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Nervous systems sense, communicate, compute, and actuate movement using distributed components with trade-offs in
speed, accuracy, sparsity, noise, and saturation. Nevertheless, the resulting control can achieve remarkably fast, accurate,
and robust performance due to a highly effective layered control architecture. However, there is no theory explaining the effec-
tiveness of layered control architectures that connects speed-accuracy trade-offs (SATs) in neurophysiology to the resulting
SATs in sensorimotor control. In this paper, we introduce a theoretical framework that provides a synthetic perspective to ex-
plain why there exists extreme diversity across layers and within levels. This framework characterizes how the sensorimotor
control SATs are constrained by the hardware SATs of neurons communicating with spikes and their sensory and muscle end-
points, in both stochastic and deterministic models. The theoretical predictions of the model are experimentally confirmed
using driving experiments in which the time delays and accuracy of the control input from the wheel are varied. These results
show that the appropriate diversity in the properties of neurons and muscles across layers and within levels help create sys-
tems that are both fast and accurate despite being built from components that are individually slow or inaccurate. This novel
concept, which we call “diversity-enabled sweet spots” (DESSs), explains the ubiquity of heterogeneity in the sizes of axons
within a nerve as well the resulting superior performance of sensorimotor control.

Human sensorimotor control can achieve extremely
robust performance in complex, uncertain environ-

ments, despite being implemented in systems that are
distributed, sparse, quantized, delayed, and saturated.
More specifically, at the hardware level, there exists a
severe speed and accuracy tradeoffs. For example, achiev-
ing fast or accurate nerve signaling requires additional
space and metabolic costs to build and maintain nerves,
and such resource limitations impose hard SATs in nerve
signaling. In contrast, at the system level, the SATs in
sensorimotor control are much less severe. For example,
when riding a mountain bike down a twisting, bumpy
trail, though a trade-off exists between traveling fast and
accurately following the trail, most human can safely
stay on the trail without crashing. Such robust perfor-
mance despite hardware limitations may due to highly
effective layered control architectures that de-constrain
the hardware constraints.

Despite the profound influence of architectures on per-
formance, we have paid little attention to what makes an
architecture effective. To understand effective layered ar-
chitectures, we need to study how component constraints
and trade-offs impact those on sensorimotor performance

and clarify the overall system performance and limitations
when different control layers act jointly. However, the
hardware SATs of neural signaling (1–4) and the system
SATs in sensorimotor control (5–8) have been studied sep-
arately. This is in part because there are few theoretical
tools that allow us to study the hardware SATs of neural
signaling (1–4) and the system SATs in sensorimotor con-
trol (5–8), or to understand the collective performance
when different layers work together. In our terminology
"layers" refers to different architectural components (e.g.
planning layer, reflex layer), while "levels" refers to differ-
ent levels of abstraction or composition (e.g. brain level
vs nerve level vs molecular level, or whole muscle level vs
fiber level).

We developed a mathematical theory that connects
the component speed-accuracy constraints and trade-offs
with those at the sensorimotor system level and provides
an integrated view of a layered control systems involving
planning in a high layer and reflexive reaction in a low
layer. Using this theory, we show here that diversity
between layers and within layers can be exploited to
achieve both fast and accurate performance despite being
implemented using slow or inaccurate hardware. We call
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these synergies “diversity-enabled sweet spots” (DESSs).
At the component level, this concept explains why there
are extreme heterogeneities in the characteristics of neural
components (Fig. 1) (2, 3, 9). At the system level, DESSs
explain the benefits of extreme heterogeneities in speed
and accuracy in different sensorimotor loops (10, 11).

A

Fig. 1. Component speed-accuracy trade-offs (SATs) in sensory nerves. Sizes
and numbers of axons for selected nerves and the resulting SATs. The dashed
line represents nerves with equal cross-sectional area, which is proportional to λ
in Eq. 3. The nerves shown have similar cross-sectional areas but wildly different
compositions of axon size and number, resulting in different speed and accuracy in
nerve signaling (1). A myelin sheath around an axon can also increase its speed of
propagation. Many nerves, such as the sciatic nerve, contain a mixture of axons with
different sizes and degrees of myelination.

Basic model. An example of an effective layered control
architecture is the oculomotor system that stabilizes the
eye on a moving target while you are bouncing down a
trail (Fig. 2A) (10, 11). Neurons in the visual cortex
responding to target motion on the retina drive the actu-
ators to pursue the target after a delay of 100 millisecond.
In contrast, fast head motions are compensated by con-
trol systems in the brainstem in the millisecond range.
Together, they allow you to maintain fixation on a distant
moving target despite severe bumps.

In trail following (Fig. 2B), higher-level cortical control
systems in the cortex and basal ganglia provide advanced
warning for planning actions to avoid trees and other
obstacles. This is accompanied by a fast feedback system
in the spinal cord that maintains stable tracking.

To study how these control systems are coordinated,
we first introduce a driving task that simulates the trail
following on a display screen. In the task, the subjects
have to track a reference trail or trajectory with small
errors despite unseen bumps and disturbances. We define
the error dynamics x(t) between the actual position (i.e.
player’s position) and the desired position (i.e. trail’s
position) as follows:

x(t+ 1) = x(t) + w(t) + u(t), [1]

which relates the future error x(t+ 1) with the previous
error x(t), the uncertainty w(t) (bumps or trail changes),

and the control action u(t). The control action u(t) is
generated using the observed errors and uncertainty as
follows:

u(t) = K(x(0 : t−Tu), w(0 : t−Tu+Ta−1), u(0 : t−1)).
[2]

Here, K is a function that defines the controller, which
uses sensing components (i.e. eyes, muscle sensors and
the inner ear), communication components (i.e. nerves),
computing components (i.e. the cortex in the central
nervous system), and actuation components (i.e. eye
and arm muscles). Here, Tu = Ts + Ti captures in the
delay in control, which can further be decomposed into
the nerve signaling delay Ts and other internal delays Ti
in the feedback loop. The advanced warning Ta models
the fact that the rider can view its future trail Ta time
steps in advance. Its specific value is determined by the
rider’s speed and the trail’s features, and its effect can
be observed from that the muscle tone changes before an
expected perturbation (12, 13). The rate constraint, R,
accounts for the limitations in nerve signaling.

A

B

Fig. 2. Diagrams of sensorimotor control for eye tracking movements and
mountain bike trail tracking. (A) Diagram of two major feedback loops involved
in the eye movement: visual cortex feedback and vestibular-ocular reflex (VOR) feed-
back. Objects are tracked using the slow visual cortex feedback, while head motion
is compensated for by the much faster VOR feedback. (B) Diagram of the basic
sensorimotor control model for our experiment that simulates riding a mountain bike.
Each box is designated by its function: sensing and communication (e.g. vision,
muscle spindle sensor, vestibulo-ocular reflex), actuation (muscle), and computation
(high-layer planning and tracking and low-layer reflexes and reactions). Depending
on the hardware details, they may be quantized (discrete valued), have time delays,
experience saturation, and be subject to noise. The trail ahead can be seen in ad-
vance, but the bumps and other disturbances are unanticipated. The line thickness
indicates the relative speed of the pathway (thicker lines for faster pathways.
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Hardware SATs. There exists trade-offs between neural
signaling speed and accuracy arising from the fixed spatial
and metabolic cost to build and maintain axons. Specifi-
cally, nerves with the same cross-sectional area can either
contain many small axons or a few large axons (Fig. 1),
which inevitably leads to SATs in neural signaling (1–3).
The specific forms of SATs depend on how the nerves
encode information (e.g. spike-based, rate-based, and
spike-interval-based encoding). Our theory does not re-
quire any specific forms of encoding methods and the
resulting hardware SATs, so for simplicity, we assume
the spike-based encoding scheme in our analysis in the
main text. In the spike-based encoding, information is
encoded in the presence or absence of a spike within
each time interval, analogous to digital packet-switching
networks (14, 15). This encoding requires spikes to be
generated with sufficient timing accuracy, which has been
experimentally verified in many types of neurons (16, 17).
To model the complex size distributions in axon bundles
in a nerve, we classify axons into m distinct types, where
each type corresponds to axons of identical size. We index
each type by k ∈ {1, 2, · · · ,m} and model type k axons
as a communication channel with signaling delay Tk and
signaling rate Rk (i.e. the total amount of information
in bits that can be transmitted per unit time). It can be
shown that

Rk = λkTk

m∑
k=1

λk = λ [3]

where λk ≥ 0 and λ > 0 are constants associated with
the total resource (i.e. space available to build the axons)
used by type k axons and all axons, respectively. See the
supplementary information for more detail. A special case
of Eq. 3 is that all axons have the same size. In such case,
we can model the axon bundles as a single communication
channel with signaling delay Ts = T1 = T2 = · · · = Tm
and signaling rate R =

∑m
k=1Rk satisfying

R = λTs. [4]

For other types of encoding, we refer interested readers
to the supplementary information.

System SATs imposed by hardware SATs. The hardware
SATs imposes the SATs in sensorimotor control. To study
its impact, we consider the motivating example of riding
a mountain bike, which is simulated by our driving game
experiments (see Materials and Methods). The error
between the actual and desired positions evolves according
to Eq. 57. The feedback loop Eq. 2 can transmit R bits
of information with delay T := Tu − Ta = Ts + Ti −
Ta from sensing (of the disturbance) to actuation. We
characterize the worst-case error and the average-case
error in sensorimotor control. The worst-case error is more
applicable to risk-averse sensorimotor behaviors, such as
riding a mountain bike on a cliff/trail, in which staying

on the cliff is necessary for survival even in the presence
of the worst possible uncertainty (18–21). The average-
case error is more applicable to risk-neutral sensorimotor
behaviors, such as riding a mountain bike across a broad
field, in which there is no fatal risk of leaving the field (1).

The worst-case error max‖w‖∞≤1 ‖x‖∞ is lower-
bounded by

max(0, T + 1) +
(
2R − 1

)−1
. [5]

In this case, the mean squared error
limn→∞(1/n)

∑n
t=1 E[x(t)2] is lower-bounded by

max(0, T + 1) +
(
22R − 1

)−1
. [6]

The proof of Eq. 5, Eq. 6 and more general results are
given in the supplementary information. The performance
bounds in both settings (Eq. 5–6) are qualitatively similar:
both bounds decompose into two terms. The shared first
term, max(0, T + 1) (denote as the delay error), is only a
function of the total delay and thus can be considered as
the cost due to delay. The second terms, (2R − 1)−1 and
(22R − 1)−1 (denote as the rate error), are only functions
of the signaling rate and can be considered as the cost
due to rate limits.

Since the validity of our framework does not require
the hardware SATs to have any specific form, we next
use the SAT in spike-based encoding to demonstrate how
the SATs at the component level impact the SATs at
the system level. By combining the hardware SATs in
Eq. 4 and the system SATs in Eq. 5 and Eq. 6, we can
predict the influence of the neural signaling constraints
on sensorimotor control, shown in Fig. 3A. Increasing
the delay in the feedback loop increased the delay errors,
while increasing rate led to a large decrease in the rate
errors. The errors for the trials with both added delay
and added quantization was approximately the sum of the
errors for the trials with the delay and the quantization
added separately, as predicted by the model. Thus, the
delays can cause small disturbances to escalate into larger
errors (22), and increasing the data rate dramatically
reduces errors in the context of control.

Furthermore, the minimum reaching time or the mini-
mum error is achieved when the deleterious effects of the
nerve signaling delay and inaccuracy are both controlled
within a moderate range. Conversely, the nerve com-
position that either maximize the speed or accuracy in
nerve signaling results in suboptimal performance. This
observation suggests that the analysis of neural design
principle and its capability for information transfer should
be studied together with sensorimotor control.

Experimental test of model predictions. The predictions
of the model were confirmed experimentally with driving
game experiments (see Materials and Methods for more
details). The subjects played the driving game under
three different conditions: with added delay, with added
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Parameter Description
x(t) Error at time step t
K Controller
Ts ≥ 0 Signaling delay
Ta ≥ 0 Advanced warning
Ti ≥ 0 Internal delay
T = Ts + Ti − Ta Total delay
R signaling rate (bits per unit time)
λ Cost associated with the resource use

Table 1. Parameters in the basic model.

quantization, or with added delay and quantization. Their
trajectories were measured and the errors were analyzed
and shown in Fig. 3B.

Similar to the theoretical prediction, constrained by the
hardware SAT, Eq. 4, the optimal performance is achieved
at a sweet spot of intermediate levels with added delay
and quantization rate. Conversely, minimizing either the
added delay or the rate independently leads to suboptimal
performance.

Layered control systems. In this section we will examine
two biological control systems that combine slow advanced
planning with fast reflexive reaction.

Visual tracking of a moving object. The above results can be
used to study the effectiveness of the layered control ar-
chitecture used in the oculomotor system. Visual tracking
of a moving object is done through two major feedback
loops: a VOR feedback loop that compensates for head
motion and a visual feedback loop through the visual
cortex that tracks a moving object (Fig. 2A). From a
control perspective, an important difference of the two
loops is their levels of advanced warning. VOR feedback
reacts after head moves, while the visual environment is
highly correlated over time and thus are also predictable.
We refer to the regime of VOR feedback delayed reaction,
in which the net delay Ti − Ta is positive, and the un-
certainty w(t) becomes accessible to the controller after
w(t) affects the error dynamics. We refer to the regime of
visual feedback advanced planning, in which Ta − Ti ≥ 0,
and the uncertainty w(t) becomes accessible to the con-
troller before w(t) affects the error dynamics. These two
regimes are qualitatively different in their optimal choice
of Ts and R for achieving optimal robust performance, as
shown in Fig. 4A and summarized below.

(i) Delayed reaction: When the net delay Ti − Ta > 0
is large, the total error can be much larger than the size
of the uncertainty ‖w‖∞ and goes to infinity as Ti →∞.
This large error amplification is consistent with the all-
too-familiar observation that even a small bump on a trail
can cause a cyclist to lose control of the bike and crash.
As Ti increases, the delay error increasingly dominates the
total error. Since the delay error largely contributes to
the total error, the total error is minimized when Ts is set

A

B

Fig. 3. Theoretical and experimental system SATs in sensorimotor control (A)
Theoretical SATs in the tracking (driving) task. The delay error (blue), rate error (red),
and the total error (black) in Eq. 5 are shown with varying hardware SAT T = (R−
5)/20. (B) Empirical SATs in the tracking (driving) task averaged over 4 subjects.
The error under added delay (blue), the error under added quantization (red); and
the error under added delayed and quantization (black) are shown. In the last case,
the added delay T and quantization rateR satisfy T = (R−5)/20. The shadowed
area indicates the standard error across subjects.

to be small in return for small R. Therefore, a feedback
loop in this regime performs better when it is built from a
few large axons. Interestingly, the flat optimal delay/rate
within the delayed reaction regime suggests that optimal
performance can be achieved using one type of nerve
composition for a broad range of advanced warnings. This
property is beneficial because the net delay (defined from
advanced warning) differs across different sensorimotor

4



tasks.
(ii) Advanced planning: When the net warning Ta −

Ti > 0 is large, the total error approaches zero as R →
∞. This large disturbance attenuation is consistent with
the observation that a cyclist can avoid obstacles given
enough time to plan a response, e.g. route a path around
them or brace against their impact. Given sufficiently
large advanced warning Ta, the rate error increasingly
dominates the total error because the growth in Ts incurs
no additional delay error. Since the rate error contributes
largely to the total error, the total error is minimized
when the signaling rate R is set to be large at the expense
of large signaling delay Ts. Therefore, a feedback loop in
this regime performs better when it is built from many
small axons.

This prediction is qualitatively consistent with the
anatomy of the human oculomotor system (Fig. 1). The
vestibular nerve, which transmits motion information from
the inner ear to the vestibular nucleus in the brainstem,
has 20, 000 axons with mean diameter 3µm and coeffi-
cient of variation 0.4µm. In contrast, the optic nerve
carrying visual signals from the retina has approximately
1 million axons with mean diameter 0.6µm and coefficient
of variation 0.5µm, significantly smaller but more numer-
ous and with greater variability (1). As a consequence,
feedback from visual processing is slower (approximately
100 ms delay) but more accurate than the VOR feedback
(approximately 10 ms delay) (23).

This diversity in control performance can also be ob-
served in two simple tests: moving one’s hand left and
right across the visual field with increasing frequency while
holding the head still (Test 1); and shaking the head back
and forth (in a ’no’ pattern) at increasing frequency while
holding the hand still (Test 2). In Test 1, the hand starts
to blur at around 1-2 Hertz due to delays in tracking.
In Test 2, blurring due to the inability to compensate
for fast head motion occurs at a much higher frequency.
This difference illustrates that the visual cortex feedback
responsible for Test 1 (object tracking) has lower levels
of tolerable delays than the VOR feedback responsible
for Test 2 (head motion compensation). However, though
slower, the visual cortex feedback is more accurate than
the VOR feedback. This is illustrated by the fact that
standing on one leg with closed eyes is more difficult than
with eyes open.

Riding a mountain bike. The study of oculomotor system
reveals that nerves with appropriate diversity allows the
visual systems to react to head motion quickly and col-
lect accurate visual information. This kind of DESS is
ubiquitous in sensorimotor control. For example, consider
the DESSs in the control architectures used for riding a
mountain bike. The task of riding a mountain bike was
simulated using the driving game experiments. The con-
trol system associated with the task is shown in Fig. 2B.

A

B

Fig. 4. Delayed reaction vs. advanced planning (A) Comparison between the
regime of advanced warning and that of delayed reaction. The top figure shows the
minimum total error Eq. 5 (the delay error plus the rate error) given a fixed resource
level λ. The bottom figure shows the optimal signaling delay Ts, total delay T =
Ts+Ti−Ta, and rateR = λTs for varying net delay Ti−Ta. In both figures, the
horizontal axes denote the net delay Ti−Ta ≥ 0 or the net warning Ta−Ti ≥ 0.
(B) The benefit of diversity between planning and reflex layers. The top figure shows
the minimum error Eq. 99 for the case when the high-layer and low-layer controllers
are allowed to have diverse signaling delays and rates and otherwise (i.e. R` = Rh
and T` = Th). We term the former the diverse case and the latter the uniform
case. The high-layer controller can better exploit the advanced warning to minimize
errors in the diverse case than in the uniform case. The bottom figure shows the
resulting optimal delays and rates for the diverse case. System parameters are set
to be R` = 0.1Ts, Rh = 0.1Th, and Ti = 10.
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Specifically, the error dynamics is given by

x(t+ 1) = x(t) + uL(t) + uH(t) + w(t) + r(t− Ta), [7]

where w(t) captures the disturbance due to trail bumps,
and r(t) captures the curvature of the desired trajectory.
There are two major feedback loops that act to control
the error x(t): a reflex feedback loop that compensates
for bumps, and a planning feedback loop that determines
which trajectory to follow. These feedback controllers can
be written as

uh(t) = H(r(0 : t− Th + Ta), u(0 : t− 1))
u`(t) = L(w(0 : t− T` − Tc), u(0 : t− 1))
u(t) = Qm(Q`(u`(0 : t)), Qh(uh(0 : t))).

[8]

Here H is a high-layer planner and L is a low-layer distur-
bance compensator. The object position r(t) is accessible
to the controller with advanced warning Ta, which models
its predictability.

The accuracy constraint of each controller is modeled
by quantizers Q`, Qh with signaling rates R`, Rh. The
commands from both controllers are put into action by
the cyclist’s muscles, the accuracy of which is modeled
by a quantizer Qm with signaling rate Rm. Let R̄` and
R̄h be defined by T̄` := T` + Tc, R̄` := min(R`, Rm),
T̄h := Th − Ta, and R̄h := min(Rh, Rm). In the driving
task with sufficiently large advanced warning Ta, the
state-deviation sup‖w‖∞≤ε,‖r‖∞≤1 ‖x‖∞ achievable by the
controller Eq. 8 is lower-bounded by{

T̄` + 1
2R̄` − 1

}
ε+ 1

2Rh − 1 . [9]

Interestingly, the overall error lower-bound is the sum
of the error in the high-layer and the error in the low-
layer. Intuitively, this property holds because the feedback
control system Eq. 7-8 can be decomposed into two in-
dependent sub-systems, each involving H or L (See the
section of separability of subsystems and the Supplemen-
tary Information for more detail).

Fig. 4B compares the performance of the control system
with diverse layers or with uniform layers. It suggests
that diversity between layers allow the overall system
to exploit advanced warning in order to reduce errors.
Specifically, having diverse layers improves the system
SATs, which in turn allows for a reduced total error.

Separability of subsystems. To confirm that the sum of
the errors from each loop adds up to be the total error,
we designed three types of driving experiments: with
bump only, with trail changes only, and with both bump
and trail changes. Our experimental results are shown
in Fig. 5. The error from the combined bump and trail
session positively correlated with the sum of the errors
from the bump only session and the trail only session
(Pearson correlation, correlation coefficient = 0.57 ), and
they showed no significant difference. The results suggest

A

B

C

Fig. 5. Errors when subjects perform the bump and/or trail tasks (A) Error dy-
namics from a task with only bump, a task with only trail, and a task with both; (B)
Absolute values of the sum of errors from the first two tasks and the error from the
last task; (C) Worst-case error for the three tasks and the sum of errors from the first
two cases. Each dot denotes the worst-case error in an interval of 2 seconds.

that the two feedback loops can be analyzed separately,
which is also consistent with Eq. 99.∗

The separation of Eq. 99 into the individual errors
caused by two subsystems allows us to use the preceding
insight to study the layered control architecture used in
the driving tasks. The reflex feedback typically operates
in the regime of delayed reaction, as reflexes often sense
bumps only after the bike has hit them. The planning
feedback typically works in the regime of advanced plan-
ning, as the bike’s trajectory can often be seen in advance.
Similar to the case of the oculomotor system, the reflex
feedback has better performance when it is designed to
have a small signaling delay at the expense of a low signal-
ing rate; in contrast, the planning feedback is constructed
to have a large signaling rate at the expense of a large
signaling delay (25, 26).

DESSs between layers. The above two case studies sug-
gest that diversity between different layers helps achieve
both fast and accurate sensorimotor control despite the

∗Such separation of different feedback loops is common in many processes, e.g. (24).
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A

B

Fig. 6. Examples of diversity-enabled sweet spots (A) The benefit of diversity
between layers. We set λ = 0.1 and Ti − Ta = 0. The delay error and rate error
are defined to be the sum of the delay errors in both the high-layer and low-layer and
that of the rate errors in both layers, respectively. (B) The benefit of diversity within a
level. The figure shows that diversity in axons enables the system to achieve better
SAT in sensorimotor control. We use m = 1 for uniform nerves and m = 2 for
diverse nerves, and we set λ = 0.1 and Ti − Ta = 0. We define the delay error
to be T1 in Eq. 12, i.e. the errors caused before the first spike arrives, and the rate
error to be the remaining terms.

slowness or inaccuracy of individual layers. This bene-
fit is illustrated in Fig. 6A. The hardware SAT imposes
system tradeoffs between minimizing the delay errors or
rate errors in sensorimotor control. However, the diverse
case has a less severe SAT by using a slow but accurate
high-layer to reduce the rate cost and an inaccurate but
fast low-layer to reduce the delay cost. We name this
diversity-enabled sweet spots (DESSs), i.e. diversity helps
de-constrain the hardware SATs to achieve a sweet spot
in the tradeoff space between speed and accuracy.

DESSs within a layer. Analogously, diversity within a
layer also helps deconstrain the component SATs. To
see it, we extend our framework to capture the effects
of diversity in neural composition on performance. For
the system Eq. 57 and axons of diverse sizes, the state-
deviation max‖w‖∞≤1 ‖x‖∞ is lower-bounded by

∞∑
h=1

1
2R(h) . [10]

where the function R : Z+ → R+ is defined to be

R(h) :=
m∑
k=1

max{0, h− Tk − Ti + Ta}Ri. [11]

See the Supplementary Information for more detail. For
example, at m = 2, the error lower bound is reduced to

T1 + 1− 2−R1(T2−T1)

2R1 − 1 + 1
2R1(T2−T1)

1
2R1+R2 − 1 . [12]

Fig. 6B compares the system SATs when the control is
implemented using axons of diverse size or uniform size.
Similarly, systems with diverse axons have an improved
SAT compared with systems with uniform axons, implying
that diversity in nerve composition can boost the speed
and accuracy of the system. This phenomenon is another
example of DESSs. It also suggests the benefit of having
diversity in axon sizes, particularly in optic, vestibular,
and sciatic nerves (2, 3).

Discussion. Nerves have limited signaling speed and ac-
curacy, and there exist trade-offs between the two (Fig. 1).
To understand how such nerves can collectively achieve
remarkably robust sensorimotor control, we developed a
theoretical framework that characterizes how hardware
SATs in nerve signaling translates to system SATs in
sensorimotor control (Fig. 3). The results suggest that
a highly effective layered control architecture with the
proper diversity enables fast and accurate performance to
be achieved using slow or inaccurate hardware (Fig. 6).
For instance, the vestibulo-ocular system (Fig. 2) has an
inaccurate but fast layer that performs negative feedback
control to stabilize images on the retina against rapid
head movements and a slower but accurate layer to per-
form smooth pursuit for tracking slowly moving visual
objects (10, 11). These two layers jointly create a virtual
eye controller that is both fast and accurate. More gener-
ally, DESSs can be observed in the layered architectures
used in many types of sensorimotor control tasks and
decision making (27). DESS can also explain why the size
principle for the recruitment of motor units produces an
optimal trade-off between speed and accuracy, which is
needed to explain Fitts’ Law in reaching (28, 29). So, the
DESSs theory may reveal a more general design principle
for distributed control in brains and inspire the design of
large-scale technological systems.

Our results suggest several interesting research direc-
tions. The first is to more thoroughly explore the param-
eter space for the experimental tasks in a larger number
of subjects. The driving game could be diagnostic for
patients with motor disabilities. The second is to com-
pare the optimal control and communication structures
with the actual sensorimotor control system. For example,
the optimal controllers resemble predictive coding, in the
sense that they transfer prediction errors from sensors
to actuators in order to make the most of the available
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signaling rate. This predictive coding may be the reason
why there is massive feedback from higher cortical areas
back to V1 (30). The third is to adapt the theory to other
behaviors with speed-accuracy tradeoffs (see (31) and ref-
erences therein), including cognitive and voluntary tasks
by adding additional layers in the feedback loops. Further
refining and clarifying how hardware SATs impact the
system SATs in such tasks will illuminate fundamental
limits, trade-offs, and the effectiveness of central nervous
system architectures in a quantitative manner.

Moreover, the DESSs theory can be widely applied
to other complex systems, from the biomolecular control
in a single cell to advanced technological systems like
the Internet of Things. The goal is to better understand
how to achieve accurate vs. fast systems using slow or
inaccurate layers built from the inexpensive hardware.
Below, we list some examples of systems that could benefit
from the DESS framework, and envision a broader use
of layered architecture and DESSs in both biological and
engineering systems.

Motor Learning. There are many other sensorimotor
learning tasks that exploit DESSs. Consider learning how
to shoot a basketball. Most beginners use a deliberative
process at a high cognitive layer to predict the trajectory
and carefully execute the shot. With more experience,
parts of the process are automatized by reflexes in lower
layers. The higher planning layer, which is expensive and
extensively used initially, is slower but can flexibly adapt
to new tasks. In contrast, the lower reactive layers, which
gradually take over control as the learning proceeds, can
only perform a limited set actions but are fast. This
process of sensorimotor learning is essentially distributing
the control process across several layers with different
speed and accuracy so that the task can be performed
fast and accurately.

Immune response. Our immune system also exploits
DESS to perform fast and targeted immune responses.
There is a tradeoff between reacting to an infection quickly
versus producing a response that is targeted toward a
specific type of infection. When infection occurs, the
immune system produces a fast general response, followed
by a sequence of slower but more targeted responses (32,
33). The combination of fast general response and slow
targeted responses improves the overall effectiveness of
the immune response, thereby increasing the probability
of survival.

Power system. DESSs can also be found in power sys-
tems. A power system combines a planning layer that
decides the best operating levels of the plants with a
disturbance-rejection layer that makes local adjustments
to maintain stability. The planning layer typically solves
an optimal power flow problem to determine the best
operating levels of the plants that meet demands with
minimal operation cost (34). The disturbance-rejection
layer uses various control processes such as frequency con-
trol to continuously monitor the demands and control the

frequency at each generating station (35). The decision
to set the operating level of the whole system is slow
due to delays in data aggregation, communication, and
computation. In contrast, local controllers can respond
faster, but they cannot change the operating level of the
whole system. Combining these two allows the power
system to exhibit both speed and flexibility.

Cloud versus edge computing. DESSs can also be ob-
served in the Internet of Things applications, which use
cloud and edge computers to decide on control actions.
The capacity of the cloud computer can be used to perform
extensive computation to find optimal decisions, which
are slowed by the time needed for aggregating sensor in-
formation and communicating control decisions across the
network (36). In contrast, edge computers are able to
respond to their nearby local sensors quickly, but may
only be able to take suboptimal control actions on a lim-
ited set of tasks in the absence of global information (37).
Although each controller has its own limitations, an ap-
propriate combination of these two layers of control can
achieve fast and efficient performance.

Rate-based encoding is a slower alternative hardware SAT
to spike-based encoding. The information in neuron ac-
tion potential spikes can be encoded in many different
ways (14, 16, 17, 23). Eq. 3 characterizes the neural
signaling SATs in spike-based encoding. Interestingly,
rate-based-encoding (38) also leads to similar SATs:

Rk = λk
2 Tk

m∑
k=1

λk = λ. [13]

where λ is previously given in Eq. 3 (see the supplementary
information for the detailed definition) is proportional
to the spatial and metabolic cost to build and maintain
the nerves. Interestingly, spike-based encoding and rate-
based encoding have qualitatively similar SATs: given
a fixed resource (space and metabolic cost to build and
maintain nerves), the achievable signaling rate is roughly
proportional to delay. However, the spike-based encoding
has a better SAT than the SAT of rate-based encoding
given a fixed resource level λ. This property can be seen
from the fact that achieving the same rate Ri requires
the signaling delay of Ri/λ in spike-based encoding and
2Ri/λ in rate-based encoding. The derivation for Eq. 13
can be found in the Supplementary Information.

Actuator saturation: An alternative system SAT. Our frame-
work can flexibly accommodate different assumptions
and models. One such extension is actuator satura-
tion. In the deterministic framework, we model the
sensorimotor control system using the error dynamics
x(t+ 1) = ax(t) +u(t) +w(t), where {w(t)} is a sequence
of bounded variables satisfying ‖w‖∞ ≤ 1. If the system
in Eq. 57 is stable, i.e. |a| < 1, then there is no trade-off
between the minimum error that can be attained with
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the minimal saturation level

sup
‖w‖∞≤1

‖u‖∞ =
(
|aT |+ |aT |

2R − |a|

)(
1− 1

2R

)
=: ` [14]

In contrast, when the system is marginally stable or un-
stable, i.e. |a| ≥ 1, the minimal state-deviation subject
to ‖u(t)‖∞ ≤ ` is given by

T∑
i=1
|ai−1|+ |aT | 1

2R − |a| if ` ≤ |a| 2R − 1
2R − |a|

T∑
i=1
|ai−1|+ |aT | 1− `

1− |a| otherwise.

[15]

In the stochastic framework, we model the sensorimotor
control system with the same error dynamics, but let
{w(t)} to be a sequence of i.i.d. random variables with
mean 0 and variance 1. In addition to the signaling rate
constraints, we impose the following saturation constraints
on the average control power

lim
n→∞

1
n

n∑
t=1

E[u(t)2] ≤ `. [16]

We adapt the results of control under information con-
straints (39–42) to explicitly characterize the impact
of information constraints, delay, and actuator satura-
tion. Specifically, let P : R+ → R+ and G : R+ →
R+ be functions given by P (λ) = {1 − λ + a2λ +√

4λ+ (a2λ− λ+ 1)2}/2, G(λ) = a2P 3(a2Λ + a2(T+1)−
Λ)/(P 2 + 2λP + λ2 + λa2P 2), where Λ = a2(T+1)/(22R −
a2). When ` < G(0), we define λ∗ to be the strictly
positive scalar that satisfies†

G(λ∗) = `. [17]

When ` ≥ G(0), we set λ∗ = 0. Given such λ∗, we
define the scalars P ∗ and G∗ to be P ∗ = P (λ∗) and
G∗ = G(λ∗),1 respectively. Then, the state-deviation
inf limn→∞

1
n

∑n
t=1 E[x(t)2] is lower bounded by{

T∑
i=1

a2(i−1)

}
+ P ∗a2(T+1) + a2(T+1)(P ∗a2 − P ∗ + 1)

22R − a2 ,

which can be achieved with the control effort
limn→∞(1/n)

∑n
t=1 E[u(t)2] = G(λ∗). When a = 1 and

` = ∞, we have λ∗ = 0, P (λ∗) = 1, G(λ∗) = 1, and
therefore

lim
T→∞

1
T

T∑
t=1

E[x(t)2] ≥ T + 1
22R − 1 [18]

Interestingly, although the control effort generally
depends on the signaling rate, for a = 1,
limn→∞(1/n)

∑n
t=1 E[u(t)2] = 1 does not have such a

dependency.
†Observe thatG(λ) ≥ 0 by construction. In addition, the solution of Eq. 17 is unique.

Materials and Methods. We developed a platform for a
driving game that simulates riding a mountain bike (43).
The platform is inexpensive and easy to implement. The
code and manual to build the platform are available at
https://github.com/Doyle-Lab/WheelCon. During the
experiment, the subject looked at a PC monitor and
steered a wheel to follow the desired trajectory. The
trajectory had a constant velocity for each segment but
abruptly switched between right and left segments. The
console for the driving task is shown in Fig. 7.

To test the effects of delay or quantization, we con-
ducted experiments in which the subjects played the
driving game with added delay and quantization inbe-
tween the wheel (control input) and the actual posi-
tion (target of control). The additional delays were
T = −0.8,−0.6, · · · , 0.4 seconds. Here, negative delays
were realized by adding advance warning in the vision in-
put, while the positive delays were implemented by adding
an external delay in actuation. The rate of the quantizer
was set to be R = 1, 2, · · · , 7 bits per unit time. When
both the delay and the quantizer are inserted, the added
delay T and the quantizer rate R satisfy T = (R− 5)/20.
Each set of parameters lasted for 30 seconds before switch-
ing to a new set of parameters. The first 10 seconds of
each 30 second trial were not used to measure the perfor-
mance in order to eliminate switching and learning effects.
Before each experiment, subjects were trained until their
performance stabilized.

We conducted experiments with four participants.
Plots of L∞ norm error between the road (the desired
position) and the current position of the player are shown
in Fig. 3B. Additionally, we tested SATs for the stochastic
settings, shown in Fig. S2 in the supplementary material.

To study how different layers multiplex, we conducted
the driving game experiments with bump, trail changes,
or both. When both were used, the bump disturbance and
trail changes were generated independently. The bumps
were generated by pushing the steering wheel at a constant
torque for 0.5 second. The trial was generated with the
angle θ ∈ {10◦, 20◦, . . . , 80◦} and alternated between left
and right with exponentially distributed time, such that
the participants cannot anticipate the trial trajectory
without advanced warning in vision. The results of this
experiment, shown in Fig. 5, confirm that the the reflex
and planning layers multiplex well.
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and the Swartz Foundation. Q.L. was supported by a Boswell
fellowship and a FWO postdoctoral fellowship (12P6719NLV)
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Fig. 7. Video monitor interface for the driving task. (A) Players see a winding trail
scrolling down the screen at a fixed speed, and thus with a fixed look-ahead time T,
both of which can be varied widely. The player aims to minimize the error between
the desired trajectory and their trues screen position using a gaming steering wheel.
(B) Bumps are added using a motor torque in the wheel. Experiments can be done
with just bumps or trails, or both together, and with varying trail speed and/or T, and
with additional quantization and/or delay in the map from wheel position to player
screen position.
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Supplementary materials

Overview
In this supplementary document, we develop the basic theory needed to derive the results presented in the main text. To
this end, we apply the tools from robust control theory, which characterizes the performance of a feedback system using its
input-output relation (44, 45). The emerged expressions are reminiscent of the bounds in a stochastic system derived using
information theoretic arguments (40, 41, 46) but they can be derived using the time-domain arguments that rely on linear
algebra only. In section 1, we derive the fundamental limits in system performance as a function of the delay and data rate in
the deterministic worst-case setting. The resulting optimal controllers have an interesting analogy to predictive coding, which
is commonly observed in the visual system and other sensorimotor processes (47). In section 2, we consider an alternative
setting of stochastic average-case and derive the fundamental limits in system performance. In section 3, we derive the neural
signaling SAT when axons encode information in spike rate. In section 4, we present some additional experimental results.

Notations. We use lower case letters to denote sequences, i.e. x = {x(0), x(1), x(2), . . . }, and x(t1 : t2) to denote a
truncated sequence of x from t1 to t2, i.e. x(t1 : t2) = {x(t1), x(t1 + 1), · · · , x(t2)}. The ∞-norm of a sequence x is defined as
‖x‖∞ := supt |x(t)|, and the 1-norm of a sequence x is defined as ‖x‖1 =

∑∞
t=0 |x(t)|. The mutual information between two

random variables x, y with the probability density function P is defined using I(x; y) = E [log(P (x, y)/P (x)P (y))]. We use
Q to denote a quantizer that approximates a continuous domain with a finite set of values. The quantizer is defined by 2R
intervals partitioned by {p[`]} and their respective representation points {c[`]} such that

Q(x) =


c[1] x ∈ [p[0], p[1])
c[2] x ∈ [p[1], p[2])

...
c[2R] x ∈

[
p[2R − 1], p[2R]

)
,

[19]

where R is referred to as its data rate. We denote Q̄R,Ψ to be a uniform quantizer with data rate R and domain [−Ψ,Ψ], which
partitions its domain into 2R intervals with equal lengths and maps the input from each interval to the middle point of that
interval.

1. Deterministic setting with worst-case performance

A. Systems with delay. We consider the error dynamics

x(t+ 1) = ax(t) + w(t) + u(t) [20]

where x(t) ∈ R is the error state, u(t) ∈ R is the control action, w(t) ∈ R is the disturbance, and a ∈ R defines the error
dynamics evolution. We assume zero initial condition, i.e. x(0) = 0. The controller K generates the control action u(t) using
the full information on the histories of the error, disturbance, and control input with delay Tu ≥ 0, i.e.

u(t) = K(x(0 : t− Tu), w(0 : t− Tu − 1), u(0 : t+ Tu − 1)) [21]

The sensorimotor control in risk-aware setting motivates the use of L1 optimal control, and as such, our goal is to solve the
following robust control problem:

inf
K

sup
‖w‖∞≤1

‖x‖∞ [22]

subject to Eq. 20 and Eq. 21. This problem admits a simple and intuitive solution. In particular, the optimal cost is given by

inf
K

sup
‖w‖∞≤1

‖x‖∞ =
Tu∑
i=0

|ai|. [23]

This optimal cost is achieved by the control policy

u(t) = −aTu+1w(t− Tu − 1). [24]

To prove Eq. 23 and Eq. 24, we first first derive a lower bound for the optimal cost, and we then find a controller that
achieves the lower bound. The lower bound is obtained by noticing that the delay Tu in the control loop introduces an initial
uncontrollable window in the closed loop response of the system. So we have

max
‖w‖∞≤1

‖x‖∞ ≥ max
‖w‖∞≤1

|x(Tu + 1)|

≥ max
‖w‖∞≤1

|aTuw(0) + aTu−1w(1) + · · ·+ w(Tu)|

=
∑Tu

i=0 |a
i|
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This lower bound can also be realized by the control policy Eq. 24, which yields the following closed loop behavior

x(t+ 1) = aTuw(t− Tu) + aTu−1w(t− Tu + 1) + · · ·+ w(t).

From Eq. A, we observe that the worst-case disturbance is

w(t− Tu) = sign(aTu)

w(t− Tu + 1) = sign(aTu−1)
...
w(t) = 1

which attains the optimal cost in Eq. 23.

B. Systems with quantization. Quantization is the process of converting a continuous signal to a discrete one. It can arise in
many biological systems where sensing, computation, and actuation components are not co-located. We consider the error
dynamics Eq. 20 and a quantized controller

u(t) = K(x(0 : t), w(0 : t− 1), u(0 : t− 1)) [25]

where x(t) ∈ R is the system error, u(t) ∈ R is the control action, and w(t) ∈ R is the disturbance. We also assume zero initial
condition, i.e. x(0) = 0. The desired control action u(t) is generated by the controller K using full information on the histories
of error, disturbance, and control input, but the feedback loop can only transmit R bits of information per unit time. In all of
what follows, we assume that the data rate is above the minimum stabilizing rate, i.e. R > log2 |a| (48). This problem also
admits an analytic formula

inf
K

sup
‖w‖∞≤1

‖x‖∞ = |a|
2R − |a| + 1, [26]

which can be attained by the control policy
u(t) = Q̄R,Ψ(−ax(t)) [27]

where Ψ = 2R|a|/(2R − |a|), and the map QR,Ψ is defined to be a uniform quantizer of rate R on domain [−Ψ,Ψ].
Similarly, Eq. 26 and Eq. 27 can be proved by first lower-bounding the optimal cost and then find a controller that achieves

the bound. A lower bound can be obtained using the problem of estimating w(τ) at time t:

H(t, τ) = inf
Q

sup
|w(τ)|≤1

|w(τ)− ŵ(τ)| [28]

s.t. ŵ(τ) = Q(w(τ)) [29]
Q is a quantizer with data rate (t− τ)R. [30]

Because w(τ) can take any values in the interval [−1, 1], and the output of Q(w(τ)) can take at most 2(t−τ)R discrete values,
the estimation error is lower-bounded by H(t, τ) ≥ 2−(t−τ)R. On the other hand, the above lower bound can also be attained
using a uniform quantizer on domain [−1, 1]. It then follows that

H(t, τ) =
{

2−(t−τ)R t ≥ τ + 1
1 t < τ + 1.

[31]

The problem H(t, τ) can be used to lower-bound the value of |x(t+ 1)|. The error can be decomposed into terms due to past
disturbance and a term due to past control action:

x(t+ 1) = atw(0) + at−1w(1) + · · ·+ w(t) + U ′(t), [32]

where U(t) =
∑t

τ=0 a
τu(t− τ). We define an auxiliary error x′ and its control action U ′ as follows:

x′(t+ 1) = atw(0) + at−1w(1) + · · ·+ w(t) + U(t) [33]
U ′(t) = −(atŵ(0) + at−1ŵ(1) + · · ·+ ŵ(t)), [34]
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where ŵ(τ) is the optimal solution of the estimation problem H(t, τ). The worst-case absolute value of x′(t+ 1) can be easily
computed as

sup
‖w‖∞≤1

|x′(t+ 1)| [35]

= sup
‖w‖∞≤1

|at(w(0)− ŵ(0)) + at−1(w(1)− ŵ(1)) + · · ·+ (w(t)− ŵ(t))| [36]

= sup
‖w‖∞≤1

|at(w(0)− ŵ(0))|+ |at−1(w(1)− ŵ(1))|+ · · ·+ |w(t)− ŵ(t)| [37]

= |at|H(t, 0) + |at−1|H(t, 1) + · · ·+H(t, t) [38]

= 1− (|a|/2R)t+1

1− |a|/2R [39]

This value monotonically increases as time t grows. Under the assumption R > log2 |a|, we have

lim
t→∞

1− (a/2R)t

1− (a/2R) = 2R

2R − |a| , [40]

where the convergence of the infinite series is due to the assumption on minimum stabilizing data rate, i.e. |a|/2R < 1.
Meanwhile, the disturbance w(τ) can take any values from [−1, 1], and at most 2(t−τ)R bits of information can be used to
transmit the information on w(τ) during the time interval [τ, t]. Therefore, the control action U(t) for x(t+ 1) cannot perform
better than U ′(t) for x′(t+ 1), i.e.

sup
‖w‖∞≤1

|x(t+ 1)| ≥ sup
‖w‖∞≤1

|x′(t+ 1)|. [41]

Combining Eq. 35–Eq. 41, we obtain the following lower bound on the achievable cost:

sup
‖w‖∞≤1

‖x‖∞ ≥ lim
t→∞

sup
‖w‖∞≤1

|x(t+ 1)| ≥ lim
t→∞

sup
‖w‖∞≤1

|x′(t+ 1)| = 2R

2R − |a| . [42]

Next, we show that the control policy Eq. 27 achieves the optimal cost Eq. 26. Let u∗(t) be the input to the quantizer, and
xq(t+ 1) = Q̄R,Ψ(u∗(t))− u(t) be the quantization error. Observe that x(t) = w(t− 1) + xq(t). Using mathematical induction,
it can be shown that there exists a control and communication policy that achieves

sup
‖w‖∞≤1

‖xq‖∞ ≤
|a|

2R − |a| . [43]

Condition in Eq. 43 holds at time t = 0. Now we assume that condition in Eq. 43 holds at time t. It then follows that

|u∗(t)| = | − ax(t)| = | − a(xq(t) + w(t− 1))| ≤ 2R|a|
2R − |a| = Ψ. [44]

Since the quantizer output Q̄R,Ψ(u(t)) can take at most 2R discrete values, the value of xq(t+ 1) can be bounded by

|xq(t+ 1)| = |Q̄R,Ψ(u∗(t))− u∗(t)| [45]

≤ 2−RΨ [46]

= |a|
2R − |a| . [47]

Thus, condition Eq. 43 also holds at time t+ 1, and this finishes the proof of Eq. 43. Combining Eq. 42 with Eq. 43 yields

sup
‖w‖∞≤1

‖x‖∞ = sup
‖w‖∞≤1

‖xq + w‖∞ ≤
|a|

2R − |a| + 1.

C. Basic systems with delay and quantization: the reaching tasks. The above analysis tool can be used to study the fundamental
limits in a reaching task and derive a formula similar to Fitts’ law (5). In a reaching task, the goal is to move a hand, eye etc.
to a target of distance D as quickly and accurately as possible. This setting can be recovered by the error dynamics Eq. 20,
where the error x(t) ∈ R is defined as the distance between the target and desired position with initial condition x(0) = 0, the
control action u(t) ∈ R captures the control effort for reaching, and the disturbance w(t) ∈ R satisfies w(t) = wδ(t) ∈ R and
|w| ≤ D (δ(t) is a Kronecker delta function). The control action is generated by

u(t) = K(x(0 : t− Tu), w(0 : t− Tu − 1), u(0 : t− 1)), [48]
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which can transmit the full information on the histories of the error, disturbance, and control input, R bits per unit time with
a delay of Tu. The reaching time Tr can be formally defined as

Tr = inf{t : |x(t)| ≤W/2 for any |w| ≤ D} [49]

The worst case reaching time is lower-bounded by

max
|w|≤D

Tr ≥ Tu +R−1 log2

(2D
W

)
. [50]

To show Eq. 50, we define the problem of estimating w(0) at time t as follows, similar to the case in section B:

H(t, 0) = inf
Q

sup
|w(0)|≤D

|w(0)− ŵ(0)| [51]

s.t. ŵ(0) = Q(w(0)) [52]
Q is a quantizer with data rate (t− Tu)R. [53]

The value of H(t, 0) can be computed to be

H(t, 0) = 1
2(t−Tu)RD. [54]

The minimum worst-case reaching time is lower-bounded by

max
|w|≤D

Tr ≥ min{t : H(t, 0) ≤W/2} [55]

≥ Tu +R−1 log2

(2D
W

)
. [56]

For more detail and its implications, we refer interested readers to our companion paper (28), which studies Fitts’ law from the
perspective of diversity sweet spot (DESSs).

D. Basic systems with delay and quantization: the driving tasks. We consider the system with delayed and quantized control:

x(t+ 1) = ax(t) + w(t− Ta) + u(t)
u(t) = K(x(0 : t− Tu), w(0 : t− Tu − 1), u(0 : t− 1))

[57]

where x(t) ∈ R is the system error, u(t) ∈ R is the control action, and w(t) ∈ R is the disturbance. We also assume zero initial
condition, i.e. x(0) = 0. The controller K receives advanced warning on disturbance Ta ahead of time. The feedback loop
involving K can transmit at most R bits of information about the full information on the histories of the error, disturbance,
and control input, with a delay of Tu. We assume that the data rate R is minimum stabilizing, i.e. R > log2 |a|. This problem
also admits a simple and intuitive solution. In particular, the optimal cost is given by

min
K

max
‖w‖∞≤1

‖x‖∞ =


T∑
i=0

|ai|+ |aT+1|
(
2R − |a|

)−1 if T > 0

(
2R − |a|

)−1 if T ≤ 0,

[58]

where T := Tu − Ta is the net delay from the disturbance to the control action. The optimal cost only depends on Tu − Ta
but not individual values of Tu and Ta because systems with constant Tu − Ta = T can all be reduced to systems with either
(Ta, Tu) = (−T, 0) for T ≤ 0 or (Ta, Tu) = (0, T ) for T > 0. Therefore, the proof for optimal cost and optimal control policy in
the case of T < 0 is given in Eq. 27. On the other hand, the optimal control policy for T > 0 is

xq(t) = u(t− 1)− u∗(t− 1)

u∗(t) = −aT+1w(t− T − 1)− axq(t)
u(t) = Q̄R,Ψ(u∗(t)),

[59]

where Ψ = 2R|aT+1|/(2R − |a|).
Similar to previous cases, we prove Eq. 58 and Eq. 59 by first deriving a lower bound of the optimal cost and then finding a

controller that achieves the lower bound. To obtain the lower bound, we decompose the error x(t) into the term due to delayed
control xd(t) and the term due to quantized control xq(t) as follows:

x(t) = xd(t) + xq(t). [60]
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Because the information about the disturbance w(t− T : t) is not available to the controller when generating the control signal
u(t), its effect on x(t+ 1) cannot be controlled. It then follows that the effects of w(t− T : t) on x(t+ 1) is

xd(t+ 1) = aTw(t− T ) + aT−1w(t− T + 1) + · · ·+ w(t). [61]

Given the term xd(t+ 1), we can then define

xq(t+ 1) = x(t+ 1)− xd(t+ 1), [62]

which is a function of w(0 : t− T − 1) and u(0 : t), but not xd(t+ 1). Here, disjoint subsets of the disturbance affect the term
due to delay xd(t+ 1) and the term due to quantization xq(t+ 1), and the value of xd(t+ 1) is not impacted by the chosen
control policy. Therefore, the optimal cost can also be decomposed into

inf
K

sup
‖w‖∞≤1

‖x‖∞ = sup
‖w‖∞≤1

‖xd‖∞ + inf
K

sup
‖w‖∞≤1

‖xq‖∞, [63]

where the infima on both sides are subject to the system dynamics Eq. 57. From Eq. 61, the first term satisfies

sup
‖w‖∞≤1

‖xd‖∞ =
T∑
i=0

|ai|. [64]

We will show below that the second term satisfies

inf
K

sup
‖w‖∞≤1

‖xq‖∞ ≥
|aT |

2R − |a| . [65]

Similar to the case in section B, we define the problem of estimating w(0) at time t as follows:

H(t, τ) = inf
Q

sup
|w(τ)|≤1

|w(τ)− ŵ(τ)|

s.t. ŵ(τ) = Q(w(τ))
Q is a quantizer with data rate (t− T − τ)R.

[66]

Now we use the estimation problem H(t, τ) to lower-bound the value of |xq(t+ 1)|. The term xq(t+ 1) can also be decomposed
into

xq(t+ 1) = atw(0) + at−1w(1) + · · ·+ aT+1w(t− T − 1) + U(t), [67]

where U(t) =
∑t−T

τ=0 a
τu(t− T − τ). We define an auxiliary error x′ and its control action U ′ as follows:

x′q(t+ 1) = atw(0) + at−1w(1) + · · ·+ aT+1w(t− T − 1) + U(t) [68]

U ′(t) = −(atŵ(0) + at−1ŵ(1) + · · ·+ aT+1ŵ(t− T − 1)), [69]

where ŵ(τ) is the optimal solution of the estimation problem H(t, τ). The worst-case absolute value of x′q(t+1) can be bounded
by

sup
‖w‖∞≤1

|x′q(t+ 1)|

= sup
‖w‖∞≤1

|at(w(0)− ŵ(0))|+ |at−1(w(1)− ŵ(1))|+ · · ·+ |aT+1(w(t− T − 1)− ŵ(t− T − 1))| [70]

= |at|H(t, 0) + |at−1|H(t, 1) + · · ·+ |aT+1|H(t, t− T − 1) [71]

= |a
T+1|
2R

1− (|a|/2R)t−T

1− (|a|/2R) [72]

From the same argument with section B, the control action U(t) for xq(t+ 1) cannot perform better than U ′(t) for x′q(t+ 1),
i.e.

sup
‖w‖∞≤1

|xq(t+ 1)| ≥ sup
‖w‖∞≤1

|x′q(t+ 1)| [73]

The lower-bound on sup‖w‖∞≤1 |x′q(t+ 1)| monotonically increases as time t grows. Taking t→∞, we obtain that

sup
‖w‖∞≤1

‖xq‖∞ ≥ lim
t→∞

sup
‖w‖∞≤1

|xq(t+ 1)| [74]

≥ lim
t→∞

sup
‖w‖∞≤1

|x′q(t+ 1)| [75]

≥ |aT+1|
2R − |a| . [76]
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where the infinite series in Eq. 76 converges because the data rate is assumed to be minimum stabilizing, i.e. |a|/2R < 1.
Combining Eq. 64 and Eq. 65, we obtain the following lower bound on the optimal cost

‖x‖∞ ≥
T∑
i=1

|ai−1|+ |aT+1|
2R − |a| . [77]

Next, we find a control policy that achieves the lower bound Eq. 58. We follow the same procedure with section B to show
that the controller Eq. 59 achieves

sup
‖w‖∞≤1

|xq(t)| ≤
|aT+1|

2R − |a| . [78]

Condition in Eq. 78 holds for t = 0. Now we assume that condition in Eq. 78 holds for time t. It then follows that

|u∗(t− T )| = | − axq(t)− aT+1w(t− T − 1)| ≤ |aT+1|
(

1 + |a|
2R − |a|

)
= Ψ. [79]

Therefore, the value of xq(t+ 1) is bounded by

|xq(t+ 1)| = |aT+1|
2R − |a| . [80]

Thus, condition Eq. 78 holds at time t+ 1. Combining Eq. 64 and Eq. 78 yields

max
‖w‖∞≤1

‖x‖∞ ≤
T∑
i=0

|ai|+ |aT+1|
2R − |a| .

The optimal controller Eq. 59 works as follows: it first uses the disturbance information to predict future errors; then, it
compares the error prediction with the actual value; finally, it sends out only the error signals. The optimal controllers for a
similar setting, generated from the System Level Synthesis (SLS) method, also involve a procedure to estimate w(t) and x(t)
(involving ŵ(t) and x̂(t) in (49)), which are then used to compute the control actions. Interestingly, both resemble predictive
coding—a ubiquitous process appearing across sensing, cognition, and control systems (47). Predictive coding is a strategy to
use available communication capability efficiently: a system uses an internal model to predict the future signal so that only the
error between the prediction and the actual signal needs to be transmitted.

E. Refined control system with loops involving diverse speed and accuracy. We consider the system dynamics Eq. 20 with
the feedback controller K of the form

[s1(t), s2(t), · · · , sm(t)] = Kt(x(0 : t), w(0 : t+ Ta), s(0 : t− 1)) [81]

u(t) =
m∑
k=1

Qt,i(si(t− Tk − Tc)), [82]

where x(t) ∈ R is the error, w(t) ∈ R is the disturbance, u(t) ∈ R is the control action. We assume that the disturbance is
∞-norm bounded and, without loss of generality, ‖w‖∞ ≤ 1.

Recall from Eq. 66 that H(t, τ) is defined to be the problem of estimating w(τ) at time t. Its worst-case estimation error
can be computed by

H(t, τ) = 1
2R(h) [83]

where R : Z+ → R+ is defined to be

R(h) :=
m∑
k=1

max{0, h− Tk − Tc + Ta}Rk. [84]

Adapting the same procedure with section D, we obtain that the worst-case error is bounded by

min
K

max
‖w‖∞≤1

‖x‖∞ ≥
∞∑
h=1

|ah−1| 1
2R(h) , [85]

yielding Eq. 10 in the main text.
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Next, we construct a control policy that achieves the equality of Eq. 85. To begin, without loss of generality, we assume
that T1 < T2 < · · · < Tm and Rk > 0 for k ∈ {1, 2, · · · ,m}. We define the following terms recursively.

ŵ(t, k, τ) = 0 for t− τ ≤ T1

ŵ(t, k + 1|τ) = Q̄Rk+1,`t−τ,k+1 (w(τ)− ŵ(t, k|τ)) + ŵ(t, k|τ) for k ∈ {1, 2, · · · , p− 1} and T1 < t− τ ≤ Tp+1

ŵ(t+ 1, 1|τ) = Q̄R1,`t−τ+1,1 (w(τ)− ŵ(t, k|τ)) + ŵ(t,m|τ) for k = p

[86]

where ` is recursively defined by

`T1,1 = 1 [87]

`t−τ,k+1 = `t−τ,k/2−Rk for k ∈ {1, 2, · · · , p} if T1 < t− τ ≤ Tp+1 [88]

`t−τ+1,1 = `t−τ,k/2−Rk for k = p if T1 < t− τ ≤ Tp+1 [89]

We define the scaled estimation errors to be

e(t, k|τ) = at−τ (w(t)− ŵ(t, k|τ)) [90]

Let Qt,k = Q̄Rk,Ψt,k be a uniform quantizer with the quantization interval [−Ψt,k,Ψt,k] defined from

Ψt,k =
t∑

τ=0

∑
k:t−τ>Tk

`t−τ,k+1 [91]

We consider the control policy

u(t) = Qt,k

(
t∑

τ=0

∑
k:t−τ>Tk

e(t, k|τ)

)
. [92]

Let us define the the quantization error xq(t) to be the sum of the errors from all quantizers Qt,k, k = {1, 2, · · · ,m}, and the
remaining errors in x(t) to be the delay error xd(t). Observe that the delay error and the quantization error can be computed
as follows:

xd(t+ 1) = aTkw(t− Tk) + aTk−1w(t− Tk + 1) + · · ·+ w(t) [93]

xq(t+ 1) = u(t)−
t∑

τ=0

∑
k:t−τ>Tk

e(t, k|τ) [94]

Moreover, it can be shown that they are respectively bounded by

E[xd(t+ 1)] ≤
T1∑
h=1

|ah−1|/2R(h) [95]

E[xq(t+ 1)] ≤
∞∑

h=T1+1

|ah−1|/2R(h) [96]

Therefore, the control policy Eq. 92 achieves the equality of Eq. 85.

F. Layered systems. We consider the layered system with two feedback loops

x(t+ 1) = ax(t) + u(t) + w(t) + r(t− Ta)
u(t) = uL(t) + uH(t)
uL(t) = L(x(0 : t), w(0 : t− 1))
uH(t) = H(x(0 : t), r(0 : t− 1))),

[97]

The disturbance is now composed of two terms: a component r(t− Ta) that is observed with advance warning Ta ≥ 0 and a
component w(t) that can be observed only through its impact on system performance. We assume that the two disturbances
are bounded by

‖r‖∞ ≤ 1, ‖w‖∞ ≤ δ. [98]
The control action is generated by two nominally independent feedback loops, each having their own sensing, computation, and
communication components. Both feedback loops, L,H act through a motor nerve pathway with data rates RL, RH and delays
TL, TH , respectively. The optimal cost in worst-case `∞ norm of this problem is

inf
H,L

sup
‖w‖∞≤δ,‖r‖∞≤1

‖x‖∞ =

{
TL∑
i=0

|ai|+ |aTL+1|
2RL − |a|

}
δ + 1

2RH − |a| . [99]
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To show Eq. 99, we first decompose Eq. 97 into

xL(t+ 1) = axL(t) + uL(t) + w(t), xL(0) = 0
uL(t) = L(x(0 : t), w(0 : t− 1))

[100]

and
xH(t+ 1) = axH(t) + uH(t) + r(t− Ta), xH(0) = 0
uH(t) = H(x(0 : t), r(0 : t− 1)).

[101]

From linearity, we have

x(t) = xL(t) + xH(t). [102]

Because the disturbances that steer the dynamics of xL(t) and xH(t) are disjoint, the optimal cost can also be decomposed into

inf
L,H

sup
‖w‖∞≤1

‖x‖∞ = inf
L

sup
‖w‖∞≤1

‖xL‖∞ + inf
H

sup
‖w‖∞≤1

‖xH‖∞ [103]

=

{
TL∑
i=0

|ai|+ |aTL+1|
2RL − |a|

}
δ + 1

2RH − |a| , [104]

which yields Eq. 99. In the last equality, we applied the results from section D on both sub-systems Eq. 100 and Eq. 101.

2. Stochastic setting with average-case performance
We consider the system with delayed and quantized control:

x(t+ 1) = ax(t) + w(t− Ta) + u(t)
u(t+ Tu) = K(x(0 : t), w(0 : t− 1), u(0 : t+ Tu − 1))

[105]

where x(t) ∈ R is the error, u(t) ∈ R is the control action, and w(t) ∈ R is the disturbance. The signal w(t) is independent and
identically distributed Gaussian random variables with zero mean and unit variance. The communication in the feedback loop
is done through an arbitrary discrete-time channel that satisfies the following constraint:

lim
n→∞

1
n
I({x(0 : n), w(0 : n− 1)};u(0 : n+ Tu)) ≤ R [106]

On special case of Eq. 106 is to have a quantizer of rate R in the feedback loop. The sensorimotor control in risk-neutral
setting motivates the use of LQ control, and as such, our goal is to solve the following robust control problem:

inf
K

lim
T→∞

E

[
1
T

T∑
t=1

x(t)2

]
[107]

subject to Eq. 105 and Eq. 106. This problem also admits a closed-form expression, a generalization of Eq. 6 in the main text,
similar to its deterministic counterpart:

lim
T→∞

E

[
1
T

T∑
t=1

x(t)2

]
≥

T∑
i=0

|a2i|+ |a2(T+1)|
(
22R − a2)−1

, [108]

where the equality is attained by an additive Gaussian channel with capacity R. In the special case when the channel is a
quantizer with rate R, the right hand side of Eq. 108 is a lower-bound of the left hand side.

To show Eq. 108, recall from Section D that the error x(t) can be decomposed into the term due to delayed control xd(t)
and the term due to quantized control xq(t) as follows:

x(t) = xd(t) + xq(t). [109]

Since both of them has zero mean and are independent from each other, the total cost can be decomposed into

E[x(t)2] = E[xd(t)2 + xq(t)2]. [110]

Since xd(t) is not a function of the control/communication policy, we have

inf
K

E[x(t)2] = E[xd(t)2] + inf
K

E[xq(t)2] [111]
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The first term satisfies

E[xd(t)2] =
T∑
i=0

|a2i|. [112]

From (39, 50), the second term satisfies

inf
K

E[xq(t)2] = |a2(T+1)|
(
22a − a2)−1

. [113]

where the equality is attained by an additive Gaussian channel with capacity R. Substituting Eq. 112 and Eq. 113 into Eq. 111,
we obtain Eq. 6 in the main text.

3. Nerve signaling SATs

A. Spike-based encoding. In this section, we characterize the SATs for neural signaling in spike-based encoding and rate-based
encoding. The result for spike-based encoding is also presented in our companion paper (28). In a spike-based encoding scheme,
information is encoded in the presence or absence of a spike in specific time intervals, analogous to digital packet-switching
networks (14, 15). We model the complex size distribution of axon bundles as being made up of m different groups of axons,
indexed by k ∈ {1, 2, · · · ,m}, where each group contains axons with identical size. For each group k, we use nk, ρk to denote
the number of axons and their radius in that group. We use Tk, Rk to denote the delay and data rate (i.e. the amount of
information in bits that can be transmitted) by group k, respectively. When the signaling is precise and noiseless, an axon with
achievable firing rate φ can transmit φ bits of information per unit time. For sufficiently large myelinated axons, we assume
that the propagation speed 1/Tk is proportional to the axon radius ρk (1), i.e.

Tk = α/ρk [114]

for some proportionality constant α. We also model the achievable firing rate φk of an axon in group k to be proportional to
the axon radius ρk, i.e.

φk = βρk, [115]

for some proportionality constant β. Moreover, the space and metabolic costs of a nerve are proportional to its volume (1),
and given a fixed nerve length, these costs are proportional to its total cross-sectional area sk. Combining above, we have

Rk = λkTk,

m∑
k=1

λk = sβ

πα
. [116]

A special case of Eq. 116 is when all axons are uniform, i.e. when ρk are identical for all group k. For this case, Eq. 116
simplifies to

R =
n∑
k=1

φ = s

πρ2 βρ = sβ

π

1
ρ

= sβ

απ
Ts. [117]

This leads to R = λTs, where λ = sβ/πα is proportional to the spatial and metabolic cost to build and maintain the nerves.
When the signaling is precise and noiseless, the amount of information per unit time (bits/sec) that an axon with achievable
firing rate φ can transmit is simply:

Cs = φ. [118]

B. Rate-based encoding. In a rate-based encoding scheme, information is encoded in the spike rate. We can think of the
rate-based encoding as a Poisson-type communication channel whose input is the spike rate γ(t) and the output is the
spike timing M(t). We assume that the spike timing is a non-homogeneous Poisson point process with rate (intensity)
γ = {γ(t) ≥ 0 : t ∈ R+}, denoted by Pt(γ). The communication channel is then given by

M(t) = Pt(γ). [119]

where the spike rate is bounded by

γ(t) ≤ φ t ∈ R+, [120]

for some φ > 0. The capacity of communication channel Eq. 119 is defined to be

Cr = sup lim
T→∞

1
T
I(γT ;MT ), [121]
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Fig. 8. The signaling rate in spike-based coding vs. rate-based coding given a fixed resource to build and maintain nerves. The solid black line shows the achievable signaling
rate Cs from Eq. 118 in spike-based coding; the solid blue line shows the achievable signaling rate Cr from Eq. 122 in rate-based coding; and the dotted blue line shows
Cs/2. The rate of the rate-based encoding is less than half of that of spike-based encoding and approaches to half of the spike-based encoding rate as the achievable firing
rate increases (see Eq. 123). This suggests that spike-based encoding may transmit more information, particularly when the achievable firing rate φ is small.

where the supremum is taken over all distributions of the input process Pγ(t) satisfying Eq. 120. Kabanov has shown in (51)
that Cr is upper-bounded by

Cr = (φ+ 1)1+φ−1

2 −
(

1 + 1
φ

)
log(φ+ 1). [122]

So for sufficiently large φ, we have

Cr → φ/2 as φ→∞, [123]

which yields Eq. 13 in the main text.

4. Additional experimental results
We tested how the hardware SATs constrain the SATs in driving. Specifically, we studied three settings: driving with added
delay, added quantization, and both. We quantified the system performance using the mean squared error between the
actual trajectory and the desired one. We generated the turning angle (alternating to left or right) of the trail from the
uniform distribution with domain [10, 45]. In the setting of added delay, we set the delay to be −4,−3, ..., 2 sampling intervals,
respectively, where each sampling interval is 16.67 ms. In the setting of added quantization, we set the rates of the quantizer to
be 1, 2, ..., 7 bits per unit sampling interval. In the case of added delay and quantization, we let the delay and rate to satisfy
the relation T = (R− 5)/15. Each set of parameter was tested for 30 seconds before switching to others. The experimental
results are compared with the theoretical prediction in Fig. 9.
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