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Abstract 

The "folk theorem" that sparsity inducing priors should be supergaussian can be rigorously 
stated in the low-noise limit, assuming the validity of a particular stochastic generative 
model. For the assumed model it is shown that supergaussianess is necessary, but not 
sufficient, for sparse signal coding when a Maximum A Posterior ( M A P )  coding is found. 

1 Introduction 

It has been noted by a variety of investigators in several different research domains (human 
vision, signal processing, etc) that a generative model appropriate for understanding sparse 
coding and Independent Component Analysis (ICA) is given by the system of equations, 

where y is an observed signal vector, x is an unobserved ("blind") source vector, the columns 
of A form an overcomplete dictionary, and v is a measurement noise vector which is inde- 
pendent of the source. 

The system (1) is profitably interpreted within a Bayesian framework. The components, 
~ [ k ] ,  k = 1, - - . n, of the source vector, x, are independent components within this framework 
when the statistical prior, P(x) ,  factors into a product of marginal probabilities as P(x)  = 

P(x[l]) - .  - P(x[n]). Within this ICA model an estimate of the source vector x is said to 
provide a "factorial code" of the measured signal y. This shows the relationship between 
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ICA and factorial coding. It is generally believed that for x to provide a sparse coding of 
y, the marginal prior P(x[k]) should be supergaussian. This fact has not been proven in a 
strictly rigorous manner, but has a plausible intuitiveness and has been demonstrated in a 
variety of simulations and applications. It serves as a useful "folk theorem" for obtaining 
sparse codes via the model (1). 

We make rigorous statements concerning when a maximum a posteriori (MAP) estimate 
of the source x will provide a sparse coding of the measured signal y in the low-noise 
limit. We show that a requirement for obtaining sparse codings is that the negative log- 
prior, - log(P(x)) , be concave. We also argue that an additional desirable property is that 
- log(P(x)) be Schur-concave. A rigorous theoretical justification of the results discussed 
in this paper can be found in the report [4]. 

2 Bayesian Framework 

Stochastic Generative Model. A Bayesian interpretation is obtained from the gener- 
ative signal model (1) by assuming that x has the parameterized (generally non-gaussian) 

pdf, 
P p ( x ) = ~ F 1 e - 7 ~ d ~ ( x ) ,  - e-'Y~d~(x)dx, .- / (2) 

with parameter vector p. Similarly, the noise v is assumed to have the parameterized 
(possibly nonguassian) density Pq(v) with parameter vector q. It is assume that x and v 
have zero means and that their densities obey the property d(x) = d(lxl), for I . I defined 
component-wise. This is equivalent to assuming that the densities are symmetric with 
respect to sign changes in the components of x, x[i] t -x[i], and therefore that the skews 
of these densities are zero. Here, with a slight abuse of notation, we allow the differing 
subscripts q and p to indicate that dq and dp may be functionally different as well as 
parametrically different. We will refer to densities like (2), for suitable additional constraints 
on dp(x) to be stated below, as Hyper-Generalized Gaussian Distributions (HGDs). As 
discussed below, they are a superset of the well-known generalized gaussian distributions 
(GGDs) (also known as exponential power distributions or Box-Tiao distributions) [3]. 

Here, we treat A, p, and q as known parameters, and thus x and y are jointly distributed 
as P(x ,  y) = P(x,  y;p, q, A). Bayes' rule yields, 

Given an observation, y, maximizing (3) with respect to x yields the MAP estimate 2. This 
ideally results in a sparse coding of the observation, a requirement which places functional 
constraints on the probability density functions. Note that P is independent of x and can 
be ignored when optimizing (3). 

The MAP estimate equivalently is obtained from minimizing the the negative logarithm 
of P(xly), which is (to within irrelevant multiplicative and additive constants) equal to the 
problem, 

2 = argmindq(y - Ax) + Xdp(x), 
x (5) 

where X = yp/yq, and dq(y - Ax) = dq(Ax - Y) by our assumption of symmetry. Note 
that X -+ 0 as yp --+ 0 which (consistant with the generative model (1)) we refer to as the 
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low noise limit. Because the mapping A is assumed to be onto, in the low noise limit the 
optimization (5) is equivalent to the linearly constrained problem, 

2 = arg min dp(x) subject to Ax = y . (6) 

I t  is evident that the structure of dp(-) is critical for obtaining a sparse coding, E, of the 
observation y. 

Independent Component Analysis (ICA). An important class of densities is given 
by the generalized gaussians for which 

for p > 0 [3]. This is a special case of the 6 class (the "p-class") of functions which alIow p 
to be negative which is discussed in 19, 41. Note that this function has the special property 
of separability, 

n 

dp(4  = C dp(x[kl) 7 

k = l  

which corresponds to factorizability of the density Pp(x), 

and hence to independence of the components of x. It is, in fact, now well-known that 
the assumption of independent components allows the problem of solving the generative 
model (1) for x to be interpreted as an Independent Component Analysis (ICA) problem 
[l, 8, 7, 101. In [9] and [4] is developed a large class of parameterizable separable functions 
gp(x) consistent with the ICA assumption. Note that given such a class, it is natural 
to examine the issue of finding a best fit within this class to the "true" underlying prior 
density of x. This is a problem of parametric density estimation of the true prior where one 
attempts to find an optimal choice of the model density Pp(x) by an optimization over the 
parameters p which define the choice of a prior from within the class. This is, in general, 
a difficult problem which may require the use of monte-carlo, evolutionary programming, 
and/or stochastic search techniques. 

Sparsity Inducing Priors. Can the belief that supergaussian priors, Pp(x), are appro- 
priate for finding sparse solutions to (1) (see, e.g., [2, 71) be clarified or made rigorous? It 
is well known that the generalized gaussian distribution arising from the use of (7) yields 
supergaussian distributions (positive kurtosis) for p < 2 and subgaussian (negative kurtosis) 
for p > 2. However, we will argue that the condition for obtaining sparse solutions in the 
low noise limit is the stronger requirment that p < 1, in which case the separable function 
dp(x) is concave and Schur-concave. This indicates that supergaussianess (positive kurto- 
sis) alone is necessary but not suficient for inducing sparse solutions. Rather, sufficiency is 
given by the requirement that - log Pp(x) z dP(x) be Concave/Schur-Concave(CSC). 

We've seen that the function dp(x) has an interpretation as a (negative logarithm of) a 
Bayesian prior or as a penalty function enforcing sparsity in (5) where dp(x) should serve as 
a "relaxed counting function" on the nonzero elements of x. Our perspective emphasizes the 
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fact that dp(x) serves both of these goals simultaneously. Thus, good regularizing functions, 
d,(x), should be flexibly parameterizable so that Pp(x) can be optimized over the parameter 
vector p to provide a good parametric fit to the underlying environmental probability density 
function, and the functions should also have analytical properties consistent with the goal 
of enforcing sparse solutions. Such properties are discussed in the next section. 

3 Majorization and Schur-Concavity [5] 

Schur-Concave Functions. A measure of the sparsity of the elements of a solution vector 
x (or the lack thereof, which we refer to as the diversity of x) is given by a partial ordering 
on vectors known as the Lorentx order. For any vector in the positive orthant, x E R3,  
define the decreasing rearrangement 

and the partial sums [5,  121, 

We say that y majorizes x, y > x, iff for k = 1, . - , n, 

The vector y is more concentrated, or less diverse, than x. This partial order defined by 
majorization then defines the Lorentz order. 

We are interested in scalar-valued functions of x which are consistent with majorization. 
Such functions are known as Schur-Concave functions, d(-) : RT + R. They are defined to 
be precisely the class of functions which are consistent with the Lorentx order, 

In words, if y is less diverse than x (according to the Lorentz order) than d(y) is less than 
d(x) for d(.) Schur-concave. 

We assume that Schur-Concavity is a necessary condition for d(.) to be a good measure 
of diversity (anti-sparsity). 

Concavity yields sparse solutions. Recall that a function d(-) is concave on the positive 
orthant Rf iff [I11 

d ((1 - 7)x + 7 ~ )  2 (1 - M x )  + 7 4 ~ )  , 
Vx, y E RT , Vy, 0 5 y 5 1. In addition, a scalar function is said to be permutation invariant 
if its value is independent of rearrangements of its components. An important fact is that 
for permutation invariant functions concavity is a suficient condition for Schur-Concavity: 

Concavity + Permutation Invariance + Schur-Concavity. 

Now consider the low-noise sparse inverse problem (6). It is well known that subject to 
linear constraints, a concave function on R 3  takes its minima on the boundary of R 3  [Ill ,  
and as a consequence these minima are therefore sparse (see Figure 1). 
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Figure 1: Minimization of Concave Function Yields Sparsity. Sliding down a bowl-shaped 
(concave) function results in a zero-component value on the boundary of an orthant. 

0 We take concavity to be a suficient condition for d(-) to be a measure of diversity 
and we obtain sparsity as constrained minima of d(.). 

More generally, a diversity measure should be somewhere between Schur-concave and 
concave. In [4] are defined almost concave functions, which are Schur-concave and 
(locally) concave in all n directions but one, which also are good measures of diversity. 

Separability, Schur-Concavity, and ICA. The simplest way to ensure that d(x) be 
permutation invariant (a necessary condition for Schur-concavity) is to use functions that 
are separable. Recall that separability of dp(x) corresponds to factorizability of Pp(x). Thus 
separability of d(x) corresponds to the assumption of independent components of x under 
the model 1). We see that from a Bayesian perspective, separability of d(x) corresponds 
to a generative model for y that assumes a source, x, with independent components. With 
this assumption, we are working within the framework of Independent Component Analysis 
(ICA) [6,8, 101. We have developed effective algorithms for solving the optimization problem 
(6) for sparse solutions when dp(x) is separable and concave [4, 91. 

It is now evident that relaxing the restriction of separability generalizes the generative 
model to the case were the source vector, x, has dependent components. We can reasonably 
call an approach based on a non-separable diversity measure d(x) a Dependent Component 
Analysis (DCA). Unless care is taken, this relaxation can significantly complicate the anal- 
ysis and development of optimization algorithms. Fortunately, it can be shown that the 
algorithms of [4, 91 can be applied to solve the low-noise DCA problem provided appropri- 
ates choice of non-separable diversity functions are made. 
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4 Supergaussian Priors and Sparse Coding 

The P-class of diversity measures for 0 < p 1 result in sparse solutions to the low- 
noise coding problem (6). These separable and concave (and thus Schur-concave) diversity 
measures correspond to supergaussian generalized gaussian priors, consistent with the "folk 
theorem" that supergaussian priors are sparsity enforcing priors. However, taking 1 5 p < 2 
results in supergaussian priors which are not sparsity enforcing. Taking p to be between 
1 and 2 yields a dp(x) which is convex, and therefore not concave. This is consistent with 
the well-known fact that for this range of p, the pth-root of dp(x) is a norm. Minimizing 
dp(x) in this case drives x towards the origin, favoring "concentrated" rather than "sparse" 
solutions. In Figure (2) is shown the level curves of dp(x) for several values of p along with 

Figure 2: Contour Plots and Steepest Descent Vectors of dp(x) for Various Values of p. 
Note that for p > 1, the directions of steepest descent is directed towards the origin, while 
for p < 1 they are directed towards the boundary of the positive orthant enforcing sparse 
solutions. 

the directions of steepest descent (negative gradient) of dp(x) at two fixed points in the 
positive orthant. It is evident that the gradients for 1 < p < 2 point towards the origin, 
while the gradients for 0 < p < 1 point towards the boundary of the orthant. We see 
that if a sparse coding is to be found based on obtaining a MAP estimate to the low-noise 
generative model (1) then, in a sense, supergaussianess is a necessary but not sufficient 
condition for a prior to be sparsity enforcing. A sufficent condition for obtaining a sparse 
MAP coding is that the negative log-prior be Concave/Schur-concave (CSC). 
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5 Conclusions 

The majorization framework gives insight into diversity measures which are useful for en- 
forcing sparse solutions to linear inverse problems. This has sharpened our understanding 
of the structure of sparsity-inducing priors, at least for the low-noise limit of the gener- 
ative model (1). In particular we have seen that Concave/Schur-concave (CSC) negative 
log-priors function as good diversity and sparsity enforcing measures, and that separability 
of such measures is consistent with ICA generative models. We have seen that such priors 
include supergaussian priors, but that supergaussianess is not sufficient to ensure sparse 
codings via MAP estimation. It still remains to determine if this low-noise limitation holds 
for other sparsity-enforcing algorithms which have been proposed in the literature. To the 
degree that such algorithms can be shown to be variants of the MAP coding procedure, then 
this limitation should hold in the low-noise limit. In the non-low-noise case, thresholding 
may be required to separate signals from spurious noise components. In this case it may be 
undesirable to overly enforce sparse solutions prior to the thresholding stage. 
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