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Abstract 

DeCharms et a1. (1995) have provided evidence for stimulus-dependent 
changes in the correlations between spike trains of simultaneously-recorded 
pairs of neurons from the auditory cortex of marmosets even when there 
was no change in the average firing rates. Most of the characteristics of 
these experimental observations can be reproduced by a simple model based 
on neurons having leaky integration, fire-and-reset spikes and with Poisson- 
distributed, balanced input. The source of synchrony in the model was 
common sensory input. Spike frequency adaptation was implemented by 
sensory-driven, delayed inhibition. The outputs of neurons in the model 
appear noisy (almost Poisson) owing to the stochastic nature of the input 
signal, but there is nevertheless a strong central peak in the correlation of 
the output spike trains. The experimental data and this simple model clearly 
demonstrate how even a noisy-looking spike train can convey basic informa- 
tion about a sensory stimulus in the relative spike timing between neurons. 
We address the binding problem and show why sykhrony without period- 
icity might be advantageous in representing multiple objects at  the same 
cortical site simultaneously. 

1 INTRODUCTION 

It is commonly believed that the neural code used by nerve cells to transmit information in 
the cerebral cortex is the mean firing rate of action potentials. Whereas there is solid evi- 
dence for this coding scheme at  the neuromuscular junction, where this concept originated, 
the temporal averaging involved in the decoding process causes problems at  the cortical 
level, where neurons usually fire at rates too low to allow for a sufficiently long decoding 
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time. As a possible solution to this problem it has been proposed tha t  cells could also 
perform a spatial average instead of, or in addition to, temporal averaging. But this form of 
population code also assumes that information is coded in a firing rate-whether spatial or 
temporal-and tha t  a neuron simply reflects changes in its input firing rates by modulating 
its output firing rate. This is the underlying assumption allowing the common reduction t o  
a transfer function used by most artificial neural network models t o  describe single neuron 
processing. 

Recently, deCharms et al. (1995) presented evidence for a different form of coding in the pri- 
mary auditory cortex of marmosets. They showed that  rapidly adapting cells responded to  
elongated tone stimuli with a fast transient onset response returning quickly t o  spontaneous 
firing rates. Thus, these cells cannot convey information about a steady-state stimulus by 
their firing rate. However, these cells do show an increase in their tendency t o  fire simul- 
taneously as revealed by correlation analysis if they are tuned t o  the presented stimulus 
frequency. Nevertheless, each spike train looked almost like it was randomly generated and 
there was no stimulus-locked component as shown by a flat shift predictor. 

Most characteristics of these experimental findings can be reproduced in a simple neuronal 
model using leaky integrate-and-fire units with Poisson-distributed, balanced input, as 
shown below. 

2 THE RANDOM WALK MODEL 

Assume tha t  the generation of action potentials relies on the membrane potential ui(t) of 
cell i (1 5 i _< N) a t  time t crossing a firing threshold 0 and tha t  deviations from the resting 
potential (set t o  0 here) are due to an input current C;(t) and given these deviations decay 
exponentially with the membrane time constant 7,. The following equation governs the 
temporal evolution of the membrane potential: 

d 1 
-u; (t) = ---u;(t) + C;(t) . 
d t r m  

A spike occurs when u;(t) = 0, and u; is reset to  its resting level. To avoid unrealistically 
large hyperpolarizations, we also introduce a negative saturation limit einh, i. e., we assure 
ui(t) 2 einh for all t. To specify the input current, C;(t), assume tha t  this input can be 
subdivided into a background and a stimulus component, Cpg(t) and C T " ~ ( ~ )  respectively 

and tha t  each of these components consists of excitatory a s  well as inhibitory parts 

where b denotes a balancing factor indicating the relative strength of the inhibition with 
respect t o  the excitation and ainh represents a delay. This feedforward network is illustrated 
for two cells in Fig. 1. 

To introduce noise in the model, assume that  all excitatory and inhibitory signal components 
are realizations of an ideal Poisson process, i. e., 

X~ 
E,bs(t) = k with probability p(k) = -e-A 

k ! 
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background 1 

background 2 

Figure 1: Basic structure for the two cell network. Both cells are getting independent 
background signals, while the input is assumed to be identical to the two neurons. Both, 
the input and the background signal, consist of an excitatory and an inhibitory part. The 
inhibition due to the external stimulus is supposed to arrive later than the excitatory stim- 
ulation. 

where k is drawn a t  each time step for every component independently. The parameter 
X denotes the mean and the variance of the distribution. Here, it can be interpreted as 
X = n,R -pc the product of the number of afferents times the probability of firing in a single 
time step, thus fixing the input firing rate. For X = 10 and a basic time step of 1 ms, this 
might correspond to 100 afferents each firing at  a rate of 100Hz. 

Due to the randomness in the input the membrane potential undergoes a sort of a random 
walk with renewal (Gerstein and Mandel brot 1964). 

3 SIMULATION RESULTS 

For simulations, we used the following set of parameters. The thresholds were set to 0 = 15 
and einh = -30, both in units of single EPSP amplitudes. The time scale was fixed by 
T,,, = 10 ms and ainh = 20 ms. We solved (1) using a simple forward Euler method with 
a time step size of 1 ms. The input was specified by X = 10 for all four components and 
the balancing factors are bbg = 1 and bstim = 1.1. A typical simulation run lasted for three 
seconds where a stimulus was switched on after the first second and turned off after the 
second. 

3.1 SINGLE CELL PROPERTIES 

Consider first the firing of a single cell. As seen in the top row of Fig.2, the total input 
current fluctuates vigorously. The resulting membrane potential (Fig. 2, middle) is smoother 
due to the temporal integration. Threshold crossings of the membrane potential resulting 
in spike emission were only driven by fluctuations except for the stimulus onset period, 
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Figure 2: Single neuron model. (Top) The total input t o  the neuron is a sum of four Poisson 
processes, each with intensity X = 10, consisting of excitatory and inhibitory background 
activity during the whole run and excitatory and delayed inhibitory signals ( A ~ " ~  = 20 ms) 
from t = 1000 to  2000ms. (Middle) Membrane potential at the receiving neuron (time 
constant T, = 10ms); The dotted line indicates the firing threshold (8  = 15). (Bottom) A 
spike histogram computed using 100 trials and 5 ms bins scaled t o  represent the mean firing 
rate in spikes per second. Note the pronounced onset response together with a rapid decay 
t o  the spontaneous rate even during stimulation. The stimulus duration is indicated by the 
horizontal bar. 

I I I I I 1 
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Figure 3: Spike trains for pairs of cells. (Left) Spike raster plot from 10 different runs of the 
same "experiment*. Shown is the activity during stimulation of two cells respectively. Every 
plus denotes a single spike. The firing times are irregular as confirmed by the coefficient 
of variation shown to the right. (Right) Coefficient of variation (defined as the standard 
deviation over the mean of the inter-spike interval distribution) as a function of stimulus 
repetitions (the two cells are indicated by x and 0). High values indicate high variability in 
firing. For a completely random spike train this value would be 1 (indicated by the dotted 
line). 

where there was an excess of excitatory input due to the delayed arrival of the balancing 
inhibitory input. This can clearly be seen in the spike histogram (lower part of Fig. 2) 
obtained by averaging over 100 repetitions of the same experiment (but using a different 
seed for initializing the random number generator each time). The mean firing rate stayed 
constant throughout the whole run except for a pronounced burst at  stimulus onset and a 
reduction of firing after stimulus offset. The large trial-to-trial variability in firing is shown 
in Fig. 3. On the left-hand side, single spikes from ten different trials are depicted while 
on the right-hand side a quantitative measure of variability, the coefficient of variation, is 
shown. Two cells are shown that share a common input, as described in the next section. 

3.2 MULTIPLE CELL PROPERTIES 

In the experiments of deCharms et al. (1993) simultaneous recordings of spike trains from 
pairs of cells were analyzed. We simulated two cells getting independent background signals 
but sharing identical stimulus components in their input (Cftim(t) = ~ ! ~ ' ~ ( t )  for all t). The 
top row of Fig. 4 shows correlations between the firing times of the two cells calculated for 
every single trial for three different periods of time (before, during, and after stimulus pre- 
sentation) and averaged afterwards. There was a strong peak a t  zero time shift only during 
common stimulation indicating an increased tendency of the two cells to fire simultaneously. 

This is not a surprising result, because one might expect the common input to drive both 
cells to firing threshold simultaneously, but it is worth noticing since only a fraction of the 
emitted spikes are affected. These synchronous spikes happen to occur a t  random times 
and are not stimulus-locked, as indicated by the flat shift predictor in the lower-right part 
of Fig. 4. The height of the central peak in the correlation depends mainly on the amount 
of common input relative to the total input to both cells as shown in Fig. 4 (bottom left). 



166 3rd Joint Symposium on Neural Computation Proceedings 

correlations before .. ... during ... 

1.- - 
l .e - 
1.4- 

1.2 - 

0.4 - 
0.2 - 

O-& -20 0 2b 40 
r Cmsl 

e nd after stimulation 

O 2  0 -40 1 -20 0 20 40 

r [me] 

the average shlR predictor 

Figure 4: A pair of cells receiving a common input. (Top row) Average correlations from 
three different time periods: (Left) From t = 250 to 750 ms - before stimulation; (Middle) 
From t = 1250 to 1750ms - during stimulation but after the onset response and (Right) 
from t = 2250 to 2750ms - after stimulation. There is a clear peak at  T = 0 for the 
stimulation period indicating that these two neurons have a tendency to fire in synchrony 
during presence of the stimulus. Correlations were calculated for every trial using 5 ms bins 
and averaged afterwards. (Bottom, left) Tuning curve: Height of the central peak in the 
correlation during stimulation as a function of the fraction of identical input. The peak 
height increases with the overlap. (Bottom, right) Due to the overall noisy structure of 
the observed response, the shift predictor, correlating responses from different trials, is flat. 
Thus, there was no stimulus-locked activity during the tonic phase of the response. 
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Figure 5: T ime  course of t h e  average correlation calculated using a 500ms  t ime window 
sliding over a 9 s  simulation run in l o o m s  time steps. (Top) T h e  full correlations as a 
function of time. (Bot tom) T h e  height of the  central peak of t h e  correlations as a function 
of time. A stimulus was presented from t = 3000 t o  6000 ms. 
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Figure 6: Basic structure for the three cell network. Now, cells 1 and 2 as well as 2 and 3 
share some common input. 

The overlap here is defined as the ratio of common versus total input, ranging from zero 
(no common input) to one (absolutely identical input). 

Next, the time course of the correlation peak is shown in Fig. 5. Correlations were calculated 
from a 500ms time window sliding over the entire run in 100 ms time steps leading to five 
times oversampling following deCharms et al. (1995). During the entire stimulation period, 
there was a pronounced increase in the correlations, which disappeared when the stimulus 
was turned off. 

4 A FUNCTIONAL ROLE? 

Finally, we suggest further computational implications of this mode of operation. It has 
been argued that the temporal structure of neuronal signals might be used for solving the 
binding problem (von der Malsburg 1981). Some time ago, there seemed to be experimetal 
evidence for this concept through the discovery of stimulus-related, collective oscillations, 
first found in the primary visual cortex of cats (Eckhorn et al. 1988, Gray and Singer 1989, 
Gray et  al. 1989). Similar observations have also been made in monkeys (Kreiter and Singer 
1996), but it is not clear whether the observed oscillations really have a crucial role in 
perception. 

Here, we stress that the underlying mechanism for solving the binding problem is simultane- 
aous activity, not necessarily involving oscillations at all. Consider the neuronal network 
in Fig. 6. Two pairs of cells receive common input as before, so their output spikes show 
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... during ... and after stimulation 

Figure 7: Demonstration of non-transitivity in a three neuron network. During stimulation, 
the responses of cells 1 and 2 as well as 2 and 3 show a tendency to fire in synchrony, but 
not cells 1 and 3. This is remarkable, since both are correlated with cell 2. This non- 
transitivity could be a useful property in avoiding the superposition catastrophe that can 
occur in binding the cell assemblies that represent multiple objects. 

an increased tendency to appear simultaneously, as reflected in the correlations shown in 
Fig. 7. It is remarkable, however, that cells 1 and 3 are not correlated, despite the fact that 
these two cells both are correlated with cell 2. 

5 DISCUSSION 

In contrast to the common belief that neurons code information only in their mean firing 
rate, deCharms et al. (1995) have shown that there is another possibility of coding, based 
on the relative timing of spikes from different neurons. We have replicated their results in a 
neural model. Conceptually, this idea is not new, and the underlying firing pattern may be 
even more complicated than just synchronous firing, as in synfire chains (Abeles et al. 1993) 
or arbitrary firing patterns (Gerstner et al. 1993) or with respect to an internal neuronal 
clock (Hopfield 1995). 

What is new here is the observation that relative spike timing might be used in a noisy mode 
of operation. For this regime, it has commonly been assumed that the only way to get at  
reliable information transmission should be based on a rate code (Shadlen and Newsome 
1994). But there is increasing evidence for the possibility of temporal codes. First, i t  has 
been shown by Mainen and Sejnowski (1995) that neocortical neurons fire very reliably if 



I70 3rd Joint Symposium on Neural Computation Proceedings 

driven mainly by input fluctuations instead of a constant current. Therefore, the well known 
high variability in cortical spike firing times might reflect a high variability in the input to a 
neuron instead of intrinsic noise due to the spike generation process. Second, correlations in  
firing times between neurons tuned to similar stimulus features are omnipresent, but they 
have usually been interpreted as an artifact of common stimulation causing redundancy 
and having no use. Recently, this interpretation has been questioned. In the visual system, 
correlations seem to improve stimulus representation on the level of the retina (Meister 
et al. 1995) as well as the LGN (Dan et al. 1996). In the auditory system, deCharms et 
al. (1995) provided evidence for the crucial role of correlations in  stimulus representations. 
Their study was the starting point for the model presented here. We do not claim to have 
reproduced every single detail of their data. For this, a biophysically more realistic model 
should be appropriate. But we have shown here how such a code might work naturally and 
reliably even in a noisy environment. 

The final question, however, whether this type of coding is really used in the brain (i. e., 
read out at  the next level) remains to be experimentally examined. Correlations are easily 
read out by neurons and they play a central role in learning, so there is every reason to 
continue along this line of investigation. 
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