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ABSTRACT 
 

Ten spatial infomax ICA decompositions 
were performed on two fMRI data sets collected 
from the same subject. The maximally- 
independent spatial components were then tested 
across decompositions for one-to-one 
correspondences. Matching independent 
component maps by mutual information alone 
proved ineffective. Matching component map 
pairs by correlating their z-transformed voxel 
map weights demonstrated that the top 100 
components were stably reproduced in each of 
the ten decompositions. Infomax ICA therefore 
provided a stable decomposition of fMRI data 
into spatially independent components. 

 
1. INTRODUCTION 

 
Independent Component Analysis (ICA) has 

been successfully applied in a variety of 
applications including biomedical time series 
(EEG, ECG, etc.) and images (fMRI, PET, 
SPECT) [1]. For example, Makeig, et al. [2] 
applied ICA to separate the multi-channel EEG 
and found that the basis of the event-related 
potential, averaged across similar experimental 
trials, can typically be dissected into several 
source components accounting for different 
temporally and functionally distinct EEG 
processes. This method can better explain the 
variability of event-related EEG results and can 
give more complete and consistent results, within 
and between subjects, than standard methods that 
measure data features at individual scalp 
channels [3]. 

ICA is a relatively model-free blind method 
that attempts to separate the underlying source 

contributions to the data without knowing in 
advance what the sources are or how they are 
mixed. Thus, there are no a priori suitable 
statistical models to evaluate the goodness-of-fit 
of the resultant independent components. For 
both EEG and fMRI data, the ‘true’ natures of 
the signal sources are not known. It is therefore 
difficult to evaluate the performance of ICA for 
these data precisely.  

In their pioneering application of ICA to 
fMRI data, McKeown et al. [4][5] decomposed 
one fMRI data set twice, first with random initial 
weights and the second beginning with the 
resulting weights from the first decomposition. 
They then compared the resulting components 
from the two decompositions using mutual 
information, selecting a mutual information 
threshold for detecting highly reproducible 
components. Meinecke et al. [4] applied a 
resampling approach to randomly select 
independent components from an ICA 
decomposition, then applied ICA to the 
reassembled dataset to determine which 
components were reproduced across 
decompositions. In this paper, we decompose 
two fMRI data sets, collected from the same 
subject participating in the same experiment, 
using infomax ICA and employ a quantitative 
approach to assess the reproducibility of the 
decompositions.  

We first describe the fMRI data, how we 
performed the decompositions and how we 
matched components across different 
decompositions. We then define the measures by 
which we evaluated the stability of the 
decompositions. The resulting component 
equivalences are then presented. Finally, we 
discuss the implications of our results for 



analysis of fMRI data. 
2. METHOD 

 
fMRI Data Set 

Two fMRI data sets from one subject who 
passively viewed reverse checkerboard patterns 
intermittently presented (for 500 ms or 3000 ms 
every 30 sec, as described in Duann et al. [7]) 
were used for multiple ICA decompositions to 
evaluate the stability of ICA results. These data 
each consisted of 5 slices of 64×64 functional 
brain images with an inter-scan interval (TR) of 
0.5 sec, collected using a 3-Tesla research 
scanner at the Taipei Veterans General Hospital, 
Taiwan. 
 
Data Analysis 

Before image preprocessing, 5-6 corrupt 
(‘dummy’) scans were removed from the 
beginning of the fMRI data. Then, the data were 
subjected to slice timing adjustment to minimize 
inhomogeneities arising from acquisition of the 
five image planes at different times. We then 
removed voxels outside the brain volume to 
reduce the data size for ICA training and also to 
eliminate possible sources of machine noise 
arising from susceptibility differences between 
air and brain tissues. The fMRI time series were 
then transposed to form a matrix with dimension 
N×V, where N is the number of scans (in our case, 
N=600) and V, the number of voxels remaining 
after image preprocessing (here V=4047). The 
fMRI time series matrix was then subjected to 
infomax ICA decomposition [8] to obtain an 
unmixing matrix. Multiplying the data by this 
matrix produced the estimated component maps 
and time courses. Since the number of voxel time 
courses decomposed (~9000) was not sufficient 
to derive a full (600×600) unmixing matrix, the 
dimensionality of the data was reduced to 100 by 
PCA before training. The unmixing weights were 
initialized with the unity matrix. To assure the 
full convergence of ICA training, the number of 
training steps was increased to 2048. For further 
details, see Duann et al. [7]. 
 

Multiple ICA Decompositions 
To evaluate the stability and consistency of 

infomax decomposition, each of the 
preprocessed fMRI data sets was decomposed by 
infomax ICA ten times using the same initial 
conditions and training parameters. Variability in 
the output of the infomax algorithm [8] is 
induced by the random shuffling of the training 
(voxel) data order before each training step. Next, 
the activation matrices containing the spatial 
component maps were obtained by 

xWu ×= ii  (1) 
where iu  are the ‘activation’ map weights of 
the ith decomposition, iW  is the inverse matrix 
of the ith decomposition of the training data set 
x . The activations were transformed to z values 
by 
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where i is the decomposition index, j the number 
of components, and k the number of voxels; K is 
the total number of voxels in the training data set, 
and i

kju , and i
kjz , are the activation weights and 

the z value of kth voxel contributed by the jth 
component in the ith decomposition, respectively. 
Assessments of how well component classes 
were matched and their stability were performed 
on the z-transformed component maps.  
 
Matching Component Pair Assignments 

The first question was whether for each 
component in any one of the decompositions, it 
was possible to identify a single best-matching 
component in each of the other decompositions. 
To determine this, we first needed to find 
best-matching component pairs for pairs of 
decompositions. We tried three different 
similarity measures: mutual information, cross 
correlation, and cross correlation with mutual 
information weighting of the component maps 
weights. The measure of mutual information we 
used was: 
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where MI is normalized mutual information, H(x) 
is the entropy of random variable x (map 
weights), and the entropy is derived from its 
histogram with N bins. For N, we used the cube 
root of the number of voxels involved in the ICA 
training. To eliminate fluctuations created by the 
entropy of the weights used in the estimation, we 
normalized mutual information (as above) by 
dividing it by the sum of the weight entropies. 

For each measure, best matching component 
pairs were assigned by repeatedly selecting, 
without substitution, the most similar pair of 
remaining components. Cross correlation 
coefficients between best-matching component 
map pairs proved to be quite high, essentially 
separating the 10×100 components into 100 
equivalence classes consisting of 10 components, 
one from each decomposition. To better 
differentiate best and worst component classes, 
we investigated a joint component pair similarity 
measure, the product of cross correlation and 
mutual information. 

 
Evaluating the Stability of ICA results 

To assess the stability of the decompositions, 
we then computed the standard deviation of the 
z-transformed map weights across each 
component equivalence class, as well as the 
cross correlations of the matching component 
time courses. The first measures was obtained by 
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where i
kz is the weight at voxel k in the ith 

decomposition and kz is the mean weight at the 
same voxel k across the ten decompositions. We 
computed ASTD, the standard deviation of map 
weights (in z values) across decompositions, 
within a window of 50 voxels moved through the 
voxel data (sorted by z value) in 25-voxel steps. 

As a second index of component stability, we 
calculated the mean cross correlation between 
time courses of nine component pairs in each 
equivalence class (e.g. the first decomposition vs. 
the others).  

3. RESULTS 
 

Fig. 1 shows the results of matching 
component pairs between first and all other nine 
decompositions (for the first data set) using the 
three different similarity measures (top row, 
mutual information; bottom row, cross 
correlation). The left panels show the 
best-matching component pair assignments. Here, 
the component numbers (ordered by the infomax 
algorithm in reverse order of data variance 
accounted for) are color-coded (blue=#1 to 
red=#100). The first row of each figure shows 
the components in the first decomposition in 
their original component order (from 1 to 100). 
The color (assigned using the same convention 
described above) in other rows of the figure 
indicates the best-matching component number 
in the other nine decompositions. For example, 
component #100 in the fifth decomposition is 
assigned to component #25 in the first 
decomposition (red arrow, Fig. 1a), the 
best-matching component by mutual information. 
Fig. 1 shows clearly that nearly all best-matching 
component pairs, by mutual information, were 
closely matched in amplitude rank (i.e., 
component number). Using cross correlation, 
with or without weighting by mutual information, 
produced matches with more component-number 
adjustments ( ai ↔ bj where i ≠ j).  

Fig. 1 (top right) shows the mutual 
information measure for the best-matching pairs. 
For all nine comparisons, the mutual information 
trends contain an abrupt drop (“knee point”) 
between component pairs 20 and 40. Above this 
knee point, the mutual information between 
matching components is close to zero. For 
example, for the comparison between 
decompositions 1 and 2, MI values for later pairs 
were between 0.0011 and 0.0018. Based on this 
measure [5, 6], one might guess that only 20 to 



40 of the 100 independent components were 
reproduced in all decompositions. However, the 
results of matching based on absolute 
correlations gave quite a different result (Fig. 1c 
and 1d), which showed that all 100 component 
maps were faithfully reproduced in every 
decompositions (the minimum map weight 
correlation was 0.925, Fig. 1d). Cross correlation 
weighted by mutual information found the same 
best-matching pairs as matching by correlation 
alone.  

 
Fig. 1 Best-matching components obtained from multiple 

decompositions. (a) Indices of the best-matching 
component pairs from the first decomposition and the 
others, as found by maximum mutual information. 
Component indices are color-coded (component, 1 blue; 
component 100, red as in the top row). (b) Mutual 
information between the best-matching components 
sorted by its magnitude. The nine traces reflect 
component pairings between the first decomposition and 
the others. Three vertical dotted lines indicate 
respectively the best matching component pair (1st), the 
distribution “knee point” (29th), and the least 
well-matching component pair (100th) for 
decompositions 1 and 2. (c) The component pair 
assignments from based on maximum absolute 
correlation coefficients.. (Using correlations multiplied 
by MI gave identical component pair assignments). (d) 
Correlation coefficients between the matching 
component pairs shown in (c). Upper traces: Correlation 
coefficients; lower traces: correlations times mutual 
information, both sorted by mean absolute correlation. 

 
Fig. 2 shows, for each of the three similarity 

measures, scatter plots of the component map 
weights for the first most, twenty-ninth (at the 
knee point indicated by blue arrow in Fig. 1b) 

and least most (100th) well-matching pairs from 
the first and second decompositions (indicated 
by three vertical dotted lines in Fig. 1b and 1d). 

 
Fig. 2 Comparisons between best-matching component 

pairs found using mutual information (a, c, and e, left) 
and absolute cross correlation weighted by mutual 
information (b, d and f, right).  
 
In Fig. 2, the scatter plots of map weights of 

the two corresponding components distinctly 
follow y=x line (r=1.00, MI=0.9714 in Fig. 2a 
and 2b). Fig. 2c shows the scatter plot of the 
activations of corresponding components of the 
component pair obtained by maximum mutual 
information at the ‘knee point’ indicated by a 
blue arrow in Fig. 1b. The voxel data do not 
adhere to the y=x line (MI=0.0018). For 
comparison purposed, in Fig. 2d, we show the 
scatter plot of matching components of 29th 
component pair obtained using method of 
absolute cross correlation weighted by mutual 
information. These data follow fall on the 
diagonal line (CC=0.9994 and MI=0.8685). The 
distribution of the 29th component pair data 
(MI=0.8685) is wider than that of the first pair 
(MI=0.9714), although it may be difficult to 



distinguish the two pairs correlation coefficient 
alone (CC=1.00 vs. CC=0.9994). 

Although the voxel weights of the least 
well-matching component pair by mutual 
information alone (Fig. 2e) do not follow y=x 
line (MI=0.0011), the least well-matched pair by 
cross correlation (with or without weighting by 
mutual information) closely follows the y=x line 
(CC=0.9820, MI=0.2214, Fig. 2f). Here mutual 
information weighting (MI=0.8685 vs. 
MI=0.2214 in Figs. 2d and 2f) appears more 
sensitive to differences than correlation 
coefficients alone (CC=0.9994 vs. CC=0.9820).  

 
Fig. 3 (Top panel) Color-coded standard deviations (across 

ten decompositions) of voxel component map weights 
for fifty-voxel windows moved across the z-value range 
(abscissa). Note that the peaks around zero in these plots 
are introduced by normalization of near-zero z values in 
Eq. (3). (Bottom panel) Standard deviations (ordinate) 
within the fifty-voxel window centered at z = 2 (dotted 
line in top panel) for the 100 best-matching component 
classes reverse-ordered (abscissa) by map-weight 
correlation.  

 
Fig. 3 shows the standard deviation of voxel 

weights (from Eq. 4) across the 10 

decompositions as a function of median z value, 
computed for a 50-voxel window moving in a 
25-voxel step through the brain voxels sorted in 
order of increasing mean z values. We consider 
the tails of the z-weight distribution, e.g. with 
weights z>2, to be the voxels defining 
component’s region of activity (ROA) [7]. Fig. 
3b shows the standard deviation of map weights 
in the voxel window centered at z = 2 (vertical 
red line in Fig. 3a). The ROA-boundary weights 
are most stable for the overall best-matching 10 
component classes, and appear increasingly less 
stable for component classes 50-100; however, 
these deviations can be negligible.  

We also investigated the similarity of the 
BOLD-signal time courses of matching 
component pairs from different decompositions. 
The absolute correlations were very high (0.94 ~ 
1.0). The same procedure applied to the second 
data set from the same subject produced 
equivalent results.  

 
4. DISCUSSION 

 
Correctly determining the best-matching 

component pairs is an important issue in 
evaluating the stability of ICA decompositions. 
These results suggest matching component pairs 
using maximum correlation, with or without 
mutual information weighting, is a 
straightforward and effective method for 
determining best-matching component classes 
from multiple ICA decompositions of the same 
data. For these data, even the least best-matching 
component pairs exhibited strong stability. Our 
results do not support the claim of McKeown [5] 
who proposed that mutual information is a useful 
method for discarding unreliable components, 
using the "knee" of the mutual information 
distribution. Although we also found a ‘knee’ in 
the component distribution, correlating 
z-transformed map weights for the same data 
demonstrated that the mutual information 
method produced clearly sub-optimum 
component pair assignments (Fig. 2). In fact, 
component-pair matching by map correlations 



demonstrated that every component in each 
decomposition had a well-matching counterpart 
in every other decomposition. Therefore, 
components not well-matched by mutual 
information were not necessarily “noisy” 
components to be rejected from further analysis. 
Thus, our results show that with correct 
correlation-based component matching, the 
components obtained from repeated infomax 
ICA decompositions are highly stable and 
consistent, with weights that vary little across 
decompositions.  The time courses of 
best-matching components are also retained 
across decompositions.  

However, automatic categorization of fMRI 
components as task-related, non-task related or 
artifact, often of interest to fMRI researchers, is a 
more difficult problem. Detailed examination of 
the best-reproduced ten components (Fig. 3, 
lower left) showed these to include three 
components most probably arising from subject 
movement and three others from arterial 
pulsations. Two others exhibited slow drifts of 
unknown origin. Only two of the ten accounted 
for task- and stimulus-related BOLD activity 
(stimulus-related visual and scanner-noise 
auditory response areas). 

We have recently developed an ICA 
component browser application, FMRLAB, 
which allows experimenters to quickly compute 
and then browse through properties of the 
independent components of their data, marking 
some for rejection as artifact and/or selecting 
others for further analysis. FMRLAB runs on 
several platforms in the MATLAB (The 
Mathworks, Inc.) environment, and is freely 
available for non-commercial use via our web 
site [9]. 
 

5. CONCLUSIONS 
 

Assessing the consistency or stability of ICA 
decomposition of fMRI data is an important 
issue for interpreting the results. Here, we 
utilized multiple decompositions of the same 
fMRI data sets into spatially independent 

components to measure the stability of infomax 
ICA. The infomax algorithm [8] never failed to 
converge to a stable solution. Moreover, 
measures of component voxel weight and time 
courses showed the repeated infomax ICA 
decompositions were extremely stable. These 
promising results need to be further tested using 
fMRI datasets from different experimental 
paradigms and using more general resampling 
methods [6]. 
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