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David Marr: A Pioneer in Computational Neuroscience 

David Man  advocated and exemplified an approach to brain modeling that is 
based on computational sophistication together with a thorough knowledge of 
the biological facts. The pioneering papers in this collection demonstrate that 
a combination of computational analysis and biological constraints can lead to 
interesting neural algorithms. The recent developments in computational mod- 
els of neural information processing systems is an extension of this seminal 
research: Marr has influenced the latest generation of network models through 
both his models and his emphasis on the computational level of analysis (Marr, 
1975, 1982). Progress has been made by adopting an integrated approach in 

I which constraints from all three of Marr's levels of analysis--the computa- 
I tional, algorithmic and the implementational-are applied at many different 
I , 
I levels of investigation (Sejnowski and Churchland, 1989). 
I 

These early papers are not easy to read. Marr gives the reader too many 
1 concrete details and too little overall guidance. He demands of the reader a 
I 
i 

deep understanding of probability theory and an encyclopedic knowledge of 
i neuroanatomy. Even those who are steeped in the current generation of neural 

1 network modeling will find terms in the early papers difficult to translate into 
I 

I recent usage. Still, they are reminiscent of the style found in Maxwell's papers, 
i 
I which were written before the invention of vector notation. Just as Maxwell 
I introduced specialized terminology and drew analogies with mechanical con- 

I cepts such as gears and idler wheels, there are unusual terms in Marr's papers, 
such as "codons," borrowed from molecular genetics, and a novel set of con- 
cepts that must be mastered before the papers can be appreciated. Although 
some of the central ideas in these early papers are well known, there are im- 
portant insights into neural computation that will handsomely repay the reader 
the effort taken to master the terminology. 

The first four papers in this collection are from Marr's Cambridge period 
in the 1960s, among the earliest in his career, and articulate a remarkably 
ambitious theory of memory. These models were firmly based on what was 
then known about the structure of the brain. Even those who know that 
Marr had a model for motor learning in the cerebellum (Man, 1969) may 
not be aware that his models of neocortex (Marr, 1970) and the hippocampus 
(Marr, 1971) were even more detailed than his cerebellar model. In a personal 
conversation with me in 1975, Marr singled out the neocortex paper as the one 

i among these early papers that he was most proud of. The last set of papers 
on vision in this collection, are transitional and reflect a new, computationally- 
motivated approach to vision that guided his later research at MIT. At the 
same time they reflect an evident fascination with the structure of the brain, a 
fascination that Man retained throughout his career. 
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The learning algorithm in the cerebellar model requires an external "teacher" 
to instruct the synapses and would today be called a supervised learning pro- 
cedure. This type of error-comction learning has been extended to multiple 
layers of processing units (Rumelhart et al., 1986). The archicortex model uses 
a form of unsupervised learning that is based on competition among the out- 
put units. Similar unsupervised learning algorithms for neural network models 
have recently been studied for clustering data (Grossberg, 1976; Kohonen, 
1984; Rumelhart and Zipser, 1985). They are "simple" memory systems that 
do not address the central issue of how the information is represented on the 
inputs and outputs. 

In contrast to the simple memory models, the neocortical model is about 
category formation and discovery of high-order patterns in data based on un- 
supervised learning. Several recent models have been proposed to attack the 
problem of extracting information from sensory data (Hinton and Becker, 1990; 
Linsker, 1990). Marr's approach was different and depended on recruiting 
new neurons to represent high-order statistical structure or "concepts." Un- 
fortunately, the computational resources available to Marr in the late 1960s 
were minimal, and one of the frustrations when reading these papers is the 
lack of numerical simulations. Promising algorithms do not always perform 
as expected when confronted with data from the real world; too many simplifi- 
cations must be made so that the analysis is tractable. Until simulations of the 
neocortex model are performed we will not be able to assess its effectiveness. 

The retina paper is an attempt to match a computational problem-finding 
the lightness of a surface-to anatomical substrates in the retina (Man; 1974). 
This paper is transitional: Marr's subsequent papers in vision would empha- 
size more and more the computational aspects while relying less and less on 
anatomy. The predictions in this paper were not borne out by subsequent and 
more recent physiological recordings from single neurons make it likely that 
the locus of lightness and color constancy is in visual cortex (Zeki, 1983). 
Interestingly, recent algorithms based on neural network models are similar to 
those proposed by Marr (Hurlbert and Poggio, 1988; Land, 1986). Old ideas 
often come back in contexts that their originators might not even recognize. 

Perhaps the best known papers in this collection are the models of binoc- 
ular depth perception (Marr and Poggio, 1976, 1979). These models were 
appealing because they were based on plausible biological mechanisms, were 
constrained by psychophysical data and were tested by simulations on real- 
world data. In the first model, Marr and Poggio performed simulations to 
demonstrate the effectiveness of their algorithm on random-dot stereograms, 
first introduced by Bela Julesz (Julesz, 1971). The elegant simplicity of the 
network model was anticipated in earlier research @ev, 1975; Nelson, 1975), 
but the interpretation of the constraints and the convincing demonstration made 
this a landmark paper. This approach to constraint satisfaction was an inspira- 
tion for connectionist-style models of visual computation (Ballard et al. 1983). 

One of the remarkable properties of the Marr-Poggio stereo network was 
that it always converged. The stereo network is a highly nonlinear system of 
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equations and attempts to analyze the nonlinear equations came to the conclu- 
sion that they were as difficult to analyze as Conway's game of "life" (Marr 
et al. 1978). In 1982, John Hopfield pointed out that symtnetric networks like 
the Man-Poggio model were a special case because they possess an energy 
or Lyapunov function that guarantees convergence to a local energy minimum 
(Hopfield, 1982). The stereo network was designed in such a way that the local 
energy minima are solutions to the problem. It is also possible to design net- 
work models to handle transparent surfaces in random-dot stereograms (Qian 
and Sejnowski, 1988). Subsequent developments showed how even more diffi- 
cult constraint satisfaction problems can be solved by globally minimizing the 
energy (Hopfield and Tank, 1986; Kienker et al., 1986; Poggio et al., 1988). 
Marr later felt that the time delays inherent in the relaxation of a network to a 
solution were unsatisfactory given the speed with which our visual system can 
interpret most images (Marr, 1982: see p. 107). The shortcomings of the first 
stereo model were addressed in the second model (Grimson, 1981; Marr and 
Poggio, 1979), which was much faster and took into account multi-resolution 
filters that could be applied to real images. However, there are other aspects 
of stereo vision that cannot be handled by this algorithm. The human visual 
system is even more clever than these early stereo algorithms (Poggio and 
Poggio, 1984). 

David Marr continued to make major contributions to the study of vision. 
Those who have been influenced primarily by Marr's book on the computa- 
tional approach to vision (Marr, 1982) may be surprised by the extraordinary 
attention given in this collection of papers to neuroanatomy. In rereading them, 
it is possible to put into perspective Marr's later work on the computational 
approach to vision. Although Man made fewer appeals to detailed biological 
mechanisms in his later vision papers, there were still many examples of inspi- 
ration and confirmation of computational approaches from neuropsychological 
and psychophysical data and constraints from physiological measurements. 
The scientific style of the papers in this collection make it clear that these 
intrusions from the biological realm were not incidental. 

One of the inevitable problems of building models and theories in neu- 
roscience is that new facts about the brain are continually being discovered 
and old ideas are sometimes modified or discarded. The striking advances in 
neuroscience since these early papers are most evident in our present view 
of neurons. In 1970, dendrites were thought to be passive cables and ideas 
on synaptic mechanisms were based primarily on the neuromuscular junction. 
Today, dendrites are known to have voltage-dependent conductances that make 
them dynarnical entities (Llinas, 1988); a gallery of channels and neurotrans- 
mitter receptors with a wide range of time scales alIow neurons to burst and 
oscilla!~, and synapses to potentiate and habituate (Kandel et al., 1987). Marr's. 
models nccd to be updated to take these new properties into account. How- 
ever, the insight that a powerful computational system couId be built from a 
sophisticated model of memory remains an exciting idea, and the goal of in- 
corporating anatomical constraints into network models of vision is now being 
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actively pursued (Sejnowski et al., 1988). 
Finally, how is one to reconcile the research direction implicit in these 

papers and the explicit statements found in Marr (1982) regarding the inde- 
pendence of the computational level from the implementation level? This 
principle, taken out of the context provided by Marr's research style, gives 
the misleading impression that constraints from the algorithmic and irnple- 
mentation levels found in biological systems are unnecessary. A remarkable 
feature of Marr's book is the degree to which biological considerations enter 
on almost every page in inspiring computational analysis, in choosing between 
algorithms and in providing the ultimate measure of success. Computational 
explanations for our visual and mental abilities eventually may be found, and 
seeking such explanations is essential-this was Marr's message. However, 
he was far fmm abandoning biological and psychological data in reaching this 
goal. 

The performance of our perceptual and cognitive systems and the way 
that brains are organized provide essential constraints on possible computa- 
tional explanations (Churchland and Sejnowski, 1988; Sejnowski et al., 1989). 
Neural circuits and how they function clearly inspired Marr and they continue 
to be rich sources of inspiration for many of us. 
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