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Optimal control models of biological movements introduce external
task factors to specify the pace of movements. Here, we present the
dual to the principle of optimality based on a conserved quantity,
called “drive,” that represents the influence of internal motivation
level on movement pace. Optimal control and drive conservation
provide equivalent descriptions for the regularities observed within
individual movements. For regularities across movements, drive
conservation predicts a previously unidentified scaling law between
the overall size and speed of various self-paced hand movements in
the absence of any external tasks, which we confirmed with psy-
chophysical experiments. Drive can be interpreted as a high-level
control variable that sets the overall pace of movements and may
be represented in the brain as the tonic levels of neuromodulators
that control the level of internal motivation, thus providing insights
into how internal states affect biological motor control.

optimal control | motor system | conservation law | internal motivation |
scaling law in movements

Optimality principles accurately predict many regularities
observed in biological movements (1). In addition to mini-

mizing the cost of making a movement, however, optimal control
models must also restrict the duration of the movement (2–7), or
introduce motor tasks that encourage faster movements (8–15);
otherwise, the minimum cost could be achieved by simply de-
creasing the overall movement speed. Consequently, this approach
neglects biological movements that are generated in a self-paced
manner (i.e., in the absence of external task contingencies that can
affect the pace of movements).
We present here a theoretical framework that is dual to op-

timal control theory, based on an internal conserved quantity
called “drive”: The constancy of drive characterizes the regu-
larities within a movement, whereas the level of drive sets the
overall pace, which is shared between movements. This bridges
the conventional distinction between local regularities within
individual movements and global regularities across multiple
movements. Drive formalizes the influence of internal motiva-
tion on the planning and execution of movements, providing a
new perspective on biological motor control processes.

Results
Self-paced movements can be modeled as time-invariant control
processes: The body dynamics model, _q= f ðq, u, tÞ, and cost func-
tion, Lðq, u, tÞ, where q is state and u is control, do not explicitly
depend on time. In physics, time invariance is fundamentally asso-
ciated with conservation of energy, which is the dual variable of time
(16). The analogous conserved quantity for control theory is the
partial time derivative of the minimal integrated cost, which we call
“drive” (Materials and Methods, Drive)

DðtÞ≡ −
∂
∂t

min
fuðτÞg

Z t

0
Lðq, u, τÞ dτ. [1]

Drive is related to the Hamiltonian function (17)

Hðp, q, u, tÞ= p · f ðq, u, tÞ−Lðq,u, tÞ, [2]

where p is a Lagrange multiplier to ensure that movements sat-
isfy the dynamical equations, _q= f (Materials and Methods, Least

Action Principle of Motor Control). Along an optimal movement
trajectory, drive has the same value as the Hamiltonian, D=H,
and evolves as _D=Ht = p · ft −Lt, where dots represent total time
derivatives and subscripts denote partial time derivatives. Thus,
time invariance of the model (ft = 0, Lt = 0) implies conservation
of drive: _D= 0.
Drive conservation is valid for any time-invariant optimal

control models. As a concrete example, we analyze drive con-
servation on minimum-jerk control, an optimal control model
that accurately reproduces a wide range of hand movements (7,
18–20). This model assumes a linear time-invariant model of the
limb dynamics and a quadratic cost of the control that can be
represented as squared-jerk, L=

��~υ:: ��2=2, where jerk is the sec-
ond-order time derivative of hand velocity. Drive associated with
minimum-jerk control is

D=
1
2

��~υ::��2 − _~υ ·~υ
:::
+~υ · ~υ

::::
, [3]

whose time derivative is _D=~υ ·~υð5Þ (Materials and Methods,Minimum-
Jerk Drive).

Local Regularities. Drive conservation (Eq. 3) and minimum-jerk
control have identical solutions, which can be analytically solved
for straight and circular hand movements.
For a straight hand movement, they predict a smooth bell-shaped

speed profile (7): υðtÞ= 16  Vsðt=TÞ2ð1− t=TÞ2, where Vs = 15L=8T
is the peak-speed, L is the length, and T is the duration (Fig. 1C).
Despite the time-varying speed, the movement satisfies~υð5Þ = 0, thus
conserving the drive. This result closely approximates the speed
profiles observed in human reaching movements (Fig. 1A) (7, 21).
For a circular hand movement, they predict a speed profile

that is constant except near the end points where the speed starts
and finishes at zero, as observed in human movements (Fig. 1 B
and D) (22). During the circular motion, the speed is approxi-
mately υðtÞ=Vc ≈RΘ=T, where R is the radius, and Θ is the
angular distance. Despite the time-varying direction, ~υ and ~υð5Þ

maintain orthogonality, which conserves the drive.
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Note that the level of drive is directly related to movement vari-
ables, such as the overall length and duration of a straight movement

D= 1800
L2

T6, [4]

or the radius, angular length, and duration of a circular drawing
movement

D≈
5
2
R2Θ6

T6 , [5]

which can be derived from Eq. 3 (Materials and Methods, Straight
Hand Movements and Circle-Drawing Movements).

Global Regularities. As illustrated above, local regularities within
the trajectories of individual movements are equivalently de-
scribed by both drive conservation and optimal control models.
Unless a motor task is given that determines the movement pace,
however, optimal control models cannot predict the global reg-
ularities that occur across multiple movements, because each
movement is considered a separate optimization problem.
In contrast, drive conservation extends seamlessly across time-

invariant movements (Materials and Methods, Time Invariance
and Conservation of Drive)

D1 =D2 =⋯= constant, [6]

where Di is the drive level of the i-th movement. Thus, self-paced
movements share a common level of drive. This result is equiv-
alent to the combined optimal solution that minimizes the total
cost of multiple movements.
Drive conservation (Eq. 6) predicts correlations between

global movement variables across trials. According to Eq. 4, the
duration of straight movements at a constant drive level should

scale with the length as T ∝L1=3, and therefore the peak speed
should scale as Vs∝L=T ∝L2=3. For circle-drawing movements,
Eq. 5 predicts that the duration scales as T∝R1=3Θ, and there-
fore the overall speed should scale with the radius as Vc ≈
RΘ=T ∝R2=3, independent of the angular distance.
We confirmed these power law predictions with psychophysi-

cal studies in which subjects made self-paced straight and cir-
cular drawing movements. In straight movements, the peak
speed and length of movements exhibited the predicted scaling
relationship, Vs ∝Lβ, with exponent β= 0.69± 0.07 (mean ± SD,
N = 10) (Fig. 2A). For circle-drawing movements, the predicted
scaling relationship was found between the overall speed and
radius of movements, Vc ∝Rβ, with exponent β= 0.71± 0.08
(mean ± SD, N = 10) (Fig. 2B).
These scaling power laws hold generally across movements

that are scaled versions of the same trajectory shape, such as
ellipse-drawing movements of various sizes (Fig. 3C) (23). These
can be intuitively understood by dimensional analysis: Because
drive is the partial time derivative of the minimal integrated cost,
it has the same dimensions as the cost function itself, which, for
the minimum-jerk control, is

½D�= ½L�= ½length�2
½time�6 =

½speed�6
½length�4. [7]

The same 1:3 ratio between the exponents of the length and time
dimensions is also found in the cost functions of many optimal
control models, including the muscular-force-change cost (2, 3),
the joint-torque-change cost (4), and the squared-control cost for
third-order dynamics models (5, 6). Therefore, drive conservation
applied to these models should also predict the same two-thirds
power law between overall size and speed of movements.
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Fig. 1. Local regularities within individual self-paced movements. (A) Bell-
shaped speed profiles for straight hand movements and (B) plateau-shaped
speed profiles during circular drawing movements (Θ= 4π). Trajectories from
several trials are aligned and overlaid. The plateau speed exhibits fluctua-
tions due to the imperfect shape of the circular trajectories. (C and D) Model
predictions from minimum-jerk control and drive conservation (Eq. 3).
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Fig. 2. Global regularities in the scaling relationship between the overall
size and speed of self-paced movements. (A) The length–speed relationship
for straight hand movements and (B) the radius–speed relationship for circle-
drawing movements of one subject. (C and D) Histograms of the measured
power law exponent pooled from all subjects and sessions.
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Curvature–Speed Relationship. The global scaling relationship also
explains the origin of a well-known regularity observed in hand-
writing and curve-drawing movements, which exhibit high correla-
tions between instantaneous speed, υðtÞ, and radius of curvature,
rðtÞ (18, 22, 23).

In a logarithmic spiral trajectory, an arbitrary arc of the tra-
jectory can be scaled to match any other part of the trajectory,
because of its self-similar shape. Therefore, if the scaling re-
lationship were to apply between arbitrary arc pairs of the
movement, it must apply at every instant in the movement so that
υðtÞ∝ rðtÞ2=3. Empirically, spiral-drawing movements do exhibit
the predicted two-thirds power law between radius of curvature
and speed (Fig. 3B) (20), consistent with the global scaling re-
lationship (Fig. 3A). This consistency is compelling evidence that the
regularities within individual movements and across trials are indeed
governed by the same underlying principle of drive conservation.
For nonspiral movements, the instantaneous curvature–speed

relationship varies with the shape of the curved trajectory. The
general relationship can be predicted by analyzing the drive Eq. 3
in the rotating frame representation (24)

D=
υ6

r4
g
�
z′, l′,⋯

�
, [8]

where gð⋯Þ is a dimensionless function of the derivatives of log
speed, z, and log radius of curvature, l (Materials and Methods,Curved
Hand Movements). The υ6=r4 term induces the two-thirds power law
for both the local curvature–speed relationship and the global scaling
between overall size, R, and overall speed, V, but the local relation-
ship is further modified by the derivative terms, which dampens high-
frequency fluctuations of movement speed (20). For instance, Eq. 8
yields the well-established, local one-third power law for ellipse draw-
ing movements, υðtÞ=V ≈ ðrðtÞ=RÞ1=3 (22), as well as the global two-
thirds power law, V∝R2=3, across the movements (Fig. 3C) (23).
Moreover, it predicts that these power laws intermix for more com-
plex movement shapes, such as elliptic-spiral movements, whose
curvature–speed relationship exhibits features of both the one-third
and the two-thirds power laws (Fig. 3D) (20, 22). Therefore, drive con-
servation bridges the distinction between global and local regularities.

Discussion
Drive and its conservation law provide a critical framework for
understanding biological motor control. Drive quantifies the
internal motivation level for generating movements. It maintains
a constant level throughout various self-paced movements and
determines the scaling relationship between the overall size and
speed of movements.
Drive conservation provides a new perspective for understanding

movement regularities. In the optimal control framework, modeling
the global regularities requires auxiliary motor tasks that motivate
faster movements, such as maximizing the reward rate (8, 10) or
minimizing the time cost with an accuracy constraint (11, 12) or a
total-cost constraint (13), or without any constraint (14, 15). Despite
their pertinence for externally motivated movements, such as lever
pressing (8) and fast reaching movements (25), however, these
models are not applicable to most spontaneous movements that are
produced in the absence of reward or time pressure, such as com-
fortably paced reaching movements (26) and curved hand movements
(18). In contrast, in the drive-based framework, global regularities are
explained by the same conservation principle that governs local reg-
ularities, without the need for any external motor tasks.
In curved movements, the global perimeter-duration regular-

ity, called global isochrony, has been extensively studied along
with the local one-third power law (18, 27). However, the origin
of global isochrony and its relationship with the local power law
have not been understood: Previously, the mixed appearance of
both regularities within a movement (Fig. 3D) led to the hypothesis
that complex movements are produced in a segmented manner,

with the local power law in effect within each segment, and the
global isochrony applying across the segments (18, 28). In the drive-
based framework, these regularities are in fact inseparable, origi-
nating from the same conservation principle (Eq. 8).
Drive is defined as the dual variable of time for motor control.

This duality can be understood in analogy with thermodynamic
duals, such as the volume and pressure of a gas. Time, like volume, is
an extensive property, which increases additively as more constitu-
ents are involved. Drive, like pressure, is an intensive property, which
does not add but instead shares a common value among the con-
stituents. The dual relationship also implies that each of these vari-
ables can be used interchangeably as the independent control
variable. However, they have different causal implications: When
time is used as the control, one moves fast because time is short;
when drive is used, the movement concludes quickly because one
moves fast. Time is the master in time-based control scenario,
whereas in the other case the driver is in control. Ultimately, the
choice of control variable depends on the perspective of the modeler.
Time is the control variable in the optimal control framework,

which is natural from an experimenter’s point of view: The ex-
perimenter decides the desired duration of the motor task, either
with an explicit time limit or by implicitly encouraging faster
movements. In contrast, drive is a natural control variable from
the perspective of the person performing the movements, who

C Ellipses

lo
g 

filtered at    = 2
raw data

2/3 power law

1/3 power law
mean

1 log 

D Elliptic Spiral

1
lo

g 

filtered at       0 &    = 2
raw data

2/3 & 1/3 power laws

SpiralB

lo
g 

filtered at      
raw data

2/3 power law

A Circles

lo
g 

raw data

2/3 power law
mean

Fig. 3. Local and global regularities in curve-drawing movements. (A) Cir-
cle-drawing movements, (B) a spiral-drawing movement, (C) ellipse-drawing
movements, and (D) an elliptic spiral-drawing movement. (Left) Movement
traces and (Right) log-radius of curvature vs. log-speed plots. Gray dots in-
dicate raw data. Red dots indicate average radius of curvature, R, and av-
erage speed, V. Blue dots indicate band-pass-filtered data at the desired
frequencies of spiral (ν≈ 0) and/or elliptic shape (ν= 2) to average out devi-
ations (see ref. 20). Data from ref. 20. (Scale bar: 1.0.)
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sets the internal motivation level. Time-based control has an
undesirable implication that the subject has to preplan the entire
course of movements to satisfy the task requirements, which can
be problematic for a lengthy sequence of movements or a single,
prolonged movement, such as doodling. Drive-based control
resolves the planning problem: The apparent dependencies be-
tween self-paced movements are the consequences of generating
them with a constant drive level, not due to a carefully planned
choreography. Similarly, self-paced doodling under constant
drive (Eq. 8) only requires short-term planning of ≈ 1 rad of
angular coordinate (20). In this respect, drive-based control shares
similarities with receding-horizon control, which optimizes the so-
lutions only up to a short horizon ahead.
The biological basis of drive can be sought in brain systems

that modulate the overall pace of movements. A previous study
has suggested that tonic dopamine levels may regulate move-
ment pace by representing the average net reward rate in a
repetitive task (8). However, the average only summarizes past
movement trials, and, moreover, does not generally apply to
nonrepetitive or non-reward-driven movements. Instead, tonic
dopamine could represent drive, which directly controls the
current pace of movements, independently of the previously
estimated expected reward. This can be tested in experiments
that vary pace while controlling for reward. Clinical support for
this prediction can be found in neural disorders with reduced
dopamine levels, such as Parkinson’s disease, where the overall
speed of movements is decreased (29). Drugs that reduce do-
pamine activity, such as chlorapromazine and holoperidol (30),
also reduce movements. In contrast, increased dopamine ac-
tivity occurs in Tourette’s syndrome (31), marked by fast, hy-
perkinetic movements, and early stages of Huntington’s disease
(32), characterized by choreiform movements.
The neuromodulator noradrenaline is another candidate for

drive. Recent studies indicate that the activity of noradrenergic
neurons reflects the effort needed to perform goal-directed ac-
tions (33, 34): The higher the activity of the noradrenergic
neurons in the locus coeruleus, the stronger the action.
Amphetamine, which activates both dopamine and adrenergic
receptors, greatly enhances movement activity. The eye pupil
size is tightly linked to the level of cortical activity (35) and to
the levels of noradrenaline, which might be a way to monitor
the level of drive during a motor task.
The drive-based framework can be generalized to movements

whose pace is affected by external factors. Indeed, many opti-
mal control models with external tasks can be shown to be time-
invariant and thus conserve drive. It will be worth investigating
how such tasks influence the internal drive level. More gener-
ally, humans can also generate movements that do not conserve
drive by intentionally changing the pace or by responding to
time-varying motor tasks or internal states, such as emotions,
hunger and fatigue. A generalized drive-based control theory
for time-varying drive is needed to account for the wide range
of behaviors observed in nature, which could be coupled with
physiological experiments to explore how the brain plans and
executes such movements.

Materials and Methods
Least Action Principle of Motor Control. Consider an optimal control problem
involving a dynamical model of the body, _q= fðq,u, tÞ, and a cost function
Lðq,u, tÞ in the time range ½to, tf �, where q is the body state and u is the
control signal. Define the action of a state-control trajectory pair from to up
to �t as the integrated cost (to ≤�t ≤ tf)

A
�
fq,ug�tto

�
≡

Z �t

to
Lðq,u, tÞ dt,

subject to the constraint that the state-control trajectory satisfies the body
dynamics: _q= f. The constraint can be explicitly expressed via Lagrange
multipliers

A
�
fp,q,ug�tto

�
=

Z �t

to
ðp · _q−Hðp,q,u, tÞÞ dt, [9]

where p is the Lagrange multiplier, called the momentum, and

Hðp,q,u, tÞ≡p · fðq,u, tÞ−Lðq,u, tÞ [10]

is called the Hamiltonian (17). The augmented trajectory set fp,q,ug�tto is
optimal only if the change of the action caused by arbitrary infinitesimal
variations fδp, δq, δug�tto vanishes

δA=A
�
fp+ δp,q+ δq,u+ δug�tto

�
−A

�
fp,q,ug�tto

�
≈

Z �t

to

��
_q−Hp

�
· δp−

�
_p+Hq

�
· δq−Hu · δu

�
dt

+�p · δ�q−po · δqo,

[11]

where the subscripts denote partial differentiation. Integration by parts is
used for

R �t
to
p · δ _q=−

R �t
to

_p · δq+ �p · δ�q−po · δqo, where qo, po and �q, �p are the
state and momentum at time to and �t, respectively. Therefore, the necessary
condition for the optimal augmented trajectory set is summarized by the
following Hamilton–Pontryagin equations:

_q=Hp = f [12]

− _p=Hq =p · fq −Lq [13]

0=Hu =p · fu −Lu, [14]

which reduces Eq. 11 to

δA* = �p · δ�q−po · δqo. [15]

This implies the optimal action A* only depends on the boundary times
and states

A*
�
to,�t,qo, �q

�
=

Z �t

to
Lðq,u, tÞ dt, [16]

where the integration is along the optimal state-control trajectory. For no-
tational simplicity, we denote �t, �q as t,q, that is, A*ðto, t,qo,qÞ.

Note that if the dynamics is simply given by _q=u, then Eqs. 10 and 14 reduce to
the Legendre transform between the Lagrangian and the Hamiltonian formula-
tions of classical mechanics and Eqs. 12 and 13 reduce to Hamilton’s equations.

Drive. Drive is defined as the dual variable of time, that is, the partial time-
derivative of the optimal action

DðtÞ≡ −
∂A*
∂t

����
q,qo ,to

, [17]

which has the same numerical value, but a different functional form, as the
Hamiltonian

D=
∂A*

∂q
· _q−

dA*

dt
=p · f −L=H, [18]

because according to Eqs. 15 and 16

p=
∂A*

∂q
, L=

dA*

dt
=
∂A*

∂q
· _q+

∂A*

∂t
.

The total time derivative of drive is (from Eqs. 12–14)

_D= _H=Ht +Hp · _p+Hq · _q+Hu · _u. =Ht . [19]

Time Invariance and Conservation of Drive. For time-invariant control prob-
lems, the Hamiltonian Eq. 10 reduces toHðp,q,uÞ=p · fðq,uÞ−Lðq,uÞ, which
leads to conservation of drive

_D=Ht =p · ft −Lt = 0.

Now consider an extended formulation in which the total action of multiple
movements is minimized as a combined optimization problem

A*
allðTallÞ=min

" Xmultiple

movements

Z
L  dt

#
= min

T1 ,⋯,TN

"XN
i=1

A*
i ðTiÞ

#
,

where N is the number of movements under consideration. Because of time
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invariance, the individual action, A*i , depends on duration rather than explicit
start–end times. The total duration, Tall =

PN
i=1Ti, is considered an independent

control variable of the problem. The optimality condition is

XN
i=1

Di   δTi = 0 [20]

for arbitrary variations of duration δTi that satisfy the constraint
PN

i=1δTi = 0,
where Di ≡−∂A*

i =∂Ti is the drive level of movement i. Because δTN =−
PN−1

i=1 δTi,
Eq. 20 can be expressed as

PN−1
i=1 ðDi −DNÞδTi = 0, which leads to drive conser-

vation across movements

D1 =D2 =⋯=DN . [21]

Note that this formulation regards the total duration as a control variable,
which leads to the planning problem that all N movements must be planned
together to match Tall. This problem vanishes if instead drive is the
control variable.

Minimum-Jerk Drive. We apply the above formulation to the case of mini-
mum-jerk control, which considers a simple third-order linear dynamical
model and a quadratic control cost

_q= fðq,uÞ=Aq+Bu,       Lðq,uÞ=u2�2,
where

q=

0
@q1

q2

q3

1
A,  A=

0
@ 0 1 0

0 0 1
0 0 0

1
A,   B=

0
@ 0

0
1

1
A,

and q1 = x is the hand position. This is equivalent to the more familiar form of
the model: L= x

:::2
=2 (7). Denoting the momentum vector as p= ðp1,p2,p3Þ, the

Hamiltonian of the control problem (Eq. 10) is

Hðq,p,uÞ=p · f −L=p1 ·q2 +p2 ·q3 +p3 ·u− jjujj2
.
2. [22]

The optimal state-momentum dynamics (Eqs. 12 and 13) is0
@ _q1

_q2
_q3

1
A=Hp =

0
@q2

q3

u

1
Aand

0
@ _p1

_p2
_p3

1
A=−Hq =

0
@ 0

−p1

−p2

1
A,

and the optimal control is u=p3 (Eq. 14). Therefore, the components of the
state-momentum vectors are identified as0

@q1

q2

q3

1
A=

0
@ x

_x
x
::

1
Aand

0
@p1

p2

p3

1
A=

0
B@ xð5Þ

−x:::

x
::::

1
CA.

Then, the drive can be calculated from the Hamiltonian Eq. 22 to be
D= x

:::2
=2− x

::
  x
::::

+ _xxð5Þ. For multidimensional movements, this result generalizes to

D=
1
2

��~υ::��2 − _~υ ·~υ
:::
+~υ · ~υ

::::
, [23]

where ~υ≡ _~x is the hand velocity. Note that _D=~υ ·~υð5Þ.

Straight Hand Movements. For a straight movement, ~υ and ~υð5Þ are parallel.
Thus, _D=~υ ·~υð5Þ =0 is satisfied only if the speed profile is a fourth-order
polynomial in time, that is, the well-known bell-shaped speed profile (7)

υðtÞ= 30
L
T

	
t
T


2	T − t
T


2

,     ð0≤ t ≤ TÞ, [24]

where L and T are the length and duration of the movement, re-
spectively. The jerk profile is υ

::ðtÞ= 30L=T3ð2− 12t=T + 12t2=T2Þ. Therefore,
the minimal action is

A*ðL, TÞ=
Z T

0

1
2

	
30

L
T3

	
2− 12

t
T
+ 12

t2

T2



2

dt = 360
L2

T5,

whose time differentiation yields the drive

DðL, TÞ=−
∂A*

∂T
=
1800L2

T6 . [25]

This result can also be obtained directly from Eqs. 23 and 24.

Circle-Drawing Movements. For a circle-drawing movement, _D=~υ ·~υð5Þ = 0 is
satisfied by a constant speed profile, which keeps ~υ and ~υð5Þ orthogonal

υðtÞ=Vc =
RΘ
T
,     ð0≤ t ≤ TÞ,

where R,T ,Θ are the radius, duration, and angular distance of the move-
ment, respectively. The jerk profile is

��~υ:: ��=V3
c =R

2 =RΘ3=T3.
Integrating the jerk cost yields the minimal action

A*ðR,Θ,TÞ=
Z T

0

1
2

	
RΘ3

T3


2

dt =
R2Θ6

2T5 ,

whose time differentiation yields the drive

DðR,Θ,TÞ=−
∂A*

∂T
=
5
2
R2Θ6

T6 =
5
2
V6
c

R4 . [26]

Curved Hand Movements. Curved movements on a 2D plane can be repre-
sented in the Frenet–Serrett frame, whose basis vectors rotate along the
trajectory as t̂′= n̂, n̂′=−t̂, where t̂, n̂ are the unit tangent and normal
vectors, and the prime symbol denotes differentiation with respect to the
angle coordinate, θ, that is, the orientation of the tangent vector (24). By
representing velocity and its time derivatives in this frame

~υ= υt̂, _~υ= r−1υ2
�
z′t̂ + n̂

�
, ~υ

::
=⋯,

the drive Eq. 23 of curved movements can be reexpressed as

D=
���~υ:: ���2.2− _~υ ·~υ

:::
+~υ · ~υ

::::

= υ6
�
2r4

�
5+ 2z′′′′− 30z′′+ 10l′′− 25l′2 + 40z′4 + 15z″2

        − 82z′
3
l′+ z″′ð20z′− 12l′Þ+ z′′

�
82z′2 − 90l′z′− 8l′′+ 22l′2

�
        + z′2

�
−20l′′+ 55l′2 − 75

�
+ z′

�
−2l′′′+ 14l′′l′+ 90l′− 12l′3

�
,

[27]

where z≡ logðυ=VÞ, l≡ logðr=RÞ are, respectively, the log-speed and the log-
radius of curvature (V ,R are the overall speed and radius), and time differ-
entiation is converted to angle differentiation via the conversion factor,
dθ=dt = υ=r. An equivalent result was derived in ref. 20 in terms of curvature,
κ≡ 1=r, and log-curvature, h≡ − l.

For logarithmic spiral paths, rðθÞ=Reaθ, Eq. 27 is exactly solved by the two-
thirds power law, υðtÞ∝ rðtÞ2=3, yielding

D=
υ6

r4

�
5+ 5a2

�
3+ 4a4

�
81

�
2

.

For simple curved paths with a single frequency component (i.e., a sinusoidal
log-radius of curvature profile), l= e sinðνθÞ, low-order perturbation analysis
of Eq. 27 yields

D=
5V6

2R4 , ð0th  orderÞ [28]

z= β  l, ð1st  orderÞ, [29]

which describe the global two-thirds power law, V ∝R2=3, and the in-
stantaneous power law, υðtÞ=V = ðrðtÞ=RÞβ, respectively. The exponent β is a
decreasing function of frequency ν

βðνÞ= 2
3

	
1+ ν2

�
2

1+ ν2 + ν4=15



. [30]

Spiral movements are characterized by the zero frequency limit, ν→0, and
elliptic movements are characterized by frequency ν= 2, which exhibits the
one-third power-law: βð2Þ= 30=91≈ 1=3. Derivation and experimental
confirmation of the above results, as well as the mixtures of power laws
for general complex curved movements, are shown in refs. 20 and 24.

Experimental Method. The study was approved by the University College London
institutional ethics committee. Ten healthy subjects were recruited for the study
and provided written informed consent. We recorded movements from the
subjects using aWacom Cintiq 24 digitizing tablet. The subjects had initial practice
sessions to familiarize themselves to the tablet setup and the task, followedby two
experimental sessions, each comprised of 25 straight- and 25 circle-drawing
movementswithbrief breakperiods inbetween. The tasks didnot require accurate
tracing. Before eachmovement onset, the subjectswerebriefly showna straight or
circular shape of random size that guided them to explore a wide range of
movement size. We used thick/fuzzy lines to emphasize the absence of accurate
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tracing requirement. The instruction for circle drawing was “Draw a circle: 2–5
counter-clockwise rotations. Do not make fine corrections, but try to get the
overall size right.” The instruction for line drawing was “Draw a horizontal line.
Do not make fine corrections, but try to get the overall length right.” See ref. 20
for the detailed method and the analysis of the curve-drawing movements.
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