGain (18.6%) (Figure 6C–E and Figure 6 — figure supplement 1E–G, middle and right panels). These results suggest that regions prone to alteration of H3K27me3 by *Dnmt3a* cKO are distinct from the regions affected by developmentally dynamic H3K27me3. We observed a very similar pattern when we examined sites with differential H3K27me3 between P0 and P39 (data not shown).

Novel DNA methylation valleys with increased H3K27me3 signal in the *Dnmt3a* cKO

DNA methylation and H2K27me3 have complementary roles at DNA methylation valleys (DMVs), i.e. large regions (≥5 kb) with low mCG (≤15%) that occur around key transcriptional regulators of development in human and mouse tissues (Mo et al., 2015; Xie et al., 2013). Previous studies comparing the epigenetic profile of DMVs across tissues identified multiple
categories, including constitutive DMVs present in all tissues as well as tissue-specific DMVs (Li et al., 2018). We found more than twice as many DMVs in P39 cKO (1,838) compared with control (881) neurons (Supplementary File 10), covering a greater genomic territory (16.02 Mbp in cKO, 7.91 Mbp in control). The majority of these P39 DMVs were either expanded or unique in cKO (Figure 7A), while DMVs identified in P0 samples were mostly not altered (Figure 7 — figure supplement 1). Most P39 DMVs had active histone marks (H3K27ac+, H3K27me3-), while some had repressed or bivalent profiles consistent with PRC2-associated gene silencing (H3K27me3+) (Figure 7B).

By clustering the DMVs using their pattern of DNA methylation, chromatin modifications, and gene expression, we found eight distinct categories (Figure 7C–D). Whereas most DMVs lack H3K27me3 (clusters C2,3,5,7,8), we found some groups of DMVs associated with moderate (C1, C4) or high (C6) levels of H3K27me3. Cluster C6 DMVs, such as the promoter of Tfap2c (Figure 7C–D), had high H3K27me3 and low mCG in both control and cKO neurons, and were not strongly affected by the loss of mC in the Dnmt3a cKO. By contrast, cluster C1 and C4 DMVs, including the promoters of Lhx2, Foxp1, Foxp2, Slc17a6 (encoding vesicular glutamate transporter, Vglut2) and Sema3f, gain mC during normal development (Figure 7C–D). Cluster C1 DMVs gained H3K27me3 in the P39 cKO compared to control animals. The loss of mC in these regions in the Dnmt3a cKO did not lead to strong activation of gene expression, potentially due to compensatory PRC2-mediated repression.

The remaining clusters lack H3K27me3 and are instead marked by low mCG and either high H3K27ac (cluster C8) or both H3K27ac and H3K4me3 (clusters C7). Cluster C5 DMVs (e.g. Nr1d1, Pde4d, Figure 7D), have high mCG at P0 and lose methylation in excitatory neurons during brain development. This demethylation is not affected in the Dnmt3a cKO, and we found little difference between the control and cKO neurons at these sites. Finally, clusters C2 and C3 were enriched for up- and down-regulated genes, respectively.
Figure 7 | Distinct clusters of DNA methylation valleys were associated with the increased H3K27me3 signal in the Dnmt3a cKO. (A) Number of DMVs identified in the P39 Dnmt3a cKO and the Control samples, categorized by whether they appear in one or both groups or change size in the cKO. (B) Overlap of DMVs with the H3K4me4 and/or the H3K27me3 ChIP-seq peaks. (C) Heatmap of DMVs clustered by their methylation levels and histone modifications. The last two columns show the enrichments of DM peaks of H3K27me3 and DE genes. R1/2, replicate 1/2; RPKM, reads per kilobase per million. (D) Browser tracks show examples of unique DNA methylation valleys (DMVs) in the Dnmt3a cKO samples and the increased H3K27me3 signal in their flanking regions.
Discussion

To examine the role of DNA methylation in cortical excitatory neurons after their birth, we developed a mouse model where the loss of DNA methylation occurs in postmitotic neurons, prior to the postnatal increase in *Dnmt3a* expression and non-CG methylation (Lister et al., 2013a). *Neurod6*-conditional deletion of *Dnmt3a* in cortical excitatory neurons abolished non-CG methylation and reduced CG methylation throughout the genome (Figure 3C). We found that *Dnmt3a* cKO neurons had altered expression of dozens of genes, including both up- and down-regulated genes (Figure 3A–B). Similar complex patterns in gene expression were reported when *Dnmt3a* was deleted in inhibitory neurons (Lavery et al., 2020) and following manipulation of the DNA methylation reader MeCP2 (Boxer et al., 2019; Johnson et al., 2017; Lavery et al., 2020). These gene expression changes may partly reflect the direct effect of lower gene body CH methylation and loss of CG and CH methylation at gene promoters and distal enhancers (Boxer et al., 2019; Clemens et al., 2019). In addition, some gene expression changes could result from the disruption of other regulatory processes, such as transcription factor expression or chromatin modification. Indeed, we found that the *Dnmt3a* cKO DMRs overlapped with regions that gain methylation during normal postnatal development (Figure 3G–H). These DMRs had increased H3K27ac in the *Dnmt3a* cKO (Figure 5C), consistent with observations in adult animals lacking *Dnmt3a* specifically in GABAergic Sst- or Vip-expressing interneurons (Stroud et al., 2020). In those experiments, embryonic gene-regulatory elements had lower cytosine methylation and increased H3K27ac and H3K4me1 (Stroud et al., 2020). This suggests an essential role for *Dnmt3a* and DNA methylation in shaping the transcriptome during development in part via the inactivation of embryonic enhancers, with potentially long-lasting effects on the gene expression pattern of mature neurons. Although we did not detect individual peaks with a statistically significant difference in H3K27ac between cKO and control (Figure 4 — figure supplement 1C), this could be due to a small number of replicates and the
There is a strong antagonistic relationship between DNA methylation and the PRC2-associated histone mark, H3K27me3 (Brinkman et al., 2012; Jermann et al., 2014; Lynch et al., 2012; Reddington et al., 2013; Wu et al., 2010). Switching between Polycomb- and DNA methylation-mediated repression has been observed during development and in cancer (Mohn et al., 2008; Schlesinger et al., 2007; Widschwendter et al., 2007). Severe depletion of mCG can lead to redistribution of H3K27me3, causing derepression of developmental regulators such as the Hox gene clusters (Reddington et al., 2013). We did not observe ectopic expression of these genes, possibly due to the relatively modest reduction in mCG in our model compared with cells lacking Dnmt1. Instead, we found that in cortical excitatory neurons, thousands of sites gained H3K27me3 following the loss of mCG in the Dnmt3a cKO (Figure 4 — figure supplement 1D). These sites, which normally gain DNA methylation during postnatal development, were left unmethylated in cKO neurons (Figure 4B and Figure 6E). These regions were largely distinct from the sites that gain or lose H3K27me3 during normal development (Figure 6C–E), and had an intermediate level of H3K27me3 in the control samples (Figure 4 — figure supplement 3A). A subset of these regions formed large-scale DNA methylation valleys (DMVs) spanning key regulatory genes (Figure 7C–D). Overall, our results suggest that when DNA methylation is disrupted, H3K27me3 might partially compensate for the loss of mCG and/or mCH and act as an alternative mode of epigenetic repression. Nevertheless, we did not find differential expression in any of the four core components of PRC2 (Ezh2, Suz12, Eed and Rbbp4) in adult Dnmt3a cKO animals. It is possible that the increased H3K27me3 was mediated by transient expression of PRC2 components during development in the cKO. Furthermore, the
predictions from BART (Figure 4A) were derived from various cell lines and tissues from the ENCODE project (Davis et al., 2018; ENCODE Project Consortium, 2012), suggesting that the potential PRC2 binding at our DEGs may normally happen in systems other than the brain or pyramidal neurons, or at other time points during development. Additional experiments which directly manipulate components of the PRC2 system are required to further test the potential compensation mechanism.

Previous work showed that the early embryonic deletion of Dnmt3a in excitatory neurons caused gross motor deficits and a shortened lifespan (Nguyen et al., 2007). Mid-gestation Neurod6-driven Dnmt3a ablation, however, did not cause such alterations, allowing us to test how the epigenetic and transcriptional alterations affected the morphology and function of excitatory synapses, neurons’ passive and active properties, and behavior. We found that prelimbic layer 2 neurons of Dnmt3a cKO animals had more immature dendritic spines and were less sensitive to somatic injections of depolarizing current compared to control neurons (Figure 2). This is consistent with several of the observed DE genes having annotated roles in dendrite morphogenesis (Elavl4, Hecw2, Ptprd, Figure 3B) and Na+ influx/transport (Hecw2, Scn3b, Figure 3B). Indeed, the downregulation of the latter set of genes could be expected to increase the action potential threshold (thus dampening neuronal excitability) and trigger neurodevelopmental delays (Berko et al., 2017). As well, Cacnb3, a gene that encodes a regulatory beta subunit of the voltage-dependent calcium channel, was found among the set of downregulated genes after loss of Dnmt3a. This gene has been linked with schizophrenia (Maycox et al., 2009), ADHD and bipolar disorder (van Hulzen et al., 2017) in humans. Our study thus suggests that the disruption of methylation patterns established by Dnmt3a during infancy might have far-reaching mechanistic relevance for multiple neurodevelopmental disorders, complementing previous genetic risk association studies linking Dnmt3a with autism (C Yuen et al., 2017; Sanders et al., 2015). Although our experiments were not designed to
make quantitative comparisons between cohorts of different sexes, we observed a wider range of behavioral impairments in male cDnmt3a KO mice, which included, for example, decreased social interest (Figure 1). Those data correlate well with several human neurodevelopmental disorders, in which males are disproportionately more affected than females, and thus provide important support for follow-up investigations into the underlying causes of those differences.

Our findings highlight the critical and interconnected roles in brain development and cognitive function of two major modes of epigenetic repression of gene expression: DNA methylation and PRC2-mediated repression. The loss of DNA methylation in excitatory neurons has effects on gene expression, synaptic function, and cognitive behavior. Moreover, loss of DNA methylation leads to a gain of the PRC2-associated repressive mark H3K27me3. Our cKO is a restricted manipulation of one neuron type, yet it directly impacts DNA methylation throughout the genome at millions of sites. PRC2-mediated repression may compensate for the loss of mCG and/or mCH, acting as an alternative repressive mechanism when DNA methylation is disrupted. Future work focusing on earlier developmental stages, and using targeted methods to manipulate epigenetic marks in local genomic regions (Liu et al., 2016), may help elucidate the causal interactions among epigenetic modifications that are critical for neuronal maturation and function.

Materials and Methods

Generation of the Dnmt3a cKO mice line

All animal procedures were conducted in accordance with the guidelines of the American Association for the Accreditation of Laboratory Animal Care and were approved by the Salk Institute for Biological Studies Institutional Animal Care and Use Committee (protocol number 18-00006). For behavior, slice physiology and spine analyses, Dnmt3a-floxed animals (Okano et al., 1999) (backcrossed to C57BL/6 for at least seven generations) were crossed to Neurod6-
Cre (Nex-Cre) (Goebbels et al., 2006, backcrossed to C57BL/6J for >10 generations) mice to generate Dnmt3a-KO animals carrying the deletion only in pyramidal cells. To be able to isolate pyramidal neuron nuclei for DNA methylation, transcription, and ChIP analyses, the mouse lines (Dnmt3a-KO and Neurod6-Cre) were crossed to a mouse line carrying the INTACT background (B6.129-Gt(Rosa)26Sor^{tm5(CAG-Sun1/sfGFP)Nat/MmbeJ}. Strain 030952, Jackson laboratories). The deletion of Dnmt3a from pyramidal cells was confirmed by RNA-seq (deletion of exon 19) and Western blot (Figure 1B and Figure 1 — figure supplement 3A–B). For both backgrounds, Nex-Cre hemizygous mice were used as controls.

Frontal cortex dissection, Nuclei isolation, and flow cytometry

Frontal cortex tissue was produced as described (Lister et al., 2013a; Luo et al., 2017) from postnatal day 0 and 39 (P39) Dnmt3a cKO and control animals, in an INTACT background. The nuclei of GFP-expressing NeuN-positive excitatory neurons were isolated and collected using fluorescence-activated nuclei sorting (FANS) as described (Lister et al., 2013a; Luo et al., 2017) with the following modification: prior to FANS, nuclei were labeled with anti-NeuN-AlexaFluor647 and anti-GFP-AlexaFluor488. Nuclei were sorted as described (Lister et al., 2013a). Double positive nuclei were retained for RNA-seq, ChIP-seq and MethylC-seq library preparation and sequencing.

Western blot

Frontal cortex proteins were obtained by homogenization in RIPA buffer of the following composition: 150 mM NaCl, 10 mM Na2HPO4, 1% NaDOC, 1% NP-40, 0.5% SDS, 1 mM DTT, 1 mM PMSF in DMSO, supplemented with protease inhibitor (Sigma-Aldrich #11836153001) and phosphatase inhibitor (Pierce #A32957) cocktails. After centrifugation at 15000 x g, supernatants were preserved and protein concentration was determined by the BCA method (Pierce). Protein bands were separated in 8% PAGE-gels and transferred to nitrocellulose
membranes. After blocking in TBS-tween with 5% milk, DNMT3A was detected by the use of anti-DNMT3A antibody (Abcam) and chemiluminescence. DNMT3A bands were normalized to ACTIN content in each sample.

Patch-clamp electrophysiology

Male and female mice (6–9 weeks) were anesthetized with isoflurane and decapitated. The brains were quickly removed and coronal slices of the frontal cortex containing the prelimbic region (~2 mm anterior to bregma) were cut in an ice-cold slicing medium of the following composition (in mM): 110 sucrose, 2.5 KCl, 0.5 CaCl\(_2\), 7 MgCl\(_2\), 25 NaHCO\(_3\), 1.25 NaH\(_2\)PO\(_4\), and 10 glucose (bubbled with 95% O\(_2\) and 5% CO\(_2\)). The slices were then transferred to artificial CSF (aCSF) containing (in mM) 130 NaCl, 2.5 KCl, 1.25 NaH\(_2\)PO\(_4\), 23 NaHCO\(_3\), 1.3 MgCl\(_2\), 2 CaCl\(_2\) and 10 glucose, equilibrated with 95% O\(_2\) and 5% CO\(_2\) at 35°C for 30 minutes and afterward maintained at room temperature (22-24 °C) for at least 1 hour (patch-clamp recording) before use. Brain slices were then transferred to a recording chamber and kept minimally submerged under continuous superfusion with aCSF at a flow rate of ~2 ml/min. Whole-cell recordings were obtained from putative prelimbic layer 2 (L2) pyramidal cells (identified by their pyramidal-shaped cell bodies and long apical dendrite using an upright microscope equipped with differential interference contrast optics). In acute mPFC slices, the prelimbic L2 is clearly distinguishable from L1 and L3 as a thin dark band that is densely packed with neuron somata. Pipettes had a tip resistance of 4–8 MΩ when filled with an internal solution of the following composition (in mM): 125 K-gluconate, 15 KCl, 8 NaCl, 10 HEPES, 2 EGTA, 10 Na\(_2\)Phosphocreatine, 4 MgATP, 0.3 NaGTP (pH 7.25 adjusted with KOH, 290-300 mOsm). Access resistance (typically 15-35 MΩ) was monitored throughout the experiment to ensure stable recordings.
After obtaining the whole-cell configuration in voltage-clamp mode, cells were switched from a holding potential of -70 mV to current-clamp mode and the bridge-balance adjustment was performed. Passive electrical properties were quantified from recordings with hyperpolarizing current injections that evoked small ~5 mV deflections in membrane potential from resting.

Responses to stepwise current injections (10-300 pA in increments of 10 pA; duration, 1 s) were recorded at 20 kHz in order to calculate input-output curves and rheobase - the minimal current necessary to trigger the first action potential. Miniature excitatory postsynaptic currents (mEPSCs) were recorded for 5 minutes in voltage-clamp mode (Vh=-70 mV) in the presence of the Na+ channel blocker, TTX (0.5 μM), to prevent the generation of action potentials, and picrotoxin (50 μM), an antagonist of GABA_a receptors, to minimize inhibitory responses. In these conditions, mEPSCs could be blocked by the AMPA receptor antagonist, CNQX (25 μM). Single events larger than 6 pA were detected offline using the Minianalysis program (Synaptosoft Inc. Decatur, GA). All data were acquired using a Multiclamp 700B amplifier and pCLAMP 9 software (Molecular Devices, LLC. San Jose, CA).

Fluorescent labeling of dendritic spines

Coronal brain slices containing the mPFC of 10–13 weeks female mice were prepared as for electrophysiological recordings and placed in a beaker for 3 hours at room temperature (24°C) to allow functional and morphological recovery. One slice was then transferred to a recording chamber and kept minimally submerged under continuous superfusion with aCSF bubbled with carbogen (95% O₂ / 5% CO₂) at a flow rate of ~2 ml/min. Previously sonicated crystals of the fluorescent marker DiI were placed next to the somata of layer 2 neurons in the prelimbic cortex, identified with the aid of an upright microscope equipped with differential interference contrast optics. The mice in these experiments had a Thy1-YFP background to help rule out non-specific labeling of deeper layer neurons. The neurons were exposed to the DiI crystals for 60 minutes. The slices were then gently removed from the incubation chamber with a transfer pipette and
immersed in fixative (4% PFA) for 30 minutes. Then, the slices were rinsed three times with PBS for 5–10 minutes each, after which they were mounted on slides with prolonged gold antifade mounting medium (Life Technologies – Molecular Probes). The slides were kept in a dark box for 24 h at room temperature to allow the liquid medium to form a semi-rigid gel. Imaging took place 24-48 h from the time of the initial staining.

Confocal imaging

Dendritic spines were imaged by an investigator blind to the genotype using a Zeiss AiryScan confocal laser scanning microscope. All images were taken using the Zeiss Plan-APOCHROMAT 63× oil-immersion lens (N/A 1.4). A 543nm laser was used to visualize the fluorescence emitted by DiI. Serial stack images with a 0.2 μm step size were collected, and then projected to reconstruct a three-dimensional image that was post-processed by the AiryScan software. Dendritic segments in layer 1, which were derived from layer 2 pyramidal neurons retrogradely labeled with DiI and that were well separated from neighboring neural processes, were randomly sampled and imaged. Each dendritic segment imaged for quantification belonged to a different neuron.

Dendritic spine quantification

The z-stack series were imported into the Reconstruct software (http://synapseweb.clm.utexas.edu/software-0/), with which a second investigator also blind to the genotype performed the identification of dendritic spines and their morphometric analysis. By scrolling through the stack of different optical sections, individual spine heads could be identified with greater certainty. All dendritic protrusions with a clearly recognizable stalk were counted as spines. Spine density was determined by summing the total number of spines per dendritic segment length (30-40 μm) and then calculating the average number of spines per μm. Individual dendritic spines were classified in the following order according to pre-established criteria: protrusion longer than 3 μm, filopodia; head wider than 0.6 μm, mushroom; protrusion
longer than 2 μm and head narrower than 0.6 μm, long-thin; protrusion longer than 1 μm and head narrower than 0.6 μm, long-thin; the remaining spines were labeled stubby). Branched spines (with more than one neck) were counted separately.

Behavioral testing

Phenotypic characterization was initiated when the animals reached 9 weeks of age using cohorts of 10–15 male or female mice per genotype, according to the order described below.

Open field test

The open field test was performed using MED Associates hardware and the Activity Monitor software according to the manufacturer’s instructions (MED Associates Inc, St. Albans, VT). Animals were individually placed into clear Plexiglas boxes (43.38 x 43.38 x 30.28 cm) surrounded by multiple bands of photo beams and optical sensors that measure horizontal and vertical activity. Movement was detected as breaks within the beam matrices and automatically recorded for 60 minutes.

Light/dark transfer test

The light/dark transfer procedure was used to assess anxiety-like behavior in mice by capitalizing on the conflict between exploration of a novel environment and the avoidance of a brightly lit open field (150–200 lux in our experiments). The apparatus were Plexiglas boxes as for the open field test (43.38 x 43.38 x 30.28 cm) containing dark box inserts (43.38 x 12.8 x 30.28 cm). The compartments were connected by an opening (5.00 x 5.00 cm²) located at floor level in the center of the partition. The time spent in the light compartment was used as a predictor of anxiety-like behavior, i.e. a greater amount of time in the light compartment was indicative of decreased anxiety-like behavior. Mice were placed in the dark compartment (4–7 lux) at the beginning of the 15-minute test.
Elevated plus maze

The maze consisted of four arms (two open without walls and two with enclosed walls) 30 cm long and 5 cm wide in the shape of a plus sign. The apparatus was elevated approximately 33 cm over a table. At the beginning of each trial, one animal was placed inside a cylinder located at the center of the maze for 1 min. The mouse was then allowed to explore the maze for 5 minutes. The session was video-recorded by an overhead camera and subjected to automated analysis using ANY-maze software. The apparatus was wiped down with sani-wipes between trials to remove traces of odor cues. The percentage of time spent in open or closed arms was scored and used for analysis.

Y maze test for spontaneous alternations

Spontaneous alternations between three 38 cm long arms of a Y-maze were taken as a measure of working memory. Single 6-minute trials were initiated by placing each mouse in the center of the Y maze. Arm entries were recorded with a video camera and the total number of arm entries, as well as the order of entries, was determined. The apparatus was wiped down with sani-wipes between trials to remove traces of odor cues. Spontaneous alternations were defined as consecutive triplets of different arm choices and % spontaneous alternation was defined as the number of spontaneous alternations divided by the total number of arm entries minus 2.

Social Approach

The apparatus consisted of a Plexiglas box (60 x 38 x 23.5 cm) divided into 3 compartments by Plexiglas partitions containing openings through which the mice could freely enter the 3 chambers. The test was conducted in two 10-minute phases. In phase I, the test mouse is first allowed to explore the chambers for 10 minutes. Each of the two outer chambers contained an empty, inverted stainless steel wire cup. In phase II, the test mouse is briefly removed, and a sex-matched unfamiliar mouse, was placed under one of the wire cups and plastic blocks were
placed under the other wire cup. The test mouse was then gently placed back in the arena and
given an additional 10 minutes to explore. An overhead camera and video tracking software
(ANY-maze, Wood Dale, IL) were used to record the amount of time spent in each chamber.
The location (left or right) of the novel object and novel mouse alternates across subjects.

Acoustic startle responses and prepulse inhibition of the acoustic startle response

Acoustic startle responses were tested inside SR-LAB startle apparatus (San Diego
Instruments, San Diego, CA), consisting of an inner chamber with a speaker mounted to the
wall and a cylinder mounted on a piezoelectric sensing platform on the floor. At the beginning of
testing, mice were placed inside the cylinder and then were subjected to background 65 dB
white noise during a 5-min acclimation period. The PPI session began with the presentation of
six pulse-alone trials of 120 dB, 40 ms. Then, a series of pulse-alone trials and prepulse trials
(69, 73, or 81 dB, 20 ms followed by 100 ms pulse trial, 120 dB) were each presented 12 times
in a pseudorandom order. The session concluded with the presentation of six pulse-alone trials.
The apparatus was wiped down with sani-wipes between trials to remove traces of odor cues.
The startle amplitude was calculated using arbitrary units, and the acoustic startle response was
the average startle amplitude of pulse-alone trials. The percent PPI was calculated as follows:

\[100 - \left(\frac{\text{mean prepulse response}}{\text{mean pulse alone response}} \right) \times 100 \].

Cued and contextual fear conditioning

Fear conditioning experiments were performed using automated fear conditioning chambers
(San Diego Instruments, San Diego, CA), similar to previous studies (Gresack et al., 2010;
Risbrough et al., 2014). On day 1, after a 2-min acclimation period, mice were presented with a
tone conditioned stimulus (CS: 75 dB, 4 kHz) for 20 s that co-terminated with a foot shock
unconditioned stimulus (1 s, 0.5 mA). A total of three tone-shock pairings were presented with
an inter-trial interval of 40 s. To assess acquisition, freezing was quantified during foot shock
presentations. Mice were returned to their home cages 2 min after the final shock. These moderate shock parameters were previously found suitable to detect both increases and decreases in fear-conditioned behavior (Risbrough et al., 2014). 24 h later, on day 2, mice were re-exposed to the conditioning chamber to assess context-dependent fear retention. This test lasted 8 min during which time no shocks or tones were presented and freezing was scored for the duration of the session. Time freezing was quantified across four 2-min blocks. Day 3: 24 h after the context fear-retention test, mice were tested for CS-induced fear retention and extinction. The context of the chambers was altered across several dimensions (tactile, odor, visual) for this test in order to minimize generalization from the conditioning context. After a 2 min acclimation period, during which time no tones were presented ('pre-tone'), 32 tones were presented for 20 s with an inter-trial interval of 5 s. Freezing was scored during each tone presentation and quantifications were done in eight blocks of four tones. Mice were returned to their home cage immediately after termination of the last tone. On day 4, after a 2 min acclimation period, during which time no tones were presented ('pre-tone'), a shorter session of 16 tones was used to assess extinction. Time freezing was quantified across four blocks of four tones.

RNA extraction, RNA-seq library construction and sequencing

Nuclei (between 50,000–60,000) were used to isolate RNA using Single-Cell RNA Purification Kit (Norgen, catalog# 51800). In brief, aliquots of nuclei were resuspended in 350 µl of RL buffer (Norgen) and passed through an 18G syringe five times. RNA extraction, including DNase digestion, followed manufacturers' instructions. RNA was eluted in 20 µl of Elution Solution A (Norgen). The nuclear RNA concentration was determined using TapeStation (Agilent). RNA was diluted to 1 ng/µl and a total of 5 ng was processed for RNA-seq library preparation. RNA libraries were prepared using NuGen Ovation® RNA-Seq System V2 (#7102-32) for cDNA preparation following the product manual. cDNA purification was done using Zymo Research
DNA Clean & Concentrator™-25 with modification from the Ovation protocol. cDNA, eluted in 30–40 µl of TE (1 µg per sample), was fragmented at 300bp using Covaris S2 (Sonolab S-series V2), followed by library preparation according to KAPA LTP Library Preparation Kit (KK8232), using Illumina indexed adapters. Libraries were sequenced on Novaseq 6000.

DNA extraction

DNA extraction was performed using the Qiagen DNeasy Blood and Tissue kit (catalog #69504) and eluted into 50–100 µL AE.

Genomic DNA library construction and sequencing

1.5 µg of genomic DNA was fragmented with a Covaris S2 (Covaris, Woburn, MA) to 400 bp, followed by end repair and addition of a 3’ A base. Cytosine-methylated adapters provided by Illumina (Illumina, San Diego, CA) were ligated to the sonicated DNA at 16˚C for 16 hours with T4 DNA ligase (New England Biolabs). Adapter-ligated DNA was isolated by two rounds of purification with AMPure XP beads (Beckman Coulter Genomics, Danvers, MA). Half of the adapter-ligated DNA molecules were enriched by 6 cycles of PCR with the following reaction composition: 25 µL of Kapa HiFi Hotstart Readymix (Kapa Biosystems, Woburn, MA) and 5 µl TruSeq PCR Primer Mix (Illumina) (50 µl final). The thermocycling parameters were: 95˚C 2 min, 98˚C 30 sec, then 6 cycles of 98˚C 15 sec, 60˚C 30 sec and 72˚C 4 min, ending with one 72˚C 10 min step. The reaction products were purified using AMPure XP beads and size selection was done from 400 – 600 bp. Libraries were sequenced on Novaseq 6000.

MethylC-seq library construction and sequencing

MethylC-seq libraries were prepared as previously described (Urish et al., 2015). All DNA obtained from the extraction was spiked with 0.5% unmethylated Lambda DNA. The DNA was fragmented with a Covaris S2 (Covaris, Woburn, MA) to 300 bp, followed by end repair and
addition of a 3’ A base. Cytosine-methylated adapters provided by Illumina (Illumina, San Diego, CA) were ligated to the sonicated DNA at 16°C for 16 hours with T4 DNA ligase (New England Biolabs). Adapter-ligated DNA was isolated by two rounds of purification with AMPure XP beads (Beckman Coulter Genomics, Danvers, MA). Adapter-ligated DNA (≤450 ng) was subjected to sodium bisulfite conversion using the EZ methylation Direct kit, (Zymo, D5021) as per the manufacturer’s instructions. The bisulfite-converted, adapter-ligated DNA molecules were enriched by 8 cycles of PCR with the following reaction composition: 25 µL of Kapa HiFi Hotstart Uracil+ Readymix (Kapa Biosystems, Woburn, MA) and 5 µl TruSeq PCR Primer Mix (Illumina) (50 µl final). The thermocycling parameters were: 95°C 2 min, 98°C 30 sec, then 8 cycles of 98°C 15 sec, 60°C 30 sec and 72°C 4 min, ending with one 72°C 10 min step. The reaction products were purified using AMPure XP beads. Up to two separate PCR reactions were performed on subsets of the adapter-ligated, bisulfite-converted DNA, yielding up to two independent libraries from the same biological sample. MethylC-seq libraries were sequenced on Novaseq 6000.

ChIP-seq library construction and sequencing

Sorted nuclei were crosslinked for 15 min in 1% formaldehyde solution and quenched afterward with glycine at a final concentration of 0.125 M. After crosslinking, nuclei were sonicated in Lysis buffer (50 mM Tris HCl pH 8, 20 mM EDTA, 1% SDS, 1X EDTA free protease inhibitor cocktail). ChIP assays were conducted with antibodies against H3K27me3 (39156, Active Motif), H3K27ac (39133, Active Motif) and H3K4me3 (04-745, Millipore Sigma). Mouse IgG (015-000-003, Jackson ImmunoResearch) served as a negative control. H3K4me3 ChIP-seq assays were conducted with 100K nuclei and 500K nuclei were used for H3K27me3 and H3K27ac ChIP-seq assays. The respective antibodies and IgG were coupled for 4-6 hours to Protein G Dynabeads (50 µl, 10004D, Thermo Fisher Scientific). Equal amounts of sonicated chromatin were diluted with 9 volumes of Binding buffer (1% Triton X-100, 0.1% Sodium Deoxycholate, 2X EDTA free...
protease inhibitor cocktail) and subsequently incubated overnight with the respective antibody-coupled Protein G beads. Beads were washed successively with low salt buffer (50 mM Tris HCl pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Triton X-100), high salt buffer (50 mM Tris HCl pH 7.4, 500 mM NaCl, 2 mM EDTA, 0.5% Triton X-100) and wash buffer (50 mM Tris HCl pH 7.4, 50 mM NaCl, 2 mM EDTA) before de-crosslinking, proteinase K digestion and DNA precipitation. Libraries were generated with the Accel-NGS 2S Plus DNA Library Kit (21024, Swift Biosciences) and sequenced on the Illumina HiSeq 4000 Sequencing system.

RNA-seq data processing

RNA-seq reads were first gone through quality control using FastQC (Andrews et al., 2012) (v0.11.8, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and then trimmed to remove sequencing adapters and low-quality sequences (minimum Phred score 20) using Trim Galore (v0.5.0, https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, a wrapper tool powered by Cutadapt (Martin, 2011) v1.16) in the paired-end mode. Clean reads were then mapped to the mouse mm10 (GRCm38) genome and the GENCODE annotated transcriptome (release M10) with STAR (Dobin et al., 2013) (Spliced Transcripts Alignment to a Reference, v2.5.1b). Gene expression was estimated using RSEM (Li and Dewey, 2011) (RNA-Seq by Expectation Maximization, v1.2.30). Gene-level “expected count” from the RSEM results were rounded and fed into edgeR (Robinson et al., 2010) (v3.24.1) to call differentially expressed genes. Only genes that were expressed (with counts per million > 2) in at least two samples were kept. These counts were then normalized using the TMM method (Robinson and Oshlack, 2010), and DE genes were then called in the quasi-likelihood F-test mode, requiring FDR < 0.05 and FC > 20% (Supplementary File 2). To quantify transposable element (TE) expression, we used the Fetch, Clean, Map, and Count modules from SQuIRE (Yang et al., 2019) with the RepeatMasker annotation from UCSC. To evaluate the differences in TE family and class abundance between *Dnmt3a* knock-out and control samples, we grouped SQuIRE’s TE
subfamily expression estimates (FPKM) into their respective families and classes and performed two-sample t-tests.

Enrichment test of Gene Ontology (GO) terms in differentially expressed genes

GO enrichment analysis was performed using clusterProfiler (Yu et al., 2012) (v3.10.0). Only “Biological Process” terms with no less than 10 genes and no more than 250 genes were considered. Terms with FDR < 0.05 were considered significantly enriched.

Genomic DNA sequencing data processing and SNP calling

To estimate the completeness of the inbreeding of the mouse strains, and to avoid incorrect cytosine context assignment in the following methylC-seq data processing, we used the genomic DNA sequencing data of both the \textit{Dnmt3a} cKO and the control animals to call SNPs against the mouse mm10 genome. We followed the GATK “best practices for germline SNPs and indels in whole genomes and exomes” pipeline (DePristo et al., 2011; McKenna et al., 2010; Van der Auwera et al., 2013). Briefly, raw data were first trimmed to remove sequencing adapters and low-quality sequences (minimum Phred score 20) using Trim Galore in the paired-end mode. Clean data were then mapped to the mm10 genome using BWA (Li and Durbin, 2009) (v0.7.13-r1126). Duplicates reads were marked with Picard (Broad Institute, 2018). Then the analysis-ready reads were fed into GATK (v3.7) to perform two rounds of joint genotyping and base recalibration. Variants were then filtered using the following criteria: QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0 || SOR > 4.0 . By that, we identified 548,530 and 507,669 SNPs (relative to mm10) in the \textit{Dnmt3a} cKO and the control animals, respectively. At last, we created a substituted genome to mask out all these SNPs (replaced with Ns) with the “maskfasta” tool in the BEDTools suite (Quinlan and Hall, 2010) (v2.27.1). This substituted genome was used in the following methylC-seq data processing pipeline.
MethylC-seq data processing

MethylC-seq reads were processed using the methylpy pipeline (v1.3.2, https://github.com/yupenghe/methylpy) as previously described (Lister et al., 2013a; Mo et al., 2015). Briefly, a computationally bisulfite-converted genome index was built using the aforementioned substituted genome file appended with the lambda phage genomic sequence. MethylC-seq raw reads were first trimmed to remove sequencing adapters and low-quality sequences (minimum Phred score 10) using Cutadapt in paired-end mode. To acquire higher mappability, we treated the two ends of the clean reads as they were sequenced in single-end mode, and mapped them to the converted genome index with bowtie2 (Langmead and Salzberg, 2012) (v2.3.0) as aligner in the single-end pipeline of methylpy. Only reads uniquely mapped were kept, and clonal reads were removed. The bisulfite non-conversion rate was estimated using the spiked-in unmethylated lambda phage DNA. For each cytosine, a binomial test was performed to test whether the methylation levels are significantly greater than 0 with an FDR threshold of 0.01.

For a particular genomic region, the raw methylation level for a given cytosine context (CG or CH) was defined as:

\[\% mC = 100 \times \frac{m}{h}, \]

where \(m \) is the total number of methylated based calls within the region, and \(h \) is the total number of covered based calls within the region. Methylation levels were then corrected for non-conversion rate (NCR) using the following maximum likelihood formula:

\[\% mC_{adj} = \frac{\% mC - \% NCR}{100 - \% NCR}, \text{ where } \% mC_{adj} \in [0, 100]. \]

When profiling the methylation landscapes around differentially expressed genes, we selected control genes with comparable gene expression using the R package MatchIt (Ho et al., 2011).
These control genes were defined with nearest neighbor matching of the expression (in the unit of TPM) using logistic link propensity score as a distance measure, requiring the standard deviation of the distance to be less than 0.01.

Differentially methylated regions (DMRs) calling

CG DMRs were identified using a previously reported method (Ma et al., 2014; Schmitz et al., 2013; Schultz et al., 2015), which is implemented in the DMRfind function in methylpy. We required at least 3 differentially methylated sites within a particular DMR, and the maximum distance between two significant sites can be to be included in the same DMR to be 500 nucleotides. With an FDR cutoff of 0.01 and a post-filtering cutoff of methylation levels change greater than 30 (in the unit of %mCG), we found 222,006 \textit{Dnmt3a} cKO hypo-DMRs in P39 (Supplementary File 3). Note that with these criteria we also found 89 \textit{Dnmt3a} cKO hyper-DMRs, which we thought were noise and/or SNPs that failed to be detected by the masking pipeline described earlier. Therefore we removed these hyper-DMRs from further consideration.

Enrichment test of DMRs and other genomic regions

To test whether DMRs were significantly enriched in certain genomic features, we use methods adapted from a recent report (Rizzardi et al., 2019). Briefly, for each genomic feature, we constructed a 2 by 2 contingency table of \((n_{11}, n_{12}, n_{21}, n_{22})\), where:

- \(n_{11}\) is the number of CG sites in DMRs that were inside the feature;
- \(n_{12}\) is the number of CG sites in DMRs that were outside of the feature;
- \(n_{21}\) is the number of CG sites not in DMRs that were inside in feature;
- \(n_{22}\) is the number of CG sites not in DMRs that were outside of the feature.

The total number of CG sites in consideration was the number of autosomal and chromosome X CG in the reference genome. Counting the number of CG rather than the number of DMRs or
bases accounts for the non-uniform distribution of CG along the genome and avoids double-counting DMRs that are both inside and outside of the feature.

With this contingency table, we estimated the enrichment log odd ratio (OR) along with its standard error (se) and 95% confidence interval (ci) with the following formulas:

\[
\log_2 OR = \log_2 n_{11} + \log_2 n_{12} - \log_2 n_{21} - \log_2 n_{22}
\]

\[
se(\log_2 OR) = \sqrt{1/n_{11} + 1/n_{12} + 1/n_{21} + 1/n_{22}}
\]

\[
ci(\log_2 OR) = [\log_2 OR - 2 \times se(\log_2 OR), \log_2 OR + 2 \times se(\log_2 OR)]
\]

P-value from performing Fisher’s exact test for testing the null of independence of rows and columns in the contingency table (the null of no enrichment or depletion) was computed using the fisher.test() function in R.

The genomic regions/features used in these enrichment tests includes: a list of developmental DMRs that gain or lose methylation during development (Lister et al., 2013a); gene features (genic, exonic, intronic, promoter, 5’UTR, 3’UTR, intergenic) based on the Gencode vM10 annotation (promoters were defined as the ±2kb regions around transcription start sites); CpG island (CGI) related features based on the “cpgIslandExt” annotation from the UCSC genome browser (Karolchik et al., 2004; Kent et al., 2002) (http://genome.ucsc.edu/index.html), where CGI shores were defined as CGI ±2kb, CGI shelves were defined as ±2-4kb of CGI and open seas were defined as regions that were at least 4kb away from any CGI; the 12 states of the chromatin states map in mouse embryonic stem cell (Pintacuda et al., 2017) (https://github.com/guifengwei/ChromHMM_mESC_mm10) generated by ChromHMM (Ernst and Kellis, 2017, 2012) using ChIP-seq data from the ENCODE project (Davis et al., 2018; ENCODE Project Consortium, 2012); the H3K4me3, H3K27ac and H3K27me3 peaks and the
H3K27me3 differentially binding regions generated with our ChIP-seq data (see the “ChIP-seq data processing” section).

Predicting functional transcription factors regulating the differentially expressed genes with BART

The lists of up-regulated and down-regulated genes were fed into BART (Wang et al., 2016, 2018) (Binding Analysis for Regulation of Transcription) separately to predict functional transcription factors (TFs) and chromatin regulators that bind at cis-regulatory regions of the DE genes. To make a better visualization we transformed the relative rank (a metric generated by BART to represent the average rank of Wilcoxon P-value, Z-score and max AUC for each factor divided by the total number of factors) into the functional TF rank score (which is simply 1 minus the relative rank) so that the higher the rank score the more possible the TF regulates the DE genes. The integrative rank significance was estimated with the Irwin-Hall p-value. TFs with Irwin-Hall p-value < 0.05 were considered significant.

Enrichment test of known transcription factor binding motifs in DMRs

We used the “findMotifsGenome.pl” tool in HOMER (Heinz et al., 2010) (Hypergeometric Optimization of Motif EnRichment, v4.8.3) to find known transcription factor binding motif in the \textit{Dnmt3a} cKO DMRs. The parameters used are as follows: “-size 500 -len 8,10,12 -S 25 -fdr 100 -p 10 -mset vertebrates -bits -gc -nlen 3 -nomotif”. A set of non-neural DMRs (Hon et al., 2013) was used as the background.

ChIP-seq data processing

ChIP-seq reads were pre-processed with the ENCODE Transcription Factor and Histone ChIP-Seq processing pipeline (https://github.com/ENCODE-DCC/chip-seq-pipeline2, v1.1.6). Briefly, paired-end reads were mapped to the mm10 genome with BWA (Li and Durbin, 2009) (v0.7.13-
reads were then filtered using samtools (Li et al., 2009) (v1.2) to remove unmapped,
mate unmapped, not primary alignment and duplicate reads (-F 1804). Properly paired reads
were retained (-f 2). Multi-mapped reads (MAPQ < 30) were removed. PCR duplicates were
removed using the MarkDuplicates tool in Picard (Broad Institute, 2018) (v2.10.6). Reads
mapped to the blacklist regions (ENCODE Project Consortium, 2012) in the mouse mm10
genome (http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-
mouse/mm10.blacklist.bed.gz) were also removed.

Peak calling was performed using epic2 (Stovner and Sætrom, 2019) (v0.0.16), a
reimplementation of SICER (Zang et al., 2009). For H3K4me3 and H3K27ac, we used the
following parameters: “--bin-size 200 --gaps-allowed 1”. For H3K27me3, we used the following
parameters: “--bin-size 200 --gaps-allowed 3”. The IgG sample was used as a control.

Differentially modified (DM) regions of the histone modification ChIP-seq data were called using
DiffBind (Ross-Innes et al., 2012) (v2.10.0) in DESeq2 (Love et al., 2014) (v1.22.1) mode.
Regions with FDR < 0.05 were considered significant. Genes associated with these regions
were identified using GREAT (McLean et al., 2010) (v3.0.0) with the “Basal plus extension”
asociation rule with default parameters. GO enrichment analysis of the associated genes was
performed with GREAT, and we considered the GO biological process terms with
hypergeometric test FDR < 0.05 as significant.

To select a set of non-DM control regions to match the base levels of H3K27me3 in DM regions,
we started with the union peaks of the control and cKO samples and removed any peaks that
overlap the DM regions. From these non-DM peaks, we used the R package MatchIt (Ho et al.,
2011) (v3.0.2) to select regions with matched peak lengths and H3K27me3 levels (in the unit of
RPKM) as those in the DM regions, with the greedy nearest neighbor matching using logistic
link propensity score as a distance measure (requiring the standard deviation of the distance to be less than 0.01).

Definition of bivalent and active CGI promoters

CGI promoters were defined as CpG islands (downloaded from the UCSC genome browser) that overlapping with promoters (±2kb regions around transcription start sites annotated in Gencode vM10). These CGI promoters were further tested to see whether they overlapped with the ChIP-seq peaks of H3K4me3 and H3K27me3. Bivalent CGI-promoters were defined as CGI-promoters that overlapped with both the H3K4me3 and H3K27me3 peaks, whereas active CGI-promoters were defined as CGI-promoters that overlapped with only the H3K4me3 peaks but not the H3K27me3 peaks.

Identification of DNA methylation valleys (DMVs)

To find DMVs, we first identified UMRs (undermethylated regions) and LMRs (low methylated regions) using MethylSeekR (Burger et al., 2013) (v1.22.0) with m = 0.3 (for P39) or 0.5 (for P0), n = 7 and FDR < 0.05. In P39 samples PMDs (partially methylated domains) were excluded from further consideration, and no PMDs were found in P0 samples. DMVs were then defined as UMRs that with length ≥ 5 kb and mean methylation level ≤ 15%. To compare DMVs identified in the P39 Dnmt3a cKO and the control samples, we further grouped these DMVs into 6 categories, namely consistent (exact same DMV in the two conditions), overhang, cKO unique, control unique, expanded (wider in the cKO) and shrunken (wider in the control) (see illustrations in Figure 7A).

For the clustering visualization in Figure 7C, we sorted DMVs according to the following criteria: (1) whether they overlap an H3K27me3 DM region; whether they overlap an up- or down-regulated DE gene (with absolute log2(Fold-change)>0.2); mean mCG>0.3 in P39 Control, P39 cKO; P0 Control, or P0 cKO; and finally by the average level of H3K27me3, H3K3me3 and
H3K27ac. The “Fraction DM H3K27me3” shows what fraction of the length of the DMV overlaps a DM H3K27me3 region (called using DiffBind). And we also plotted the mean mRNA logFC for all genes contained within each DMV.

DMR enrichment around CGI promoter

We used regioneR (Gel et al., 2016) (v1.14.0) to test whether two sets of genomic regions had significantly higher numbers of overlaps compared to expected by chance. We used permTest() to perform the permutation test, and used the randomizeRegions() function to generate the shuffled control for 5,000 times, where the query regions were randomly placed along the genome independently while maintaining their size. The strength of the association of the two sets of regions was estimated using z-score, the distance (measured in standard deviation) between the expected overlaps in the shuffled control and the observed overlaps, and the p-value was reported. To check if the association was specifically linked to the exact position of the query regions, we used the localZscore() function with window = 5000 and step = 50, which shifted the query regions and estimated how the value of the z-score changed when moving the regions.

Other tools used in the data analysis

Browser representations were created using AnnoJ (Lister et al., 2009). All analyses were conducted in R (v3.5.0), Matlab 2017a and Python 3. Genomic ranges manipulation was done either with bedtools (Quinlan and Hall, 2010) or GenomicRanges (Lawrence et al., 2013). To generate randomly shuffled regions used in Figure 4 — figure supplement 3A and Figure 5 — figure supplement 1A, we used the sub-command “shuffle” in the bedtools suite, with the “-excl” parameter to exclude the blacklist regions, the “-noOverlapping” parameter to prevent overlapping shuffled regions, and the optional “-incl” parameter to limit the shuffle regions to reside within the P39 H3K27me3 peak regions (the union of control and cKO peaks). Multiple
comparison correction for p-values was performed with the Benjamini-Hochberg FDR method (Benjamini and Hochberg, 1995). Results with FDR < 0.05 were considered significant except where stated otherwise. The smoothed lines in Figure 5D and Figure 6 — figure supplement 1C were fitted with a generalized additive model using the “gam” function in the “mgcv” R package, with formula = y ~ s(x, bs = “cs”).

Acknowledgments

This work was supported by R01MH112763 to MMB and JRE, and a Kavli Foundation award to MMB, APD and SBP. JRE is an Investigator of the Howard Hughes Medical Institute. We acknowledge stimulating discussions with Huda Zoghbi and Laura Lavery. We thank the members of the Salk Biophotonics Core Dr. Uri Manor, Sammy Weiser Novak, and Dr. Tong Zhang for their insightful suggestions. We also thank Joseph Chambers and Colleen Heller for technical assistance in animal handling, and Ms. Faith Zhang for her involvement in the morphometric analysis of dendritic spines. The Waitt Advanced Biophotonics Core Facility at the Salk Institute receives funding from NIH-NCI CCSG: P30 014195 and the Waitt Foundation. The Flow Cytometry Core Facility of the Salk Institute receives funding from NIH-NCI CCSG: P30 014195. The authors have no conflict of interest in relation to the work described here.

Data access. All sequencing data are available in the Gene Expression Omnibus under accession GSE141587 (reviewer access password: qvuxqsuqruxwpv). A genome browser displaying the sequencing data is available at https://brainome.ucsd.edu/annoj_private/mm_dnmt3a_ko/ (for reviewer access, username: reviewer, password: dnmt3a).
References

Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, Barkan E, Bertagnolli D,
Casper T, Dee N, Garren E, Goldy J, Graybuck LT, Kroll M, Lasken RS, Lathia K, Parry S,

Bedrosian TA, Quayle C, Novalesi N, Gage FH. 2018. Early life experience drives structural

Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful

Berko ER, Cho MT, Eng C, Shao Y, Sweetser DA, Waxler J, Robin NH, Brewer F, Donkervoort
S, Mohassel P, Bönnemann CG, Bialer M, Moore C, Wolfe LA, Tiff CJ, Shen Y, Retterer K,
Millan F, Chung WK. 2017. De novo missense variants in HECW2 are associated with

Brinkman AB, Gu H, Bartels SJJ, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gniske A,
Missemer A, Stunnenberg HG. 2012. Sequential ChIP-bisulfite sequencing enables direct
genome-scale investigation of chromatin and DNA methylation cross-talk. *Genome Res*

C Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, Patel RV, Whitney J,
M, Zarre M, Deneault E, D’Abate L, Chan AJS, Koyanagi S, Paton T, Pereira SL, Hoang N,
Engchuan W, Higginbotham EJ, Ho K, Lamoureuse S, Li W, Macdonald JR,
Nalpamthakalam T, Sung WWL, Tsoi FJ, Wei J, Xu L, Tasse A-M, Kirby E, Van Etten W,
Twigger S, Roberts W, Drmic I, Jilderda S, Modi BM, Kellam B, Szego M, Cytrynbaum C,
Weksberg R, Zwaigenbaum L, Woodbury-Smith M, Brian J, Senman L, Iaboni A, Doyle-
R, Seifer V, Fedele A, Cook EH, Dager S, Estes A, Gallagher L, Malow BA, Parr JR,
Spence SJ, Vorstman J, Frey BJ, Robinson JT, Strug LJ, Fernandez BA, Elsabbagh M,
Carter MT, Hallmayer J, Knoppers BM, Anagnostou E, Szatmari P, Ring RH, Glazer D,
Pletcher MT, Scherer SW. 2017. Whole genome sequencing resource identifies 18 new

Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA, Jain K,
Baymuradov UK, Narayanan AK, Onate KC, Graham K, Miyasato SR, Dreszer TR, Strattan

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, de Angel
G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kerns AM, Sivachenko AY, Cibulskis
K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation discovery and
Li, Pinto-Duarte et al. “Dnmt3a knockout in excitatory neurons...”

Li, Pinto-Duarte et al. “Dnmt3a knockout in excitatory neurons...”

Li, Pinto-Duarte et al. “Dnmt3a knockout in excitatory neurons...”

Nguyen S, Meletis K, Fu D, Jhaveri S, Jaenisch R. 2007. Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and...

(NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. *J Neurosci* 20:3714–3724.

Supplementary Figure Legends:

Figure 1 — figure supplement 1 | Neurod6 starts to express between embryonic day E11 and E13. (A) Expression quantification of in situ hybridization data of gene Nestin and Neurod6 in telencephalic vesicle from the Allen Developing Brain Atlas (http://developingmouse.brain-map.org/). Left panel, heatmap of the gene expression across ages during development. Right panel, example images of the gene expression in E11.5. Image credit: Allen Institute. E11.5-18.5, embryonic days; P4-28, postnatal days. (B) Expression of Neurod6 at different developmental time points (embryonic days 11.5, 13.5 and 15.5, and postnatal days 4, 14, 28 and 56). Images were taken from the Allen Developing Brain Atlas.

Figure 1 — figure supplement 2 | Neurod6-dependent Cre recombination occurred only in excitatory neurons. (A-C) Cell-type-specific expression of nuclear membrane tag (Sun1-sfGFP-myc) in non-inhibitory NEUROD6+ neurons in mouse brain. (A) Overview (10x magnification) of a sagittal section stained with anti-GFP antibody. Note that the Sun1-sfGFP nuclear tag expression is region-specific, as described for the characterization of the NexCre mouse line (Goebbles et al., 2006). The numbered insets in (A) are enlarged and shown in (B), as example regions where the nuclear membrane tag is expressed (mPFC and CA1 hippocampal region) and where it is not (caudate putamen and thalamus). (C) Confocal images (60x magnification, maximum intensity projection) of mouse brain slices (40 µm thick) triple-labeled with antibodies anti-GFP (Sun1-sfGFP-tag, green channel), anti-GAD67 (inhibitory cells marker, red channel), and anti-NeuN (neuronal marker, gray). Note that Sun1-sfGFP-tag is only expressed in neurons that are not inhibitory. (D) Expression of pan-neuronal, excitatory and inhibitory neuron marker genes in our RNA-seq data. TPM, transcripts per million.

Figure 1 — figure supplement 3 | Dnmt3a was disrupted on both the mRNA and protein levels in the Dnmt3a cKO excitatory neurons. (A) Genome browser tracks of mRNA-seq data show confirmation of the deletion of Dnmt3a exon 19 in P39 Dnmt3a cKO excitatory neurons. The targeted exon region is highlighted in the light blue shaded box with an asterisk. R1/2, replicate 1/2. (B) The protein product of the Dnmt3a gene is disrupted in the cKO sample. Top panel, Western blot; Bottom panel, quantification of the protein abundance. P5 and P13, postnatal days 5 and 13. **, T-test p = 0.0017. (C) Nissl stained slices show no morphological alterations in the brain of the Dnmt3a cKO animals. mPFC, medial prefrontal cortex; CPu, caudate putamen.

Figure 1 — figure supplement 4 | The conditional ablation of Dnmt3a in pyramidal neurons did not significantly impair motor activity nor increased anxiety levels. (A) and (D), Dnmt3a cKO mice displayed normal behavior in the open field test, traveling a similar distance (A) as control mice, and also showing a similar degree of center activity (D). (B) The exploratory activity was slightly decreased in Dnmt3a cKO animals, as suggested by an attenuated rearing behavior. (C) The time spent in light in the dark-light transfer test was not significantly affected by the lack of Dnmt3a. (E) The female, but not the male, cohort of Dnmt3a cKO mice spent significantly more time than control mice in the open arms of the elevated plus maze, consistent with lower anxiety levels (Wilcoxon test, **, p = 0.0048; n.s., not significant.). In the line plots (A-B), data were presented as mean ± s.e.m. In all boxplots (C-E), the middle horizontal bar represents the median; the lower and upper hinges correspond to the first and third quartiles, and the whisker extends from the hinge to the value no further than 1.5 * IQR from the hinge, where IQR is the interquartile range. The values of individual experiments are represented by dots superimposed on the boxplots. Wilcoxon test significance: *, p < 0.05; **, p < 0.01; n.s., not significant.
Figure 1 — figure supplement 5 | Dnmt3a cKO-induced impairment of startle response was accompanied by increased prepulse inhibition, and the cKO did not affect fear memory. (A) The increased PPI accompanied the impairment in startle responses to a 120 dB tone played at three time points during the recording session (HAB1 - beginning of the session; HAB2 - middle of the session; HAB3 - end of the session) (Wilcoxon test $p = 0.0027$, 0.0019 and 0.0035 in male HAB1, HAB2, HAB3, respectively, and not significant in female). The habituation to the 120 dB auditory tone (i.e. the relative reduction in startle response throughout the experiment) was not significantly different between genotypes. (B) The percentage of PPI at prepulse intensity of 69, 73 and 81 dB (4, 8 and 16 dB above the 65 dB background, respectively) was increased in male, but not female mice (Wilcoxon test, $***$, $p = 0.00076$; *, $p = 0.016$; n.s, not significant). (C-F) Fear learning and extinction were tested over four consecutive days. $N = 14-15$ per group. (C) Fear acquisition to three tone-shock pairings occurred on day 1; (D) contextual fear in relation to the acquisition context (8 min, Block = 2 min) was measured on day 2; (E) cued fear recall and extinction training occurred on day 3 (Block = four tone trials), and (F) extinction recall (Block = four tone trials) occurred on day 4. Wilcoxon test reported no significant changes between the Dnmt3a cKO and control. In boxplots (A), the middle horizontal bar represents the median; the lower and upper hinges correspond to the first and third quartiles, and the whisker extends from the hinge to the value no further than 1.5 * IQR from the hinge, where IQR is the interquartile range. The values of individual experiments are represented by dots superimposed on the boxplots. In the line plots (B-F), data were presented as mean ± s.e.m.

Figure 2 — figure supplement 1 | The membrane protrusions in the Dnmt3a cKO showed longer dendritic spines and narrower heads. Related to Figure 2C. Here each line/box represents data from one dendrite fragment. (A) and (C), The cumulative distribution of the length (A) and width (C) of membrane protrusions in the Dnmt3a cKO (orange), as compared to control mice (black). (B) and (D), distribution of the length (B) and width (D) of the protrusions. The shaded colors in the box represent the individual animals from which the dendrite fragment originated (5 control mice and 4 cKO mice). The middle horizontal bar represents the median; the lower and upper hinges correspond to the first and third quartiles, and the whisker extends from the hinge to the value no further than 1.5 * IQR from the hinge, where IQR is the interquartile range. The Wilcoxon test was done with the medians of the boxes (16 control vs. 15 cKO).

Figure 2 — figure supplement 2 | The conditional ablation of Dnmt3a in pyramidal neurons did not significantly alter the membrane potential threshold for action potential generation, the mean amplitude or frequency of miniature excitatory postsynaptic events. (A) Action potentials were initiated at a similar membrane potential in both genotypes (Wilcoxon test, n.s., not significant). (B) While mEPSCs amplitude was not significantly different between genotypes (Wilcoxon test, n.s., not significant), it was slightly, yet significantly, more variable in the Dnmt3a cKO (F-test $p = 0.0032$). (C) mEPSCs frequency was not significantly changed. In all boxplots, the middle horizontal bar represents the median; the lower and upper hinges correspond to the first and third quartiles, and the whisker extends from the hinge to the value no further than 1.5 * IQR from the hinge, where IQR is the interquartile range. The values of individual experiments are represented by dots superimposed on the boxplots.

Figure 3 — figure supplement 1 | RNA-seq data showed transcriptomic disruption in P39 Dnmt3a cKO pyramidal neurons. (A) Correlation matrix of gene expression (log$_{10}$TPM) in the biological replicates of the control and Dnmt3a cKO mouse excitatory neurons. The color bar represents the Spearman correlation coefficients. (B) Volcano plot shows the gene expression fold-change of P39 Dnmt3a cKO vs. Control samples and their significance. Significant up-
regulated and down-regulated differentially expressed genes (DE genes, FDR < 0.05) are colored in red and blue, respectively. DE genes associated with dendrite morphogenesis (Elavl4, Hecw2, Ptprd), and regulation of Na⁺ (Hecw2, Scn3b) and Ca²⁺ levels (Cacnb3) are labeled.

Figure 3 — figure supplement 2 | The expression of transposable elements was not affected by Dnmt3a cKO. Transposable element (TE) subfamily expression was estimated in fragments per kilobase per million (FPKM) from P39 control and Dnmt3a cKO samples grouped by TE class (A) and TE family (B).

Figure 3 — figure supplement 3 | Genome-wide reduction of DNA methylation was observed in Dnmt3a cKO. (A) Heatmap to show the Spearman correlations across the control and Dnmt3a cKO samples from P39 and P0 animals. The correlations coefficients were computed using CG methylation levels in 10Kb genomic bins (left) and CH methylation levels in 10Kb genomic bins (right). (B) The reduction of genome-wide DNA methylation level in P39 is observed in all three non-CG contexts (CA, CC and CT). t-test significance, **, CA, p = 0.009745; ***, CC, p = 0.0009546; *, CT, p = 0.01323. (C) DNA methylation at CG sites is reduced across most functional genomic compartments in P39. UTR, untranslated region. t-test significance, *, p < 0.05; n.s., not significant. (D) Reduced mCG is strongly correlated with the reduction in mCH in P39 in 10-kb tiling genomic bins (259,718 bins with at least 10 reads covered in each sample). r, Spearman correlation coefficient.

Figure 3 — figure supplement 4 | Reduction of DNA methylation cannot fully explain the disruption in the transcriptome after Dnmt3a cKO. (A) Correlation of gene expression and gene body mCH level for up-regulated genes (red), down-regulated genes (blue) and non-DE genes (black, FDR >= 0.05 and fold-change < 1.1) in the P39 Control samples. For each gene group, genes are stratified by their expression in the control sample by 15 bins, and the mean gene body mCH levels are plotted. The shaded ribbon areas indicate the standard error of the mean. TPM, transcripts per million. (B) Violin plots to show the expression levels of non-DE genes (grey) selected to match baseline expression as those in significantly (FDR < 0.05) up-regulated genes (left, red) and down-regulated genes (right, blue). (C) CG DNA methylation (mCG) in P39 pyramidal cells in 1 kb bins in the region around the transcription start (TSS) and end site (TES) of DE genes and non-DE genes with matched expression levels. The lines denote the means across genes in each gene set, and the shared areas represent the 95% confidence intervals of the means. (D) Density scatter plots show the relationship between changes of gene body methylation (delta mCG or mCH) and the gene expression fold changes for expressed genes (14,754 genes) between P39 Dnmt3a cKO and control samples. The linear regression fits, p-values and variances explained by ∆%mC (R²) are shown. (E) Gene length distribution of P39 DE genes (FDR < 0.1). As a comparison, non-DE genes were selected with FDR ≥ 0.1 and fold-change < 1.1 (see Supplementary File 2). The down-regulated genes are generally shorter than the up-regulated genes or the non-DE genes. kb, kilobases. Wilcoxon test, ****, p < 10⁻⁴, **, p < 0.01; n.s. not significant.

Figure 3 — figure supplement 5 | Differentially methylated regions (DMRs) in P39 Dnmt3a cKO were associated with regulatory regions in enhancers and repressed chromatin. (A) 2-D distribution of mCG levels in P39 Control vs. Dnmt3a cKO samples at DMRs. DMR density is estimated through a Gaussian smoothed kernel. (B) The density of P39 Dnmt3a cKO hypo-DMRs around significant differentially expressed genes (FDR < 0.05) and non-DE genes with matched expression levels. The lines denote the means across genes in each gene set, and the shared areas represent the 95% confidence intervals of the means. TSS, Transcription Start
Li, Pinto-Duarte et al. “Dnmt3a knockout in excitatory neurons...”

Site; TES, Transcription End Site. (C) Enrichment (red) or depletion (blue) of P39 cKO DMRs in GENCODE annotated gene features (top), in CpG island-related features (middle), and in the chromatin states map in mouse embryonic stem cell (bottom). All enrichments and depletions shown are significant (fisher test p < 0.05). (D) Number of known transcription factor binding motifs within P39 Dnmt3a cKO hypo-DMRs and their fold enrichment. Significant motifs (FDR < 0.05) are colored in red.

Figure 4 — figure supplement 1 | Increased signal of the repressive histone mark H3K27me3 after Dnmt3a cKO. (A) Transcription factors (TFs) associated with chromatin organization were predicted to regulate DE genes in the P39 Dnmt3a cKO. The functional TF rank score was given by Binding Analysis of Regulation of Transcription (BART)(Wang et al., 2018). TFs predicted to regulate only up-regulated genes, to regulate only down-regulated genes and to regulate both the up-regulated and down-regulated genes are colored in red, blue and black, respectively. TFs associated with chromatin organization and remodeling are labeled. (B) Correlation heatmap of epigenetic marks and RNA reads in 10 kb tiling genomic bins in P39 samples. For mCG and mCH, the mean methylation in each bin is used. For RNA-seq and histone modification ChIP-seq, the RPKM (reads per kilobase per million) value in each bin is used. The dendrogram is calculated by hierarchical clustering with complete linkage using the euclidean distances of the Spearman correlation across the samples. Rep1/2, replicate 1/2. (C) MA plots show no significant changes of H3K4me3 and H3K27ac signal in P39 Dnmt3a cKO compared to control. (D) MA plots show that significant differentially modified H3K27me3 regions are only found in P39 Dnmt3a cKO but not E14 or P0 when compared to control.

Figure 4 — figure supplement 2 | The increased H3K27me signal in P39 was generally not observed in E14 or P0. (A-B) Correlations of the differences of H3K27me3 signal between Dnmt3a cKO and control across the three development time points in 10-kb genomic bins (A) and the P39 H3K27me3 differentially modified (DM) regions (B). (C-D), boxplots to show the distribution of the differences of H3K27me3 signal between Dnmt3a cKO and Control in E14, P0, and P39, stratified by ∆H3K27me3 signal at P39. Signals are counted in 10-kb genomic bins (C, as in A) and the P39 H3K27me3 DM regions (D, as in B). Asterisks show the significances from Wilcoxon rank-sum tests against zero (red, greater than zero; blue less than zero; *, p < 0.05; **, p < 0.01; ***, p < 0.001).

Figure 4 — figure supplement 3 | H3K27me3 differentially modified regions in P39 Dnmt3a cKO were highly overlapped with DMRs. (A) H3K27me3 signals in differentially modified regions (left) compared to random shuffles across the genome (middle; keeping peak sizes and the chromosome same as DM regions) and random shuffles within H3K27me3 peaks (right; H3K27me3 peaks are the union set of cKO and control peaks; restrict shuffles within the said peaks and keeping peak sizes and the chromosome same as DM regions). ****, Wilcoxon rank-sum test p < 0.0001; n.s., not significant. (B) Top 10 Gene Ontology terms of the Biological Process ontology enriched in the genes associated with regions with up-regulated H3K27me3 signal in the P39 Dnmt3a cKO samples. Gene-region association was estimated using GREAT (McLean et al., 2010). FDR, false discovery rate; the vertical dashed line shows the threshold of FDR = 0.05. (C) Violin plots to show the H3K27me3 signals in non-differentially modified regions (non-DM, grey) selected to match baseline H3K27me3 as those in significantly differentially modified H3K27me regions (DM, red). ****, Wilcoxon rank-sum test p < 0.0001; n.s., not significant. (D) Overlaps of P39 H3K27me3 differentially modified (DM) regions with P39 Dnmt3a cKO DMRs. As a comparison, non-DM regions selected in (C) with matched H3K27me3 signal in the P39 control sample were used. Left panel, Venn diagrams to show the numbers of H3K27me3 DM and non-DM regions that overlap P39 cKO DMRs. Right panel.
significant enrichments of the overlaps (Fisher test, p < 0.05). (E) The differences of CG (left) or CH (right) methylation levels between Dnmt3a cKO and control samples in DM (red) and non-DM (grey) regions. ****, Wilcoxon rank-sum test p < 0.0001.

Figure 5 — figure supplement 1 | DMRs are particularly unique in showing increased H3K27me3 signal. (A) Histone modification ChIP-seq signal around the center of DMRs. Two sets of controlled regions were selected as comparisons: The first shuffled set (dotted lines) is regions generated by shuffling the DMRs randomly across the same chromosome (excluding blacklist regions) as the observed and keeping the same region size. The second shuffled set (dashed lines) is more stringent shuffles that meet the same criteria as the first set but with an additional restriction that the shuffles must reside within the P39 H3K27me3 peak regions (the union of P39 Control and P39 cKO H3K27me3 peaks). RPKM, reads per kilobase per million. (B) The differences of H3K27me3 signal between Dnmt3a cKO and control as a function of the baseline level of H3K27me3 in control samples. 1Kb tiled genomic bins are grouped by whether or not they overlap any DMRs, and the dots represent the average signal of bins stratified by deciles of baseline H3K27me signal. Different replicates were used in computing values on the x-axis and y-axis to avoid double-dipping. Data are presented as mean ± SEM for each bin. ***, Wilcoxon rank-sum test, p < 0.001.

Figure 5 — figure supplement 2 | Relationships between gene expression, H3K27me3 signal and gene body mCH. (A) Correlations of gene expression fold-change and gene body H3K27me3 signal difference in P39 Dnmt3a cKO DE genes (FDR < 0.2). Left panel, scatter plot to show the correlation. DE genes are grouped by whether or not they overlap with P39 Dnmt3a cKO DMRs. r, Spearman correlation coefficient. Right panel, P39 Dnmt3a cKO down-regulated DE genes with overlapping P39 cKO DMRs, in general, show small but significant increases of H3K27me3 in P39 cKO. Asterisks in the middle of each box show the fold change significance against zero using Wilcoxon rank-sum test for each gene set (*, p < 0.05; ***, p < 0.001). Comparing across gene sets, these down-regulated DE genes also show bigger increases of H3K27me3 signal after cKO, compared to non-DE genes of matched expression levels with overlapping DMRs (Wilcoxon rank-sum test, *, p < 0.05) and up-regulated DE genes with overlapping DMRs (**, p < 0.01). No such differences were observed in DE genes without overlapping P39 cKO DMRs (n.s, not significant). (B) Differences in gene body methylation vs. difference of gene H2K27me3 signal between P39 Dnmt3a cKO and control in all non-DE genes (14,591 genes with FDR >= 0.05). The plots show mean ± SEM differences of H3K27me signal for genes in 10 non-overlapping bins (deciles of mC difference). (C) Genes are grouped by the quantiles of loss of mCH in cKO, and the gene expression fold-changes (mean ± SEM) as a function of the changes of H3K27me3 in deciles in the gene body for each of these gene sets are shown.

Figure 6 — figure supplement 1 | Regions prone to alteration of H3K27me3 by Dnmt3a cKO were distinct from the regions affected by developmentally dynamic H3K27me3. (A) Differentially modified H3K27me3 regions during development in control samples. (B) Top 10 most enriched biological process terms from the Gene Ontology in the genes associated with differentially modified H3K27me3 regions during development in control samples. Gene-region association was predicted by GREAT (McLean et al., 2010). FDR, false discovery rate; the vertical dashed line shows the threshold of FDR = 0.05. (C) Correlations of P39 H3K27me3 signal fold-changes of Dnmt3a cKO vs. Control and developmental H3K27me3 signal fold-changes of P39 vs. E14 in H3K27me3 ChIP-seq peaks. Note that peaks with big absolute fold-
changes in P39 cKO vs. P39 Control are generally not changed much in P39 Control vs. E14 Control, and vice versa. Replicate 1 and 2 of P39 Control are used in the y and x axis, respectively, to avoid double-dipping. The smoothed line is fitted using a generalized additive model, and the shaded area shows the 95% confidence interval of the fit. r, Spearman correlation coefficient. (D) The developmental H3K27me3 signal fold changes are not affected by Dnmt3a cKO. r, Spearman correlation coefficient. (E-G) boxplots to show the distribution of H3K27me3 signal, mCG, and mCH levels in peaks that overlaps with E14 vs. P39 developmental loss-of-H3K27me3 regions (E), peaks that overlap with developmental gain-of-H3K27me3 regions (F), and peaks that overlap with increased H3K27me3 regions in P39 Dnmt3a cKO (G). Asterisks show the significances from paired t-tests (***, p < 0.001). Δ values are the mean of the differences for the two groups in comparison (group on the right vs. group on the left).

Figure 6 — figure supplement 2 | Correlations of ChIP-seq signals across replicates.
Correlations were computed with ChIP-seq counts in 1Kb genomic bins (A) and in peaks (B) across replicates. r, Spearman correlation coefficient. n, number of peaks. RPKM, Reads Per Kilobase Million.

Figure 7 — figure supplement 1 | Number of DMVs identified in the P0 Dnmt3a cKO and the Control samples. P0 DMVs were categorized by whether they appear in one or both groups or change size in the cKO, as in Figure 7A.
Supplementary Files

Supplementary File 1. Sequencing metrics for RNA-seq, MethylC-seq, ChIP-seq and genomic DNA for the Dnmt3a cKO and control samples.

Supplementary File 2. Gene expression and list of differentially expressed genes in P39 Dnmt3a cKO and P39 Control.

Supplementary File 3. List of differentially methylated regions (DMRs).

Supplementary File 4. Known transcription factor motif enrichment in P39 Dnmt3a cKO DMRs

Supplementary File 5. List of transcription factors and chromatin regulators that bind at cis-regulatory regions of the differentially expressed genes in P39 Dnmt3a cKO

Supplementary File 6. List of ChIP-seq peaks.

Supplementary File 7. List of up-regulated H3K27me3 signal regions in P39 Dnmt3a cKO.

Supplementary File 8. List of enriched Gene Ontology terms for biological process in genes associated with up-regulated H3K27me3 regions in P39 Dnmt3a cKO.

Supplementary File 9. List of developmental regulated H3K27me3 signal regions in control pyramidal neurons.

Supplementary File 10. List of DNA methylation valleys (DMVs).
<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene (Mus musculus)</td>
<td>Dnmt3a</td>
<td>GENCODE</td>
<td>GENCODE:ENS MUSG00000020 661</td>
<td>GENCODE vM10</td>
</tr>
<tr>
<td>genetic reagent (Mus musculus)</td>
<td>Dnmt3a-floxed</td>
<td>PMID:10555141</td>
<td></td>
<td>backcrossed to C57BL/6 for at least seven generations</td>
</tr>
<tr>
<td>genetic reagent (Mus musculus)</td>
<td>Nex-Cre; Neurod6-Cre</td>
<td>PMID:17146780</td>
<td></td>
<td>Jackson Laboratories Backcrossed to C57BL/6J for 10 generations</td>
</tr>
<tr>
<td>genetic reagent (Mus musculus)</td>
<td>INTACT</td>
<td>PMID:26087164</td>
<td></td>
<td>B6.129-Gt(ROSA)26Sor^{tm5} (CAG-Sun1 sfGFP)Nat/MmbeJ</td>
</tr>
<tr>
<td>genetic reagent (Mus musculus)</td>
<td>Dnmt3a-KO; Dnmt3a cKO</td>
<td>this paper</td>
<td></td>
<td>See “Materials and Methods”, section “Generation of the Dnmt3a cKO mice line”</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-NeuN (Mouse monoclonal, Clone A60)</td>
<td>Millipore</td>
<td>MAB377 (1:1000)</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>Anti-DNMT3A (Rabbit polyclonal)</td>
<td>Abcam</td>
<td>Ab2850 (1:250)</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>Anti-H3K27me3 (Rabbit polyclonal)</td>
<td>Active Motif</td>
<td>Cat:#39156; RRID:AB_26368 21 (5 µl)</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>Anti-H3K27ac (Rabbit polyclonal)</td>
<td>Active Motif</td>
<td>Cat:#39133; RRID:AB_25610 16 (5 µl)</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Item Description</td>
<td>Supplier</td>
<td>Catalog Number</td>
<td>Quantity</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>------------------------------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>antibody</td>
<td>Anti-H3K4me3 (Rabbit monoclonal)</td>
<td>Millipore Sigma</td>
<td>Cat:#04-745</td>
<td>5 µl</td>
</tr>
<tr>
<td>antibody</td>
<td>Anti-IgG (Mouse unknown clonality)</td>
<td>Jackson ImmunoResearch Labs</td>
<td>Cat#015-000-003; RRID:AB_2337188</td>
<td>2 µl</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>Cytosine-methylated adapters</td>
<td>Illumina</td>
<td>AD001, AD005</td>
<td></td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>TruSeq PCR Primer Mix</td>
<td>Illumina</td>
<td>20015960, 20015961</td>
<td></td>
</tr>
<tr>
<td>peptide, recombinant protein</td>
<td>T4 DNA ligase</td>
<td>New England Biolabs</td>
<td>M0202L</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Single-Cell RNA Purification Kit</td>
<td>Norgen</td>
<td>Cat:#51800</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Ovation® RNA-Seq System V2</td>
<td>NuGEN</td>
<td>Cat:#7102-32</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>KAPA LTP Library Preparation Kit</td>
<td>Roche</td>
<td>Cat:#KK8232</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Qiagen DNeasy Blood and Tissue kit</td>
<td>Qiagen</td>
<td>Cat:#69504</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>EZ methylation Direct kit</td>
<td>Zymo</td>
<td>Cat:#D5021</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Accel-NGS 2S Plus DNA Library Kit</td>
<td>Swift Biosciences</td>
<td>Cat:#21024</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>protease inhibitor</td>
<td>Sigma-Aldrich</td>
<td>Cat:#11836153001</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>phosphatase inhibitor</td>
<td>Pierce</td>
<td>Cat:#A32957</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Kapa HiFi Hotstart Readymix</td>
<td>Kapa Biosystems</td>
<td>07958935001-KK2602</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>Minianalysis</td>
<td>Minianalysis (https://www.synaptosoft.com/Minianalysis/)</td>
<td>RRID:SCR_002184</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>Reconstruct</td>
<td>Synapse Web (https://synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm)</td>
<td>RRID:SCR_002716</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>FastQC</td>
<td>Babraham Bioinformatics (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)</td>
<td>RRID:SCR_014583 v0.11.8</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>Trim Galore</td>
<td>Babraham Bioinformatics (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)</td>
<td>RRID:SCR_011847 v0.5.0</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>Cutadapt</td>
<td>DOI:10.14806/ej.17.1.200</td>
<td>RRID:SCR_011841 v1.16</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>software, algorithm</td>
<td>PMID</td>
<td>RRID:SCR_00nnnn</td>
<td>version</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>STAR</td>
<td>Star</td>
<td>23104886</td>
<td>RRID:SCR_0044 63</td>
<td>v2.5.1b</td>
</tr>
<tr>
<td>RSEM</td>
<td>RSEM</td>
<td>21816040</td>
<td>RRID:SCR_0130 27</td>
<td>v1.2.30</td>
</tr>
<tr>
<td>edgeR</td>
<td>edgeR</td>
<td>19910308</td>
<td>RRID:SCR_0128 02</td>
<td>v3.24.1</td>
</tr>
<tr>
<td>SQuiRE</td>
<td>SQuiRE</td>
<td>30624635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clusterProfiler</td>
<td>clusterProfiler</td>
<td>22455463</td>
<td>RRID:SCR_0168 84</td>
<td>v3.10.0</td>
</tr>
<tr>
<td>GATK</td>
<td>GATK</td>
<td>21478889</td>
<td>RRID:SCR_0018 76</td>
<td>v3.7</td>
</tr>
<tr>
<td>BWA</td>
<td>BWA</td>
<td>19451168</td>
<td>RRID:SCR_0109 10</td>
<td>v0.7.13-r1126</td>
</tr>
<tr>
<td>Picard</td>
<td>Picard</td>
<td>Broad</td>
<td>RRID:SCR_0065 25</td>
<td>V2.10.6</td>
</tr>
<tr>
<td>BEDTools</td>
<td>BEDTools</td>
<td>20110278</td>
<td>RRID:SCR_0066 46</td>
<td>v2.27.1</td>
</tr>
<tr>
<td>methylpy</td>
<td>methylpy</td>
<td>methylpy</td>
<td></td>
<td>v1.3.2</td>
</tr>
<tr>
<td>bowtie2</td>
<td>bowtie2</td>
<td>22388286</td>
<td>RRID:SCR_0163 68</td>
<td>v2.3.0</td>
</tr>
<tr>
<td>MatchIt</td>
<td>MatchIt</td>
<td>10.18637/jss.v042.i08</td>
<td></td>
<td>v3.0.2</td>
</tr>
<tr>
<td>BART</td>
<td>BART</td>
<td>29608647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>HOMER</td>
<td>PMID:20513432</td>
<td>RRID:SCR_010881</td>
<td>v4.8.3</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>ENCODE Transcription Factor and Histone ChIP-Seq processing pipeline</td>
<td>PMID:22955991</td>
<td>RRID:SCR_021323</td>
<td>v1.1.6</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>samtools</td>
<td>PMID:19505943</td>
<td>RRID:SCR_002105</td>
<td>v1.2</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>SICER</td>
<td>PMID:19505939</td>
<td>RRID:SCR_010843</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>DiffBind</td>
<td>PMID:22217937</td>
<td>RRID:SCR_012918</td>
<td>v2.10.0</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>DESeq2</td>
<td>PMID:25516281</td>
<td>RRID:SCR_015687</td>
<td>v1.22.1</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>GREAT</td>
<td>PMID:20436461</td>
<td>RRID:SCR_005807</td>
<td>v3.0.0</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>MethylSeekR</td>
<td>PMID:23828043</td>
<td>RRID:SCR_006513</td>
<td>v1.22.0</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>regioneR</td>
<td>PMID:26424858</td>
<td></td>
<td>V1.14.0</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>R</td>
<td>R Project for Statistical Computing (https://www.r-project.org/)</td>
<td>RRID:SCR_001905</td>
<td>v3.5.0</td>
</tr>
<tr>
<td>software, algorithm</td>
<td>Python</td>
<td>Python Programming Language (https://www.python.org/)</td>
<td>RRID:SCR_008394</td>
<td>v3.x</td>
</tr>
</tbody>
</table>
Expression quantification of *in situ* hybridization data
in telencephalic vesicle from the Allen Developing Brain Atlas (http://developingmouse.brain-map.org/)

A

<table>
<thead>
<tr>
<th>Age</th>
<th>Nestin</th>
<th>Neurod6</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11.5</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>E13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E18.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>log(expression)</td>
</tr>
</tbody>
</table>

Representative images of *in situ* hybridization data for Neurod6 expression at different developmental time points
(adapted from Allen Developing Brain Atlas)
Li et al., Figure 1 — figure supplement 3

A. P39 RNA-seq reads at the Dnmt3a locus (chr12:3806006-3914443)

B. Dnmt3a protein abundance

C. Nissl stained slices of brain in Control and Dnmt3a cKO animals
Li et al., Figure 1 — figure supplement 4

A Ambulatory distance in the open field test

<table>
<thead>
<tr>
<th>Control</th>
<th>cKO</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B Rearing in the open field test

<table>
<thead>
<tr>
<th>Control</th>
<th>cKO</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C Time spent in the light compartment in the dark-light transfer test

<table>
<thead>
<tr>
<th>Control</th>
<th>cKO</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>400</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

D Time spent in center

<table>
<thead>
<tr>
<th>Control</th>
<th>cKO</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>4000</td>
<td>6000</td>
<td></td>
</tr>
</tbody>
</table>

E Time spent in open arms of the elevated plus maze

<table>
<thead>
<tr>
<th>Control</th>
<th>cKO</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>
Li et al., Figure 1 — figure supplement 5

Sensory gating

A Habituation

Habituation of the startle response in Male and Female mice. The graphs show the startle magnitude over three habituation trials (HAB1, HAB2, HAB3) for Control and cKO groups. The data is presented with error bars indicating standard error of the mean (SEM). Significance levels are indicated by stars: ** for p < 0.01, *** for p < 0.001, and n.s. for non-significant results.

B Pre-pulse inhibition (PPI) of the startle response

Pre-pulse inhibition (PPI) of the startle response in Male and Female mice over PP4, PP8, and PP16. The graphs show the percentage of PPI (% PPI) for Control and cKO groups. The data is presented with box plots indicating the distribution of the data. Significance levels are indicated by stars: * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and n.s. for non-significant results.

Contextual fear conditioning

C Acquisition

Contextual fear conditioning acquisition in Control and cKO groups. The graphs show the percentage of freezing (% Freezing) over three blocks (2 min) of training. The data is presented with error bars indicating SEM.

D Context

Contextual fear conditioning context in Control and cKO groups. The graphs show the percentage of freezing (% Freezing) over four blocks (2 min) of testing. The data is presented with error bars indicating SEM.

E CS+

Contextual fear conditioning CS+ in Control and cKO groups. The graphs show the percentage of freezing (% Freezing) over six blocks (2 min) of testing. The data is presented with error bars indicating SEM.

F Extinction

Contextual fear conditioning extinction in Control and cKO groups. The graphs show the percentage of freezing (% Freezing) over four blocks (2 min) of extinction. The data is presented with error bars indicating SEM.
Li et al., Figure 2 — figure supplement 1

A

B

C

D

p = 0.0036 (Wilcoxon)

p = 0.00043 (Wilcoxon)
Figure 2 — figure supplement 2

A

B

C

Spike threshold (mV)

mEPSCs amplitudes (pA)

mEPSCs frequency (Hz)

Control cKO

Control cKO

Control cKO

n.s.
A

RNA, P39 Control rep1
RNA, P39 Control rep2
RNA, P39 cKO rep1
RNA, P39 cKO rep2

RNA, P39 Control rep1
RNA, P39 Control rep2
RNA, P39 cKO rep1
RNA, P39 cKO rep2

B

DE genes (FDR < 0.05)
up-regulated (46)
down-regulated (24)

SSearman, Dnmt3a

log2(FC), P39 Dnmt3a cKO/Control

log10(FDR)

Scn3b, Cacnb3, Elavl4, Ptprd

0.0 2.5 5.0 7.5 10.0

0.0 0.2 0.4 0.6 0.8 1.0
Li et al., Figure 3 — figure supplement 3

A. Spearman’s correlations of the methylation levels across Dnmt3a cKO and control samples

<table>
<thead>
<tr>
<th></th>
<th>mCG in 10Kb bins</th>
<th>mCH in 10Kb bins</th>
<th>Spearman’s rho</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rep1</td>
<td>rep2</td>
<td>rep1</td>
</tr>
<tr>
<td>P39</td>
<td>1.00 0.97</td>
<td>0.99 0.94</td>
<td>1.00 0.98</td>
</tr>
<tr>
<td>P0</td>
<td>0.99 0.95</td>
<td>0.97 0.93</td>
<td>0.99 0.95</td>
</tr>
<tr>
<td>cKO</td>
<td>0.98 0.98</td>
<td>0.96 0.92</td>
<td>0.98 0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Genome-wide methylation level at CH sites in mature neurons (P39)

C. Average methylation level at CG sites in genomic compartments at P39

D. Loss of mCH vs. mCG in genomic bins in mature neurons (P39)
Correlation of gene expression with gene body mCH level in P39

- up-regulated (46)
- down-regulated (24)
- non-DE (6908)

Gene expression in Control sample, log_{10}(TPM+1)

Correlation of changes of gene body methylation and changes of gene expression between P39 Dnmt3a cKO and control samples

- y = -0.173x-0.003
 p = 2.6e-06
 R^2 = 0.143%

- y = -2.138x-0.014
 p = 1.4e-16
 R^2 = 0.456%

Expression-matched non-DE genes as controls

- up-regulated genes (46)
- down-regulated genes (24)
- non-DE genes with comparable expression to up-regulated genes (42)
- non-DE genes with comparable expression to down-regulated genes (23)

P39 Control P39 Dnmt3a cKO

- non-DE genes (23)
- down-regulated genes (24)
- up-regulated genes (46)
- non-DE genes (6908)

Correlation of gene expression with gene body mCH level in P39

Expression-matched non-DE genes as controls

Correlation of changes of gene body methylation and changes of gene expression between P39 Dnmt3a cKO and control samples

Gene expression fold changes (log_{2}FC, cKO / Control)

Gene body %mCH in Gene Body Sample

Gene body %mCG in Gene Body Sample

Gene length (kb)

Up-regulated genes (46)
Non-DE genes (6908)
Down-regulated genes (24)
DE genes (FDR < 0.1)
A CG methylation level in DMRs

DMR count per unit area

%mCG at DMRs in Control

%mCG at DMRs in Dnmt3a cKO

B DMR density around DE genes

Average DMR density (DMRs per MB)

Position relative to TSS, TES (kb)

up-regulated genes (46)
down-regulated genes (24)
nonDE (66)

C Overlaps of P39 Dnmt3a cKO DMRs and:

Gene features based on Gencode vM10 annotation

- genic
- exonic
- intronic
- promoter
- 5' UTR
- 3' UTR
- intergenic

CpG island related features

- CpG islands
- shores
- shelves
- open sea

Chromatin States Map in mouse embryonic stem cell

- Active Promoter
- Transcription Elongation
- Bivalent Chromatin
- Weak Enhancer
- Transcription Transition
- Heterochromatin
- Intergenic
- Repressed Chromatin
- Strong Enhancer
- Insulator
- Transcription Elongation
- Enhancer

D Enriched transcription factor binding motifs in DMRs

Motif fold enrichment

Motifs Significant motifs (FDR < 0.05)

All motifs

Number of DMRs with motif

0.4 0.8 1.2 1.6

10^1 10^2 10^3 10^4 10^5

0 1 2

Number of DMRs

Average DMR density (DMRs per MB)

DMR count per unit area

%mCG at DMRs in Control

%mCG at DMRs in Dnmt3a cKO

Up-regulated genes (46)
Down-regulated genes (24)
NonDE (66)
Li et al., Figure 4 — figure supplement 1

A

Enrichment of transcription factors predicted to regulate P39 Dnmt3a cKO DE genes
- Red dots: TFs predicted to regulate cKO up-regulated genes
- Blue dots: TFs predicted to regulate cKO down-regulated genes
- Black dots: TFs predicted to regulate both cKO up-regulated and down-regulated genes

B

Correlation of epigenetic marks and RNA reads in 10kb genomic bins in P39 samples

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>RNA Reads</th>
<th>H3K27ac</th>
<th>H3K4me3</th>
<th>mCH</th>
<th>mCG</th>
<th>H3K27me3</th>
</tr>
</thead>
<tbody>
<tr>
<td>cKO, rep1</td>
<td>RNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep2</td>
<td>RNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep1</td>
<td>RNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep2</td>
<td>RNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep1</td>
<td>H3K27ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep2</td>
<td>H3K27ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep1</td>
<td>H3K27ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep2</td>
<td>H3K27ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep1</td>
<td>mCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep2</td>
<td>mCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep1</td>
<td>mCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep2</td>
<td>mCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep1</td>
<td>H3K4me3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep2</td>
<td>H3K4me3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep1</td>
<td>H3K4me3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep2</td>
<td>H3K4me3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep1</td>
<td>mCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cKO, rep2</td>
<td>mCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep1</td>
<td>mCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, rep2</td>
<td>mCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

No significant changes of H3K4me3 and H3K27ac signals in P39 Dnmt3a cKO compared to control

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Sample Type</th>
<th>H3K4me3</th>
<th>H3K27ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>P39 cKO vs. P39 Control</td>
<td>(0 FDR < 0.05)</td>
<td># peaks</td>
<td>60</td>
</tr>
<tr>
<td>P39 cKO vs. P39 Control</td>
<td>(3 FDR < 0.05)</td>
<td># peaks</td>
<td>20</td>
</tr>
</tbody>
</table>

D

Significant differentially modified H3K27me3 regions are identified in P39 Dnmt3a cKO but not in E14/P0

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Sample Type</th>
<th>Sample Type</th>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>E14 cKO vs. E14 Control</td>
<td>(0 FDR < 0.05)</td>
<td># peaks</td>
<td>60</td>
</tr>
<tr>
<td>P0 cKO vs. P0 Control</td>
<td>(3 FDR < 0.05)</td>
<td># peaks</td>
<td>20</td>
</tr>
<tr>
<td>P39 cKO vs. P39 Control</td>
<td>(4040 FDR < 0.05)</td>
<td># peaks</td>
<td>150</td>
</tr>
</tbody>
</table>

Significant differentially modified H3K27me3 regions

- Red dots: Significantly up-regulated genes
- Blue dots: Significantly down-regulated genes

Functional TF rank score
- Predicted with up-regulated genes
- Predicted with down-regulated genes

Enrichment of transcription factors predicted to regulate P39 Dnmt3a cKO DE genes

- Stag1
- Pou3f2
- Ascl1
- Lhx3
- Stag2
- Ctcf
- Pou3f3
- Crebbp
- Rest
- Foxp1
- Neurod2
- P0XI
- Hdac3
- Cebpb
- Tet1
- Kdm2b
- dmc
- Kmt2d
- Sirt1
- Kdm4c
- Kdm2a
- dmE
- Li et al., Figure 4 — figure supplement 1
A Correlations of delta H3K27me3 signal (cKO - Control) in 10-kb bins

B Correlations of delta H3K27me3 signal (cKO - Control) in the 4,040 P39 H3K27me3 differentially modified (DM) regions

C Delta H3K27me3 ChIP-seq signal in 10 kb bins, stratified by delta H3K27me3 at P39

D Delta H3K27me3 ChIP-seq signal in the 4,040 P39 H3K27me3 differentially modified regions, stratified by delta H3K27me3 at P39
Significance of enrichment (-log_{10} FDR)

Top 10 Biological Process GO terms enriched in genes associated with regions with up-regulated H3K27me3 signal in P39 Dnmt3a cKO samples

- System Development
- Multicellular Organismal Development
- Cellular Process
- Developmental Process
- Anatomical Structure Development
- Anatomical Structure Morphogenesis
- Single-Organism Developmental Process
- Organ Development
- Nervous System Development
- Tissue Development
- Cell Differentiation

Li et al., Figure 4 — figure supplement 3
Li et al., Figure 5 — figure supplement 1

A

![ChIP-Seq enrichment](chart)

Position relative to P39 cKO DMR center (kb)

-5 -2 0 2 5

P39 H3K4me3 P39 H3K27ac E14 H3K27me3 P0 H3K27me3 P39 H3K27me3

Treatments:
- cKO
- Control

Regions:
- DMRs
- Controlled, shuffled regions on the same chromosomes as DMRs
- Controlled, shuffled regions in H3K27me3 peaks

B

![Graphs](chart)

1Kb bins
- w/ DMR
- w/o DMR

mean H3K27me3 signal in P39 Control replicate 1

mean ∆H3K27me3 signal (P39 cKO - P39 Control replicate 1)
Correlations of gene expression fold-change and gene body H3K27me3 signal difference in P39 Dnmt3a cKO DE genes (FDR < 0.2)

- DE genes with overlapping DMRs
- DE genes without overlapping DMRs

A Li et al., Figure 5 — figure supplement 2

B

- Correlations of gene expression fold-change and gene body %mCH, P39 cKO - P39 Control

C

- Quantiles of Δ mCH (cKO - Control) in gene body
 - Bottom 25%
 - (genes with highest baseline mCH in control)
 - 25-50%
 - (genes with matched expression of down- DE genes)
 - 50-75%
 - (genes with matched expression of up- DE genes)
 - Top 25%
 - (genes with lowest baseline mCH in control)
A Differentially modified H3K27me3 regions during development

![Graphs showing H3K27me3 signal log2FC changes](image)

B Top 10 Biological Process GO terms enriched in genes associated with differentially modified H3K27me3 regions during development

<table>
<thead>
<tr>
<th>E14 < P39</th>
<th>E14 > P39</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Development</td>
<td>System Development</td>
</tr>
<tr>
<td>Nervous System Development</td>
<td>Nervous System Development</td>
</tr>
<tr>
<td>Developmental Process</td>
<td>Developmental Process</td>
</tr>
<tr>
<td>Neurogenesis</td>
<td>Neurogenesis</td>
</tr>
<tr>
<td>Organ Development</td>
<td>Organ Development</td>
</tr>
<tr>
<td>Cellular Development</td>
<td>Cellular Development</td>
</tr>
<tr>
<td>Generation Of Neurons</td>
<td>Generation Of Neurons</td>
</tr>
<tr>
<td>Developmental Process</td>
<td>Developmental Process</td>
</tr>
<tr>
<td>Anatomical Structure Development</td>
<td>Anatomical Structure Development</td>
</tr>
</tbody>
</table>

C Dnmt3a cKO changes of H3K27me3 signal do not correlate with developmental changes of H3K27me3 signal

![Graph showing H3K27me3 signal log2FC changes](image)

D Dnmt3a cKO did not alter the developmental H3K27me3 signal fold changes

![Graph showing H3K27me3 signal log2FC changes](image)

E Group DevLoss: Peaks overlap with developmental loss-of-H3K27me3 regions (E14 Control > P39 Control, 5905)

![Graph showing % mCG and % mCH changes](image)

F Group DevGain: Peaks overlap with developmental gain-of-H3K27me3 regions (E14 Control < P39 Control, 5803)

![Graph showing % mCG and % mCH changes](image)

G Group cKO: Peaks overlap with increased H3K27me3 regions after Dnmt3a cKO (P39 cKO > P39 Control, 3987)

![Graph showing % mCG and % mCH changes](image)
Li et al., Figure 6 — figure supplement 2

A

B
Types of P0 DMVs

- control unique
- shrunk in cKO
- consistent
- overhang
- expanded in cKO
- cKO unique

Number of DMVs