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Abstract 

Augmenting responses in neocortical pyramidal cells can be elicited by cortical or thalamic 
repetitive stimulation a r o ~ ~ n d  10 Hz. A realistic model of a cortical pyramidal (PY) cell and an 
interneuron (IN) was developed to explore possible intracortical mecha~iisms. The interaction 
between strong feedforward hyperpolarizing inhibition, deinactivation of a low-threshold Ca' + 

current and depression of fast inhibitory currents in the PY cell resulted in only weakly 
auginented responses. The incremental nature and frequency dependence of intracortical 
augmenting responses was reproduced in the inodel pair of cortical cells that included short- 
term plasticity of inhibitory, lateral and thalamocortical synapses. Hyperpolarization- 
activated currents were not needed in the model to obtain these effects. Thalamic sti~nulation in 
a simplified thalamocortical inodel with short-term plasticity of cortical coii~lections resulted in 
a small additional cortical augmentation of the already augmented thalamocortical in- 
puts. 0 1999 Elsevier Science E.V. All rights reserved. 

Keyivords: Augmenting response; Short-term synaptic plasticity; Neocortex; Thalamus; 
Con~putational inodel 

1. Introduction 

When thalamically stimulated at frequencies between 5 and 15 Hz cortical re- 
sponses grow in size and may carry an increased number of action potentials. Thcsc 

*Corresponding author. 
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'augmentmg' responses 1201 have been reported In  noto or cortex 15-723,271, 
sonlatosensory cortex 1191 and assoclatlon cortex 1211, as well as In v~sual cortex [lo] 
and auditory cortex [18]. Cortical augmenting responses can be evoked by 
stinlulation of specific thalamic nuclei, white matter [7,19], ipsilateral [7,27] and 
contralateral cortical areas [21], but not from prethalainic stimulation sites [4]. 
Augmenting responses are modulated by behav~oral state [5,25] and may develop 
into seizure-like self-sustained oscillatory activity in cortical neurons [27]. 

Recent evidence indicates there are two separate components contributing to 
augmenting responses: an intrathalarnic and an intracortical component. The intra- 
thalamic component was recently investigated in decorticated aninlals [26,32] and 
the underlying mechanisms have been explored in computer models of the thalamus 
131. The possible role of thalamically generated augmenting responses in the develop- 
ment of cortical incremental responses was investigated in viuo [27] and in a modeling 
study [4]. The occurrence of incremental responses in cortical slices [7] and 
in thalamus-lesioned animals [I91 corroborates an additional purely intracortical 
component. 

In this paper we test two possible n~echanisms underlying intracortical augmenting 
responses. The first mechanisn~ involves the interaction between strong feedforward 
hyperpolarizing inhibition and (dein)activation of hyperpolarization-activated 
currents in layer 5 cells [7]. The second mechanism depends on short-term synaptic 
plasticity of cortical connections. Growing evidence indicates short-term synaptic 
plasticity is a ubiquitous property of neocortical circuitry: connections between 
various excitatory cortical cell types display short-term depression [1,31,33], connec- 
tions from excitatory cells onto inhibitory cells either facilitate [17,30] or depress 
[2,29], inhibitory currents in excitatory cells depress [7,8,24,29], and thalamocortical 
synapses depress [11,12,28]. If short-term plasticity is a common characteristic of 
cortical synapses, cortical networks are expected to display use-dependent phe- 
nomena when electrically or naturally stimulated. 

2. Methods 

Model descriptioll and parameters are given in detail elsewhere [14]. Briefly, 
neocortical pyramidal cells (PY) and interneurons (IN) were described using a 
two-compartment model (7161 including voltage-dependent currents described by 
Hodgkin-Huxley type of kinetics. Our cortical model was a reduced network version 
consisting of a single PY-IN cell pair (Fig. 1A). The PY cell was connected to itself and 
the IN cell through an AMPA synapse, the IN cell was connected to the PY cell with 
a GABA, synapse. Both cells received a tl~alamocortical AMPA synapse. Maximal 
synaptic conductances in the model were gel ,-,,, = 0.06 pS, g ,,,-,, = 0.10 pS, 
g l E - p l .  = 0.05 pS, g , c i , l  = 0.02 pS, i jpJ ,pl ,  = 0.04 11s with and g ,,,-,,, = 0.01 [IS without 
short-term plasticity of the PY-PY synapse. To   nod el short-term synaptic plasticity 
we used a pheno~nenological description of the synaptic conductance [1,33]. 
Parameters of synaptic plasticity were estmated from experimental data (see [14]). 
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Fig. 1. (A) Schematic of the reduced cortical network model. (B) Rebound response of the PY cell at 
different strengths of hyperpolarization when a T-current was included (pT = 20 nm/s). (C) PY cell response 
to nine cortical shocks at  10 Hz in the model without T-current. (D) PY cell responses at  different 
frequencies of stimulation in the model with T-current. 

Electrical stimulation of the cortex was modeled as a brief activation of all synapses in 
the model. Activation of the thalamocortical synapses alone gave similar results. As 
a thalacnic model we used an interconnected thalamocortical (TC) cell and nucleus 
reticularis (RE) cell described elsewhere [3]. All simulations were run using NEUR- 
O N  [13]. 

3. Results 

To test the proposal that the initiation of augmenting responses depends on 
intrinsic properties of layer 5 cells [7] we added a low-threshold Ca2+ (T-) current 
[I51 to the dendrite of the PY cell. The permeability of the T-channel was of 
intermediate strength such that a 150 ms hyperpolarization toward - 85 mV resulted 
in a single sodium spike upon release from inhibition (Fig. 1B). We added a GABAD 
component [9] to the IN-PY synapse to obtain a slow IPSP that hyperpolarized the 
PY cell 15 mV from rest (g = 0.01 pS). None of the synapses displayed short-term 
plasticity except the inhibitory GABA, synapse, which depressed. The model without 
T-current did not show augmentation upon 10 Hz stimulation (Fig. 1C). In contrast, 
when the T-current was added 10 Hz stimulation resulted in weakly incremented 
responses (Fig. ID). At frequencies > 11 Hz and < 3 Hz responses were not 
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Fig. 2. PY cell responses to cortical shocks at  different frequencies in the model including short-term 
synaptic plasticity. 

augmented (Fig. ID). When the inhibitory synapse did not depress, addition of the 
T-current did not result in incremental responses for any value of the inhibitory 
conductance (data not shown). 

Next, we tested whether short-term plasticity of cortical synapses without T-current 
could generate incremental responses. In this model of cortical short-term plasticity 
the inhibitory synapse depressed with a paired-pulse depression of 30% at short 
intervals and a slow time constant of recovery (Us ,  = 0.3, z = 1000 ms) [7,24]. The 
PY-PY excitatory synapse depressed strongly at short intervals and recovered fast 
(Us, = 0.75, z = 50 ms) C31J and similar dynamics governed the thala~nocortical 
synapses (Us ,  = 0.4, z = 100 ms) [11,28]. No T-current was present in the model. At 
10 Hz stilnulation PY cell responses augmentzd strongly carrying one, two and three 
spikes for the first three shocks respectively (Flg. 2). After the third shock responses 
stabilized to three spikes per shock. At high frequencies of stimulation incremental 
responses were reduced. For example, at 20 Hz a steady-state response of two spikes 
per shock was reached after the second shock, and at 40 Hz the steady-state was not 
augmented. At frequencies < 4 Hz augmentation was either reduced (at 2 Hz) or 
absent (at 1 Hz). IN cell responses were augmented similarly (data not shown). 
Frequency-dependent incremental responses were observed for a wide range of 
plasticity parameter values. 

Finally, we tested whether thalamic stimulation could support cortical augmenting 
responses in the short-term plasticity model. A reciprocally coupled pair of RE-TC 
cells was stimulated at 10 Hz and the spike train of the TC cell was taken as an input 
to the cortical cells (Fig. 3, upper trace). The response of the TC cell was strongly 
augmented as a result of the deinactivation of the low-threshold c a 2 +  current in this 
neuron and displayed characteristic poststi~nulus oscillations around 4 Hz [3]. In the 
cortical model without short-term plasticity the PY cell responded by closely repro- 
ducing the input pattern of spikes (Fig. 3, middle trace; see also [4]). In the cortical 
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Fig. 3. PY cell responses to five thalamic shocks (indicated by *) at 10 Hz. TC cell response (upper), PY cell 
response in the model without short-term synaptic plasticty (S.T.P.) (middle), and PY cell response in the 
model with short-term synaptic plasticty (lower). 

model with short-term plasticity, the PY cell responded to each shock with an equal 
or increased number of spikes compared to the thalamocortical input train (Fig. 3, 
lower trace), and the thalamic poststimulus oscillations were amplified. 

4. Discussion 

We tested two possible mechanisms underlying intracortical augmenting responses 
in a computational model of a pair of cortical cells. The first mechanism involved the 
deinactivation of a low-threshold c a 2 +  current as a consequence of strong hyper- 
polarizing inhibition in pyramidal cells. This mechanism resulted in weakly aug- 
mented pyramidal cell responses for reasonably strong conductance values of the 
T-current. Small amplitude low-threshold spikes were obtained in only 15% of 
neocortical pyramidal cells [22]. Moreover, cells displaying augmenting responses 
often lack the strong hyperpolarization needed to deinactivate the T-current. These 
findings suggest this mechanism may contribute to cortical augmenting responses 
although it probably is not the most prominent one. 

The incremental nature and frequency dependence of intracortical augmenting 
responses was reproduced in the model pair of cortical cells that included short-term 
plasticity of inhibitory, lateral' and thalamocortical synapses. Hyperpolarization- 
activated currents were not needed in the model to obtain these effects. In a forthcom- 
ing paper we explore this mechanism in a large cortical network model [14]. Thalamic 
stimulation in a simplified thalamocortical model with short-term plasticity of cortical 
connections resulted in a small additional cortical augmentation of the already 
augmented thalamocortical inputs. Given the facilitory nature of corticothalamic 
feedback connections [34], thalamic and cortical circuits are likely to reciprocally 
reinforce thalamocortical osc~llatory activity around 10 Hz. 
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