
Print this Page

Presentation Abstract

Program#/Poster#:	309.24/I6
Presentation Title:	Delay differential analysis of EEG during reaching to grasp virtual objects
Location:	WCC Hall A-C
Presentation time:	Monday, Nov 17, 2014, 8:00 AM -12:00 PM
Presenter at Poster:	Mon, Nov. 17, 2014, 11:00 AM - 12:00 PM
Topic:	++C.03.a. Human studies
Authors:	* M. E. HERNANDEZ ¹ , J. WEYHENMEYER ² , C. LAINSCSEK ² , T. J. SEJNOWSKI ^{1,2} , H. POIZNER ¹ ; ¹ Inst. for Neural Computation, UCSD, La Jolla, CA; ² The Salk Inst. for Biol. Studies, La Jolla, CA
Abstract:	Parkinson's disease (PD) is a costly, chronic, neurodegenerative disorder that affects tens of millions of people worldwide, yet no biomarker has been established to date. PD is known to lead to marked alterations in cortical-basal ganglia activity and is characterized by motor impairments such as bradykinesia, muscle rigidity, resting tremor, and postural instability. Using non-linear Delay Differential Analysis (DDA) for time-domain classification of PD patients on and off dopaminergic therapy (PD-on, PD-off, respectively, n=9) from healthy age-matched controls (CO, n=10), we hypothesize that individual trials of EEG data can be used to classify CO from PD-on/off. Surface EEG activity was recorded from 64- channels in all subjects during a reaching task to grasp rectangular virtual objects with haptic feedback provided. A tone was provided to indicate the start of the trial, and two data sets, one full second prior to the tone (resting state) and half a second after the tone were used for classification (post- tone). The virtual object was unexpectedly rotated 90 degrees in the frontal plane

on a subset (33%) of trials and two additional data sets of behavioral and EEG data, time-locked to the onset of the object perturbation are considered. Resting state EEG provided a relatively uniform classification performance for CO vs. all PD patients and poorer performance within PD patients. In contrast to resting state, post-tone EEG was shown to provide increased classification performance towards occipital areas, consistent with a PD patient's increased reliance on visual feedback processes during complex motor tasks. Task-related changes in EEG after the onset of the perturbation were also identified that merit further exploration with behavioral changes due to PD. Thus, non-linear features in EEG data may provide a potential biomarker for Parkinson's disease based on single 1 s or 1/2 s trials of EEG data that are sensitive to changes in a virtual grasping

- Disclosures: M.E. Hernandez: None. J. Weyhenmeyer: None. C. Lainscsek: None. T.J. Sejnowski: None. H. Poizner: None.
- Keyword (s): PARKINSON'S DISEASE

EEG

MOTOR CONTROL

Support: NSF Grant SMA-1041755

NSF Grant ENG-1137279 (EFRI M3C)

ONR MURI Award No.:N00014-10-1-0072

Howard Hughes Medical Institute