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Covariance Storage in the Hippocampus 
Terrence J. Sejnowski and Patric K. Stanton 

INTRODUCTION 

This chapter is primarily concerned with the use of 
modeling techniques to uncover principles of brain 
function. This is a different but related enterprise from 
the practical problems of building machines that solve 
engineering problems. These two goals, however, are 
not incompatible. An advance in our understanding of 
how the brain works is likely to provide new designs 
for massively parallel computers; the technology 
being developed could, in turn. be used to help model 
the brain. However, even within the domain of com- 
putational neuroscience there are a number of model- 
ing approaches that should be distinguished (Sejnow- 
ski, Koch, & Churchland, 1988). 

Realistic Brain Models 

One modeling strategy consists of using very large 
scale simulations that attempt to incorporate as much 
of the cellular detail as is available (Koch & Segev, 
1989). We call these realistic brain models. While this 
approach to simulation can be very useful, the realism 

of the model is both a strength and a weakness. As the 
model is made increasingly realistic by adding more 
variables and parameters, the danger is that the-simu- 
lation ends up as poorly understood as the nervous . 

system itself. Equally wonisome, since we do not yet 
know all the cellular details, important features may 
be inadvertently left out, thus invalidating the results. 
Finally, realistic simulations are highly computation 
intensive. Present constraints limit simulations to tiny 
nervous systems or small components of more com- 
plex systems. Only recently has sufficient computer 
power been available to go beyond the simplest mod- 
els. Realistic models require a substantial empirical 
database; it is all too easy to make a complex model fit 
a limited subset of the data. 

Simplifying Brain Models 

Because even the most successful realistic brain mod- 
els may fail to reveal the function of the tissue, com- 
putational neuroscience needs to develop simplifying 
models that capture important principles. Textbook 
examples in physics that admit exact solutions are typ- 
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ically unrealistic, but they are valuable because they 
illustrate physical principles. Minimal models that 
reproduce the essential properties of physical systems, 
such as phase transitions, are even more valuable. The 
study of simplifying models of the brain can provide a 
conceptual framework for isolating the basic compu- 
tational problems and understanding the computa- 
tional constraints that govern the design of the 
nervous system. Simplifying models are essential but 
are also dangerously seductive; a model can become 
an end in itself and lose touch with nature. 

In this chapter we present a set of theoretical ideas 
and experimental results about plasticity in the ner- 
vous system. We will show that a combination of 
modeling and experimentation can help overcome 
some of the limitations inherent in the complexity of 
the brain. In the next few sections we present several 
simplifying neural network models that were devel- 
oped for modeling associative memory. Later in this 
chapter we describe a novel form of Hebbian synaptic 
plasticity in the mammalian hippocampus that con- 
firms predictions made from covariance models of 
associative memory. There is already some evidence 
to indicate that similar forms of plasticity are also 
found in the cerebral cortex. 

ASSOCIATIVE MEMORY 

In 1949 Donald Hebb published The Organization of 
Behavior in which he introduced several hypotheses 
about the neural substrates of learning and memory, 
including the Hebb learning rule or Hebb synapse. 
The Hebb rule and variations on it have also served as 
the starting point for the study of information storage 
in simplifying models (Sejnowski. 1981; Kohonen, 
1984; McClelland & Rumelhart, 1986; Rumelhart & 
McClelland, 1986; Sejnowski & Tesauro, 1989). 
Many types of networks have been studied-networks 
with random connectivity, networks with layers, net- 
works with feedback between layers, and a wide vari- 
ety of local patterns of connectivity. Even the simplest 
network model has complexities that are difficult to 
analyze. 

The Hebb synapse, or Hebb rule, has been used to 
signify a wide variety of ideas and mechanisms, so it 
would be worthwhile to start by examining what Hebb 
(1949) actually proposed. "When an axon of cell A is 
near enough to excite cell B or repeatedly or persis. 
tently takes part in firing it, some growth process or 
metabolic change takes place in one or both cells such 
that A's efficiency, as one of the cells firing B, is 
increased." 

This verbal description is a general statement about 
the factors and conditions that could be important for 
changing synaptic strengths. There are two ways to 
sharpen the statement. First, we can formalize the ver. 
bal description as a quantitative equation, and Second, 
we can specify in greater physiological detail what is 
meant by having one cell "excite" another. 

Consider first a neuron A, with average firing rate 
VA(t), that projects to neuron B,  with average firing 
rate VB(t). The synaptic connection from A to B has a 
strength value WBA, which determines the degree to 
which activity in A is capable of exciting B. 16 linear 
models, the average postsynaptic depolarization of B 
due to A is taken to be the product of the firing rate V ,  
times the synaptic strength value WBA. In other models 
the relationship between the inputs and outputs could 
be nonlinear. The statement of Hebb above states that 
the strength of the synapse WBA should be modified in 
some way which is dependent on both activity in A 
and activity in B. The most general expression which 
captures this notion is 

which states that the change in the synaptic strength 
WBA at any given time is some as yet unspecified func- 
tion F of both the presynaptic and the postsynaptic fir- 
ing rates. Given this general form of the assumed leam- 
ing rule, it is then necessary to choose a particular form 
for the function F(VA, VB). The most straightforward 
interpretation of what Hebb said is a simple product 

where E is a numerical constant usually taken to be 
small. However, there are many other choices possible 
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for the function F(VA, VB).  The choice depends on the 
particular architecture and the problem at hand. 
Equation 2 might be appropriate for a simple associa- 
tive memory task. but for other tasks one would need 
different forms of the function F(VA, VB) .  For exam- 
ple. in classical conditioning, the precise timing rela- 
tionships of the presynaptic and postsynaptic signals 
are important, and plasticity must then depend on the 
rate of change of firing, or on the "trace" of the firing 
rate, that is. weighted average over previous times, 
rather than simply depending on the current instanta- 
neous firing rate (Tesauro, 1986; Klopf, 1988). 

Probably the most important and most thoroughly 
explored use of the Hebb rule is in the formation of 
associations between one stimulus or pattern of activ- 
ity and another. The Hebb rule is appealing for this use 
because it provides a way of forming global associa- 
tions between macroscopic patterns of activity in 
assemblies of neurons using only the local informa- 
tion available at individual synapses. It is important to 
keep in mind that much more complex rules are possi- 
ble, such as a function F(VA,VB, Vc),  which depends 
additionally on a third neuron C in a heterosynaptic 
fashion. 

The earliest models of associative memory were 
based on network models in which the output of a 
model neuron was assumed to be proportional to a lin- 
ear sum of its inputs, each weighted by a synaptic 

where VB are the firing rates of a group of M output 
cells, and V ,  are the firing rates of a group of N input 
cells, and WBA is the synaptic strength between input 
cell A and output cell B. Note that A and B are being 
used here as indices to represent one output of a group 
of cells. 

The transformation between patterns of activity on 
the input vectors to patterns of activity on the output 
vectors is determined by the synaptic weight matrix, 
WBA. How should this matrix be chosen if the goal of 
the network is to associate a particular output vector 
with a particular input vector? The earliest sugges- 

tions were all based on the Hebb rule (Steinbuch, 
196 1; Longuet-Higgins, 1968; Anderson, 1970; 
Kohonen. 1970). It is easy to verify by direct substitu- 
tion of Equation 2 into Equation 3 that the increment 
in the output is proportional to the desired vector and 
the strength of the learning rate. E, can be adjusted to 
scale the outputs to the desired values. 

More than one association can be stored in the same 
matrix. as long as the input vectors are not too similar 
to each other. This is accomplished by using Equation 
2 for each input-output pair. This model of associative 
storage is simple and has several attractive features. 
First, the learning occurs in only one trial; second, the 
information is distributed over many synapses, so that 
recall is relatively immune to noise or damage; and 
third, input patterns similar to stored inputs will give 
output similar to the stored outputs, a form of general- 
ization. This model also has some strong limitations, 
such as interference between information associated 
with similar input vectors. Nonlinear models can 
overcome some of these limitations (Kohonen, 1984; 
Hopfield & Tank, 1986); however, the learning algo- 
rithms used in these models are similar to those pre- 
sented here for simpler linear models. 

THE COVARIANCE RULE 

One problem with any synaptic modification rule that 
can only increase the strength of a synapse is that the 
synaptic strength will eventually saturate at its maxi- 
mum value. The weights can be reduced by nonspe- 
cific decay, but the stored information will also decay 
and be lost at the same rate. Another approach is to 
renormalize the total synaptic weight of the entire ter- 
minal field from a single neuron to a constant value 
(von der Malsburg, 1973). This could be accom- 
plished, for example, by a mechanism for hetero- 
synaptic depression, in which the persistent firing of 
neuron A, which increased the strength of the synapse 
to neuron B, would depress the strengths of all other 
synapses on neuron B. 

Alternatively, a more flexible learning rule could be 
used that decreased the strength of a plastic synapse as 



specifically as the Hebb rule increased it. The covari- 
ance rule is an example of a variation on the Hebb rule 
that solves the problem of dynamical range and satu- 
ration at a plastic synapse, while permitting differen- 
tial modifications contingent upon the statistics of the 
presynaptic and postsynaptic activities (Sejnowski, 
1977a.b). According to this rule, the change in 
strength of a plastic synapse should be proportional to 
the covariance between the presynaptic firing and 
postsynaptic firing 

where <VB > are the average firing rates of the output 
neurons, averaged over a longer time interval than V,, 
and c VA > are the average firing rates of the input 
neurons (Chauvet, 1986). Thus, the strength of the 
synapse should increase if the firing of the presynaptic 
and postsynaptic elements are positively correlated, 
decrease if they are negatively correlated, and remain 
unchanged if they are uncorrelated. 

The covariance rule is a special case of the form of 
the Hebb rule in Equation 1. It differs from the simple 
Hebb rule in Equation 2 by the addition of an extra 
term. If we take the time average of Equation 4 we can 
rewrite it in the form 

Both terms on the right hand side have the same form 
as the simple Hebb synapse in Equation 2. Thus, the 
covariance learning algorithm can be realized by 
applying the Hebb rule relative to a "threshold" that 
varies with the product of the time-averaged pre- 
synaptic and postsynaptic activity levels. The time 
scale for taking the average activity levels must be 
longer than that for the synaptic plasticity. The effect 
of the threshold is to ensure that no change in synaptic 
strength should occur if the average correlation 
between the presynaptic and postsynaptic activities is 
at chance level. 

The covariance form of the Hebb rule in Equation 5 
has the important advantage that the strength of the 
synapse can be used throughout its dynamical range. 
Thus, the strength of a synapse that was near its maxi- 
mum value could be selectively decreased if the activ- 
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ity of the presynaptic terminal and the postsynaptic ' 
neuron were negatively correlated. This would occur 
if the postsynaptic neuron was active while the pre- 
synaptic terminal was inactive, or vice versa. 

SYNAPTIC PLASTICITY IN 
THE HIPPOCAMPUS 

Until recently, preparations for studying long tern 
plasticity at synapses were not available, so it was dif- 
ficult to test Hebb's hypothesis. Phenomena such as 
posttetanic potentiation last only a few minutes. 
Seventeen years ago Bliss and U m o  (1973) identified 
a long lasting enhancement of synaptic strength in the 
mammalian hippocampus, now called long t e n  
potentiation (LTP). When input fibers to pyramidal 
cells were stimulated at a high frequency, in the 
36100  Hz range, synaptic strengths remained ele- 
vated for many hours. This effect was homosynaptic, 
since the potentiated synapses were the same ones that 
were stimulated. 

Experiments designed to test the involvement of the 
postsynaptic cell in the generation of LTP were 
reported by Kelso, Ganong, and Brown (1986), 
Malinow and Miller (1986). and Gustafsson et al. 
(1987). They stimulated the presynaptic terminals 
with a high frequency tetanus while simultaneously 
injecting current into a postsynaptic cell with an intra- 
cellular microelectrode. They reported that pairing the 
stimulus with a depolarization produced LTP, but pair- 
ing with hyperpolarization blocked the induction of 
LTP. This is consistent with a Hebbian mechanism. 

In his description of the conditions for plasticity, 
Hebb specified the excitation of the postsynaptic cell 
leading to its firing an action potential. In the hippo- 
campus, LTP can be induced even when action poten- 
tials in the postsynaptic cell are blocked (Kelso, et al., 
1986). Evidently, it is enough for the postysnaptic cell 
to be strongly depolarized at the same time that the 
presynaptic terminal is stimulated. Although this does 
not change the spirit of the Hebb rule, the details make 
a difference with regard to dendritic processing. 
Neighboring synapses on a dendrite could commlmi- 
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TABLE 1 Summary of the Combinations of Presynaptic Activity and Levels of Postsynaptic 

Potentials that Lead to Different Forms of Synaptic Plasticity in the Hippocampus 

Postsynaptic act~v~ty 

Precynapt~c actlvlty Hyperpolar~zat~on Depolanzatlon 

Low - Heterosynapt~c depress~on 

High Homosynaptic depression (LTD) Hebbian potentiation (LTP) 

cate through depolarization without involving more 
distant synapses. An influence that spread through 
somatic action potentials would involve many more 
synapses, but a mechanism that was based on sub- 
threshold depolarization would allow each branch of 
dendrite to act semi-independently in locally regulat- 
ing synaptic plasticity (Finkel & Edelman, 1985). 
Thus, the focus that Hebb placed on the cell as the 
processing unit may have to shift to a finer level, per- 
haps to the level of individual dendritic branches 
(Shepherd et al., 1985). Of course, the ionic currents 
generated in the dendrites sum in the cell body to pro- 
duce an output which is typically encoded as trains of 
action potentials. 

If depolarization of the postsynaptic cell together 
with presynaptic activity is sufficient to produce LTP, 
then a weak presynaptic stimulus, which by itself is 
not strong enough to produce LTP, should be potenti- 
ated when paired with the strong stimulation of 
another separate pathway. This, in fact, happens and 
has been called associative LTP because of the co- 
operativity between inputs (McNaughton, Douglas, & 
Goddard, 1978; Levy & Steward, 1979, 1983; 
Barrionuevo & Brown, 1983). Thus, correlations 
between neighboring synapses could be detected with 
this mechanism and information in the correlations 
could be stored through associative LTP of the rele- 
vant synapses. 

Table 1 is a summary of the possible conditions for 
plasticity based on coincidence or noncoincidence of 
presynaptic and postsynaptic activity. The Hebbian 
condition occurs when they are both active. There is 
some evidence for synaptic depression of the sort that 
would be needed for the covariance rule in Equation 5. 

When one set of inputs to an area is inactive (Dun- 
widdie & Lynch, 1977; Lynch, Dunwiddie, & 
Gribkoff, 1977, Levy & Steward, 1979) or weakly 
active (Levy & Steward, 1983) during the stimulation 
of a strong input, the strengths of the inactive 
synapses are depressed. This is a heterosynaptic form 
of depression and does not depend on the pattern of 
weak input activity. Also, the duration of the depres- 
sion is typically not as long lasting as LTP. A candi- 
date mechanism for long term depression (LTD) 
should have roughly the same strength and duration as 
LTP itself. 

We recently searched for conditions under which 
the stimulation of a hippocampal pathway. rather than 
its inactivity, could produce either long term depres- 
sion or potentiation of synaptic strengths, depending 
on the pattern of stimulation (Stanton & Sejnowski, 
1989). The stimulus paradigm that we used (Figure 1) 
is based on the finding that high frequency bursts of 
stimuli at 5 Hz are optimal in eliciting LTP (Larson & 
Lynch, 1986). This is close to the 5-6 Hz theta rhythm 
normally recorded in the hippocampus during some 
behaviors associated with learning. A strong bursting 
stimulus was applied to the Schaffer collaterals and a 
weak low frequency stimulus was applied to a sepa- 
rate subicular input on the opposite side of the record- 
ing site; each shock of the weak input was either 
superimposed on the middle of each burst of the 
strong input (IN PHASE) or occurred symmetrically 
between the bursts (OUT OF PHASE). 

Extracellular evoked field potentials were recorded 
from the apical dendritic and somatic layers of CAI 
pyramidal cells. The weak stimulus train was first 
applied alone and did not itself induce long lasting 
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POSITIVELY CORRELATED: IN PHASE 

NEGATIVELY CORRELATED: OUT OF PHASE 

FIGURE 1 Hippocampal slice preparation and associative stimu- 
lus paradigms. A. Schematic diagram of the in vino hippocampal 
slice showing recording sites in the CAI pyramidal cell somatic 
(stratum pyramidale) and dendritic (stratum d a t u m )  layers, and 
stimulus sites activating Schaffer coilatera1 (STRONG) and com- 
missural (WEAK) afferents. B. Schematic diagram of stimulus 
paradigms used. Strung input stimuli (STRONG INPUT) were four 
trains of 100 Hz bursts. Each burst had five stimuli and the inter- 
burst interval was 200 m w .  Each train lasted 2 sec and had a total 
of 50 stimuli. Weak input stimuli (WEAK INPUT) wen four trains 
of shocks at 5 Hz frequency. each train lasting for 2 sec. When these 
inputs were IN PHASE, the weak single shocks were superimposed 
on the middle of each burst of the smng input, as shown. When the 
weak input was OUT OF PHASE. the single shocks were placed 
symmetrically between the bursts. 

changes in synaptic strength. The strong site was then 
stimulated alone, which elicited homosynaptic LTP of 
the strong pathway while not significantly altering the 
amplitude of responses to the weak input. When Weak 
and strong inputs were activated in phase, there was 
an associative LTP of the weak synapses (Figure 2A). 
Both the synaptic excitatory postsynaptic potential 
and population action potential were significantly 
enhanced for at least 60-180 min following stimula- 
tion. 

In contrast, when weak and strong inputs were 
applied out of phase, we observed an associative long 
term depression of the weak input synapses (Figure 
2B). There was a marked reduction in the population 
spike with smaller decreases in the EPSP. Note that 
the stimulus patterns applied to each input were iden- 
tical in these two experiments, and only the relative 
phase of the weak and strong stimuli was altered. With 
these stimulus patterns. synaptic strength could be 
repeatedly enhanced and depressed in a single slice 
(Figure 2C). 

The simultaneous depolarization of the postsynap- 
tic membrane and activation of glutamate receptors of 
the N-methyl-o-aspartate (NMDA) subtype appears to 
be necessary for LTP induction (Collingridge, Kehl, & 
McLennan, 1983; Hams, Ganong, & Cotman, 1984; 
Wigstrom & Gustafsson, 1984). The spread of current 
from strong to weak synapses in the dendritic tree 
paired with glutamate release from the weak input 
could account for the ability of a strong pathway to 
associatively potentiate a weak one (Banionuevo & 
Brown, 1983). Consistent with this hypothesis, we 
find that the NMDA receptor antagonist 2-amino-5- 
phosphonovaleric acid (AP5, 10 CIM) blocks the 
induction of associative LTP in CAI pyramidal neu- 
rons. In contrast, the application of AP5 to the bathing 
solution at this same concentration had no significant 
effect on associative LTD. Thus, the induction of 
depression seems to involve mechanisms different 
from potentiation. 

In further experiments, intracellular recordings 
from CAI pyramidal neurons were made using stan- 
dard techniques. Induction of associative LTP (Figure 
3, WEAK S+W IN PHASE) produced an increase in 
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A 

TIME (min) 

FIGURE 2 Illustration of associative long-term potentiation 
(LTP:A) and associative long-term depression (L'IQB) using extra- 
cellular recordings. A. Associative LTP of evoked excitatory post- 
synaptic potentials (EPSPs) and population action potential 
responses in the weak input. Test responses are shown before ( h e )  
and 30 min after (Post) application of weak stimuli in phase with the 
coactive strong input. B. Associative LTD of evoked EPSPs and 
population spike responses in the weak input. Test responses are 
shown before (Re) and 30 min after (Post) application of weak 
stimuli out of phase with the coactive strong input. C. Time course 
of the changes in population spike amplitude observed at each input 

.- ~ 

amplitude of the excitatory postsynaptic potential 
(EPSP) and a lowered action potential threshold in the 
weak pathway, as reported previously (Barrionuevo & 
Brown, 1983). Conversely, the induction of associa- 
tive LTD (Figure 3, WEAK S+W OUT OF PHASE) 
was accompanied by a long lasting reduction of EPSP 
elicited by weak input stimulation. 

A weak stimulus that is out of phase with a strong 
stimulus arrives when the postsynaptic neuron is 
hyperpolarized as a consequence of inhibitory postsy- 
naptic potentials and afterhyperpolarization from 
mechanisms intrinsic to pyramidal neurons. This sug- 
gests that postysnaptic hyperpolarization coupled with 
presynaptic activation may trigger LTD. To test this 
hypothesis, we injected current with intracelluar 
microelectrodes to hyperpolarize or depolarize the cell 
while stimulating a synaptic input at low frequency. 
Pairing the injection of depolarizing current with 
weak input stimulation led to LTP of those synapses 
(Figure 4A, STIM), while a control input inactive dur- 
ing the stimulation did not change (CONTROL),'as 
reported previously (Kelso, et al., 1986; Malinow & 
Miller, 1986; Gustafsson et al., 1987). Conversely, 
prolonged hyperpolarizing current injection paired 
with the same weak stimuli led to induction of LTD in 
the stimulated pathway (Figure 4B, STIM), but not in 
the unstimulated pathway (CONTROL). The applica- 
tion of either depolarizing current, hyperpolarizing 
current, or the weak 5 Hz synaptic stimulation alone 
did not induce long term alterations in synaptic 
strengths. Thus, hyperpolarization and simultaneous 
presynaptic activity is sufficient for the induction of 
LTD in CAI pyramidal neurons. 

for a typical experiment. Test responses from the strong input (S, 
open circles) show that the high-frequency bursts (5 pulses/100 Hz, 
200 msec interburst interval as in Figure I) elicited synapse-specific 
LTP independent of other input activity. Test responses from the 
weak input (W, filled circles) show that stimulation of the weak 
pathway out of phase with the strong one produced associative LTD 
(Assoc LTD) of this input. Associative LTP (Assoc LTP) of the 
same pathway was then elicited following in-phase stimulation. 
Amplitude and duration of associative LTD or LTP could be 
increased by stimulating input pathways with more trains of shocks. 
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30 MIN POST 30 MIN POST 
S + W OUT OF PHASE S + W IN PHASE 

STRONG lb lL -+/L 
(SCHAFFER) 

FIGURE 3 Demonstration of associative LTP and LTD using intracellular recordings from a CAI 
pyramidal neuron. Intracellular EPSPs prior to repetitive stimulation (Pre), 30 min after out of phase 
stmulation (S+W OUT OF PHASE). and 30 rnin after subsequent in phase stimuli (S+W IN PHASE). 
The strong input (Schaffer collateral side. lower traces) exhibited LTP of the evoked EPSP indepen- 
dent of weak input activity. Out of phase stimulation of the weak (subicular side, upper traces) path- 
way produced a marked persistent reduction in EPSP amplitude. In the same cell, subsequent in phase - 
stimuli resulted in associative LTP of the weak input that reversed the LTD and enhanced amplitude of 
the EPSP past the original baseline. 

The properties of associatiye LLTD described here 
make it a good candidate for the covariance leaming 
rule outlined in the last section. Since there is a large 
variation in the strength and duration of both LTP and 
LTD in different slices, we designed a stimulus pattern 
to compare them in the same slice at the same time. 
The stimulus combined both the weak input shocks 
superimposed with the bursts and between the bursts, 
so that on average there was no net covariance 
between weak and strong inputs. This stimulus pro- 
duced no net change in synaptic strength using extra- 
cellular recording techniques, as predicted by the 
covariance rule in Equation 4. Thus, the associative 
LTP and LTD mechanisms appear to be balanced. 

SYNAPTIC PLASTICITY IN THE 
VISUAL CORTEX 

Neurons in the visual cortex of cats and monkeys respond 
preferentially to oriented bars and edges. A network 

model for the development of neuronal selectivity incor- 
porating the Hebbian form of plasticity was proposed by 
Bienenstock, Cooper, and Munm (1982). The BCM 
model requires patterned visual inputs and in this respect 
is similar to an earlier proposal by von der Malsburg 
(1973). The BCM algorithm for synaptic modification is 
a special case of the general Hebb rule in Equation 1, 

where the function $(VB, <VB>) is shown in Figure 5. 
The synapse is strengthened when the average post- 
synaptic activity exceeds a threshold, and is weakened 
when the activity falls below the threshold level. 
Furthermore, the threshold varies according to the 
average postsynaptic activity 

Bienenstock et al. (1982) show that this choice, has 
desirable stability properties and allows neurons to 
become selectively sensitive to common features in 
input patterns. 
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A PRE 

STIM (5 Hz) 
(SCHAFFER) 

CONTROL 

B PRE 

30 MIN POST 
STIM + DEPOL 

30 MIN POST 
STIM + HYPERPOL 

FIGURE 4 Palring of postsynaptic hyperpolarization with stimu- 
lation of synapses of CAI hippocampal pyramidal neurons pro- 
duces LTD specific to the activated pathway, while pairing of post- 
synaptic depolarization with synaptic stimulation produces 
synapse-specific LTP. A. Intracellular invoked EPSPs are shown at 
stimulated (STIM) and unstimulated (CONTROL) pathway 
synapses before (Pre) and 30 min after (Post) pairing a 20 mV de- 
polarization (constant current, +2.0 nA) with 5 Hz synaptic stimula- 
tion. The stimulated pathway exhibited associative LTP of the EPSP 
while the control, unstimulated input showed no change in synaptic 
strength. (RPM = -65 mV: RN = 35 MR) B. Intracellular EPSPs are 
shown evoked at stimulated- and control pathway synapses before 
(Pre) and 30 min after (Post) pairing a 20 rnV hyperpolarization 
(constant current, -1.0 nA) with 5 Hz synaptic stimulation. The 
input (STIM) activated during the hyperpolarization showed asso- 
ciative LTD of synaptic evoked EPSPs while synaptic strength of 
the silent input (CONTROL) was unaltered. 

The covariance form of the Hebb synapse has been 
used by Linsker (1986) to model the formation of 
receptive fields in the early stages of visual process- 
ing. The model is a layered network having limited 
connectivity between layers and uses the learning rule 

373 

in Equation 5. As the learning proceeds, the units In 
the lower layers of the network develop on-center and 
off-center receptive fields that resemble the receptive 
fields of ganglion cells in the retina, and elongated 
receptive fields develop in the upper layers of the net- 
work that resemble simple receptive fields found in 
visual cortex. This model demonstrates that some of 
the properties of sensory neurons could arise sponta- 
neously during development by specifying the general 
pattern of connectivity and a few parameters to con- 
trol the synaptic plasticity. One surprising aspect of 
the model is that regular receptive fields develop even 
though only spontaneous activity is present at the sen- 
sory receptors. 

The visual response properties of neurons in the 
visual cortex of cats and monkeys are plastic during 
the first few months of postnatal life, and can be per- 
manently modified by visual experience (Wiesel & 
Hubel. 1965; Sherman & Spear, 1982). Normally, 
most cortical neurons respond to visual stimuli Erom 
either eye. Following visual deprivation of one eye by 
eyelid suture during the critical period, the ocular 
preference of neurons in primary visual cortex shifts 
toward the nondeprived eye. In another type of exper- 
iment, a misalignment of the two eyes during the crit- 
ical period produces neurons that respond to only one 
eye and, as a consequence, binocular depth perception 
is impaired. These and many other experiments have 
led to testable hypotheses for the mechanisms under- 
lying synaptic plasticity during the critical period 
(Bear, Cooper, & Ebner, 1987). 

Singer (1987) has suggested that the voltage-depen- 
dent entry of calcium into spines and the dendrites of 
postsynaptic cells may trigger the molecular changes 
required for synaptic modification in visual cortex. 
This hypothesis is being tested at a molecular level 
using a combined pharmacological and physiological 
technique. NMDA receptor antagonists infused into 
visual cortex block the shift in ocular dominance nor- 
mally associated with monocular deprivation (Klein- 
schmidt, Bear, & Singer, 1986). The NMDA receptor 
is a candidate mechanism for triggering synaptic mod- 
ification because it allows calcium to enter a cell only 
if the neurotransmitter binds to the receptor while the 
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FIGURE 5 Lefr, change in synaptic strength ATBA as a function of the average corre- 
lation <VA VB> between the presynaptic and postsynaptic activity levels, as indicated in 
Equation 5. The threshold 8 is given by <VBXVA>.  Right, the postsynaptic factor $(VB, 
d B > )  in the BCM learning algorithm in Equation 6, where the threshold 8 = <VB>Z 
(Bienenstock, Cooper, & Munro, 1982). 

postsynaptic membrane is strongly depolarized. In a 
sense, the NMDA receptor is a "Hebb molecule" since 
it is only activated when there is a conjunction of 
presynaptic and postsynaptic activity. The NMDA 
receptor also is critically involved in the induction of 
LTP in the hippocampus (Collingridge et al., 1983; 
Hanis et al., 1984; Wigstrom & Gustafsson, 1984). 

Stent (1973) has suggested that the effects of 
monocular deprivation could be explained if the 
synaptic weight were to decrease when the synapse is 
inactive and the postsynaptic cell is active. This is 
similar to the condition that leads to heterosynaptic 
depression in the hippocampus (Lynch et al., 1977; 
Levy & Steward, 1979, 1983). The evidence for 
synaptic depression found in visual cortex during the 
critical period would correspond to the upper right 
comer of Table 1, in which presynaptic activity is 
absent but postsynaptic activity is normal. 

The conditions that correspond to the lower left cor- 
ner of Table 1 have only recently been tested in the 
visual cortex. Chronic hyperpolarization of neurons 
was produced by infusion of muscirnol, a GABA ago- 
nist, while one of the eyes was sutured shut during the 
critical period. When the eye was opened, neurons in 
visual cortex near the site of infusion could be driven 
only by the closed eye, in contrast to neurons more 

distant from the infusion site, which could only be 
driven from the open eye (Reiter & Stryker, 1987). 
One interpretation of these results is that presynaptic 
transmitter release onto hyperpolarized cells leads to a 
long term depression of the input synapses arising 
from the lateral geniculate nucleus, but that inactive 
terminals are not affected. These conditions are simi- 
lar to those reported here that lead to associative LTD 
in the hippocampus (Stanton & Sejnowski, 1989). 
Thus, the Hebbian mechanisms found in the hippo- 
campus are likely to be found elsewhere in the central 
nervous system. 

The mechanisms for plasticity in the cerebral cor- 
tex during development may be related to mecha- 
nisms responsible for synaptic plasticity in the adult. 
The evidence so far favors the general form of 
Hebbian plasticity in Equation 1. However, the 
details of how this plasticity is regulated on short and 
long time scales may be quite different during devel- 
opment and in the adult. Recently, it has been shown 
that the receptive field properties of cells in cat visual 
cortex can be altered even in the adult by visual expe- 
rience paired with ionophoretic excitation or depres- 
sion of cellular activity (Fregnac, Schulz, Thorpe, & 
Bienenstock, 1988; Greuel, Luhmann, & Singer, 
1988). These results are consistent with the presence 
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of Hebbian covariance mechanisms, though the com- 
plexity of visual cortex prevents a direct interpre- 
tation of these results at the level of identified 
synapses. 

CONCLUSIONS 

The experiments on associative synaptic depression in 
the hippocampus summarized in this chapter were 
based on ideas that first arose in the context of model- 
ing some aspects of memory. These simplifying mod- 
els leave out most of the biological details of real neu- 
rons and do not even refer to specific brain areas. 
What such models provide is a general framework for 
thinking about the complex relationships that could 
exist between signals in neural circuits like those 
found in the hippocampus. Simplifying models sug- 
gest possible experiments and help with interpreting 
their outcomes. In our experiments, the choice of the 
stimulus parameters was inspired by the prediction 
made by the covariance model of memory that anti- 
correlation was the critical condition for synaptic 
depression (Sejnowski, 1977b). 

However, the covariance model did not provide the 
details of the stimulus paradigm, but only the general 
conditions. The choice of 100 Hz for the burst rate and 
5 Hz for the burst repetition rate was determined by 
properties of the hippocampus. What the model did 
provide was the idea that synaptic depression compa- 
rable in magnitude and duration to LTP is likely to be 
found in the hippocampus, and the general properties 
that would characterize its occurrence. The covariance 
model pointed to anticomelation as the key variable. 
The model only narrowed the range of possibilities. 
Two forms of synaptic depression have in fact been 
found in the hippocampus in different areas under dif- 
ferent conditions. These are likely to have different 
functions. The homosynaptic form of LTD that we 
described in this chapter has many of the characteris- 
tics needed to balance LTP. 

LTP and LTD are candidate mechanisms for long 
term information storage in neuronal networks. If the 
strength of synapses in the hippocampus can be 

enhanced or depressed repeatedly, then these coupled 
mechanisms could also provide a means for imple- 
menting a "working memory." This type of memory 
could be used to temporarily store the information 
needed to accomplish a task. For example, the 
strengths of some synapses could be incremented by 
LTP and these strengths maintained for an indefinite 
interval. When this information was no longer needed, 
the synaptic strengths could be selectively decreased 
with LTD. It is known that the long term memories of 
facts and events are stored not in the hippocampus, but 
in the cerebral cortex, so it will be of particular inter- 
est to determine whether mechanisms similar to LTP 
and LTD are found there as well. 

More needs to be known about the timing relation- 
ships for LTPand LTD, and also about the spatial inte- 
gration of information within dendritic trees. Realistic 
models can help with sorting out these relationships, 
but only if enough data can be obtained to fully con- 
strain the models. Here is an example of how twodif- 
ferent types of models, both simplifying and realistic, 
can each contribute, on different levels, to the solution 
of difficult problems in storing and retrieving infor- 
mation in neural populations. 
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