






ucts (Fig. 9A). This is consistent with evidence for both
kinematic and dynamic signals in the motor cortex.

We have shown that muscle tensions can be reconstructed
from a rectified sum of weighted cross-product responses for
our simplified muscle model, but this is not possible from
model neurons tuned either to extrinsic (endpoint movement)
or intrinsic (joint angles) movements with constant coefficients
over the global workspace. In particular, a linearly weighted
sum of model neuron activities directionally tuned to endpoint
movements cannot generate the muscle tensions needed to
perform accurate reaching, as previously proposed (Georgo-
poulos 1996). This does not rule out the use of extrinsic or
intrinsic neurons for computing muscle tensions, since the
spinal cord could well perform a more complex transformation
of these activities. However, we can conclude that vector cross
products could be a more computationally efficient basis than
either extrinsically or intrinsically tuned neurons.

A previous model reproduced some properties of motor
cortex activities by assuming that motor cortex encodes the

dynamics of linear movement and suggested that direction
tuning in the motor cortex might be an epiphenomenon (Todo-
rov 2000). However, the linear dynamics approximation used
in that study was limited to a small portion of the workspace
and did not represent the actual structure of a multijointed
limb. Directional tuning with respect to movement direction
appeared in the model simply because the model assumed
directional tuning with respect to endpoint force in the linear
dynamics. The spatial hypothesis provides a more general
framework in which the representation of spatial movements is
an indispensable intermediate step in computing the torques
from dynamical equations and therefore integrates both the
dynamical and spatial views.

Whether activities of the motor cortical neurons represent
single movement variables or weighted sums of movement
variables is an open question. One possibility is that single
neurons compute a linear sum of these cross-product terms,
consistent with a previous study reporting multiparameter
responses in individual neuronal activities (Ashe and Georgo-
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Fig. 8. Hand trajectories computed from approximate muscle tensions. A–C: computed trajectories using the rectified sum approximation from vector cross
products (A), extrinsic cells (B), and intrinsic cells (C). Solid color lines indicate desired movement paths (based on the minimum-jerk criterion) of 8 directions
starting from (x, y) � (0 cm, 26 cm) in the workspace compared with dashed color lines for the trajectories computed from approximate muscle tensions (f̂i).
In A, the solid and dashed lines overlap almost completely. D: desired and approximated trajectories using the cross-product approximation. E: cloverleaf
drawing. Gray solid lines and black dashed lines are desired minimum-jerk trajectories and approximate trajectories computed from approximate muscle tensions,
respectively.
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poulos 1994). However, it is difficult to dissociate multiple
movement parameters in a center-out reaching task as used in
this and other studies because the movement parameters are
often temporally correlated. A recent study resolved this issue
by designing continuous movement tasks and considering
temporal correlations among kinematic parameters and re-
ported that most neurons correlated with single dominant
parameters (Stark et al. 2007). Among the kinematic parame-
ters, velocity was the most dominant (80%) compared with
position (9%) or acceleration (11%).

In our model, the cross-product terms were computed from
kinematic variables with a feedforward neural network and
muscle tensions were computed as rectified linear sums of
cross-product terms. This suggests a hierarchical organization.
The primary motor cortex of primates is divided into rostral
and caudal subareas defined by cytoarchitectural zones (Geyer
et al. 1996), descending pathways (Rathelot and Strick 2009),
and functional representations (Sergio et al. 2005). Of partic-
ular relevance to our study is the proposal based on data from
various recording studies that neuronal activity in the rostral
M1 correlates with overall directions and kinematics of end-
point motion, whereas activity in the caudal M1 correlates with
the temporal pattern of force production and motor output
(Sergio et al. 2005). From the perspective of our model, it is

tempting to identify the rostral M1 with the cross-product
representation (Eq. 21) and the caudal M1 with the linear-sum
representation of muscle tensions (Eq. 37). This leads to the
prediction that there should be functional connections from the
kinematic representation in the rostral part to the force repre-
sentation in the caudal part.

Motor cortex neuronal activities explained by geometric
properties of cross products. The ubiquity of broad, cosinelike
tuning curves in motor cortex and the position dependence of
the PDs follow naturally from vector cross products and the
geometry of space. How motor cortex neuron activities vary in
different workspaces is not completely understood, but similar
response modulation by eye or head positions has been de-
scribed in parietal visual neurons by the so-called gain fields
(Andersen et al. 1985). We have proposed a feedforward neural
network that computes vector cross products from limb posi-
tion and velocity or acceleration, similar to a previous model
for wrist movements with distinct postures in which multipli-
cative responses between posture and extrinsic movement
reproduced the response of musclelike neurons in the motor
cortex (Kakei et al. 2003). Together with our simulation results
that linear summation of purely movement-related model neu-
rons failed to approximate muscle tensions, our model predicts
that posture and movement variables for multijointed move-
ments in the motor cortex should be represented multiplica-
tively, in the same way that eye position is represented as a
gain field for visual receptive fields in the parietal cortex
(Andersen et al. 1985). The workspace dependence may reflect
a general solution for population coding of spatial transforma-
tions involving large body movements.

In endpoint force generation, broad, cosinelike tuning could
also arise as a result of minimizing the detrimental effects of
signal-dependent multiplicative noise (Todorov 2002). How-
ever, in that study the broad tuning curves were derived with
respect to the force direction and not to movement direction.
For a linear model that approximates full nonlinear multiseg-
mented limb dynamics in a small part of the workspace, a force
direction may approximate the movement direction, but, in
general, a force direction would differ from a movement
direction with full multisegmented limb dynamics. Another
computational study reproduced the posture dependence of
PDs at the single-neuron level in an isometric force task by
postulating that the motor cortical neurons are tuned to pre-
ferred torque directions, but cosine tuning to torque directions
was assumed rather than derived from a computational princi-
ple (Ajemian et al. 2008). Neurons have been reported in the
motor cortex for which tuning to isometric force generation
and tuning to reaching movement direction are not the same, as
expected from the arguments made here (Sergio et al. 2005).

The model makes the strong prediction that neural activities in
motor cortex should reflect not only hand endpoint movement in
the workspace coordinates but also the center of mass movements
of other limb segments. Moreover, we predict that some neurons
should have not only shoulder- but also elbow- or wrist-based
reference frames. Some neurons in the dorsal premotor cortex
have visual receptive fields anchored to the hand irrespective of
gaze direction (Graziano et al. 2000), consistent with this predic-
tion. It should be possible to reanalyze existing experimental data
to confirm these model predictions.

Cross products as motor primitives in motor adaptation. The
three-link model can be expanded to include more joints and

A

B

Fig. 9. Proposed representation and computation in motor cortex. A: achematic
of how both kinematic (hand trajectory) and dynamic (muscle tension) vari-
ables can be reconstructed from the cross-product representation. B: steps in
planning and executing body movements. The computation of joint angles is
required to compute the control signals in the conventional scheme but is
unnecessary in the new scheme because the control signals can be computed
directly from the spatial representation of the trajectory.
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muscles, which requires more cosine-tuned neurons. Also, as the
body grows, and as the masses of the limbs change over time, the
dynamics must be continually recalibrated; this can be accom-
plished by reweighting the terms in Eq. 37. The constraints
between the various terms in this equation could be similarly
learned through experience, since not all combinations of joint
angles and limb positions are feasible. An initially uniform dis-
tribution of PDs could be pruned by learning to form the nonuni-
form distribution in Fig. 3B, reflecting the geometric constraints.
Experiments could be designed to test this hypothesis by artifi-
cially lengthening limbs and seeing how the tuning curves of
neurons in motor cortex adapt to the changes.

Studies of how motor adaptation at one workspace or direc-
tion generalizes to other untrained workspaces or directions
provide a window as to what basis functions of movements, or
motor primitives, are adopted in the motor cortex. Human
psychophysical experiments reported that generalization of
adaptation to viscous force field at one workspace occurs in the
shoulder-based reference frame (Shadmehr and Mussa-Ivaldi
1994). This pattern of generalization can be naturally explained
by the position dependence of cross products: Model neural
activities identified with cross products remain invariant if
movement direction is rotated by the same angle at which the
shoulder is rotated (Fig. 4). We modeled the force-field adap-
tation experiment by adjusting the coefficients of velocity-
dependent cross products and reproduced the patterns of gen-
eralization in a shoulder-based reference frame.

In contrast, generalization of visuomotor adaptation between
spatially displaced workspaces occurs in an extrinsic reference
frame (Krakauer et al. 2000; Wang and Sainburg 2005). These
psychophysical studies could also be reproduced with the model
under the assumption that the coefficients of inertia-related cross-
product terms underwent adaptive changes under these condi-
tions. These adaptation results provide strong support that not only
reaching dynamics but also motor adaptation uses vector cross
products as computational basis functions. Motor adaptation in a
spatial representation is the focus of a forthcoming paper (Tanaka
and Sejnowski, manuscript in preparation).

Computing joint torques and muscle tensions without an
explicit joint-angle representation. It is interesting to note that
Kakei et al. (1999) reported neurons encoding wrist movement
directions in the extrinsic space regardless of posture (“extrin-
sic-like” cells) and neurons encoding posture-dependent mus-
cle activities (“musclelike” cells) but no neurons that exhibited
a joint-angle reference frame (“jointlike” cells). This implies
that the motor cortex represents both spatial movements and
muscle activities but not joint angles for wrist movements,
although some studies have reported neural activity in intrinsic
joint-angle reference frame for arm reaching movements
(Reina et al. 2001; Scott and Kalaska 1997; Thach 1978). In a
spatial representation the computation of joint torques and
muscle tensions simplifies if movements are expressed with
cross products of spatial vectors but not with joint angle, so the
motor cortex may have exploited the computational efficiency
of computing limb dynamics with spatial vectors. Also, the
absence of an explicit joint-angle representation (Kakei et al.
1999) is inconsistent with a conventional serial scheme of
movement planning and execution that requires an explicit
computation of joint angles (Fig. 9B) (Buneo and Andersen
2006; Flash and Sejnowski 2001; Hollerbach 1982; Kalaska
and Crammond 1992; Kawato et al. 1987).

Our model postulates a computational scheme that is an
alternative to schemes with an explicit joint-angle representa-
tion. The direct transformation from limb trajectory to muscle
tensions is consistent with vectorial movement planning (Gor-
don et al. 1994). Although the final computation of muscle
tensions in Eq. 37 as a linear sum of neural activities implies
that an explicit representation of joint torques may be unnec-
essary, neural activities will still be correlated with them.
Despite the diverse properties of neurons that have been found
in M1, there may be a simple geometric principle underlying
the complex properties of neurons in motor cortex based on
vector cross products of postural and kinematic variables. The
identification of vector cross-product terms in the torque equa-
tions with single neurons is a minimal representation, which in
the motor cortex could be expanded to provide more diversity
and redundancy in computing the final muscle tensions.

Sensory feedback. One limitation of the present model is that
there is no direct force control in Eq. 21, which would preclude
control of stiffness when interacting with an unstable environ-
ment. Recent human psychophysical studies have shown that
the control of reaching dynamics involves feedback in the
presence of dynamical and sensory noise (Chen-Harris et al.
2008; Liu and Todorov 2007; Nagengast et al. 2009; Todorov
and Jordan 2002). In contrast to feedforward control, in which
the desired trajectory is preplanned before being transformed
into joint torques or muscle tensions, in an optimal feedback
model deviations of sensory feedback signals from their esti-
mates are used to modify the control signal during the move-
ment and thus there is no need for a preplanned trajectory.
Although feedforward and feedback control differ in this re-
spect, they both need to map sensory signals onto control
signals. Vector cross products could provide a convenient
framework for optimal feedback control since they span a
computationally efficient basis for converting sensory signals
into control signals. Furthermore, cross products can be com-
puted from either visual or proprioceptive signals, so both can
be represented in the same bases without the need for the
computation of joint angles.

The model avoided the explicit computation of joint angles
at the cost of introducing a redundant representation of spatial
vectors. How the brain maintains consistency among all the
spatial vectors is a nontrivial problem. Because the proprio-
ceptive feedback always provides a valid configuration of
posture, comparing the feedback from proprioceptive inputs
can maintain the consistency in the spatial representation. In
this view, motor planning and sensory feedback are no longer
separable but inherently integrated. The problem of maintain-
ing the consistency among spatial vectors is closely related to
the concept of the body schema, a representation of body parts
in space used for controlling body movements, which may be
found in the parietal cortex (Haggard and Wolpert 2005).
Therefore, our model of the motor cortex might be extended to
the parieto-frontal motor areas.

Conclusion. This study focused on arm reaching movements
in the horizontal plane. For three-dimensional movements
there are additional terms (Eq. 13), but they are all vector cross
products. Thus similar conclusions will hold for more general
movements, which can be tested. Knowing how a population of
neurons in the motor cortex represents an action is only a first
step toward understanding how actions are planned and carried
out with sensory feedback. The next step is to generalize the
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model to include both feedback control and proprioceptive
feedback. Work in progress will resolve these limitations.

APPENDIX A

Derivation of Spatial Representation with the Newton-Euler Method

The physics of a linked rigid body under constraints has been studied
for centuries in physics and more recently in robotics. Our derivation of
the EOMs is based on standard methods of rigid body dynamics. The
spatial representation for EOMs in Eq. 12 was derived by explicitly using
joint angles with the Euler-Lagrange method. There is another, recursive
method in robotics for deriving EOMs for a segmented system, known as
the Newton-Euler method (Luh et al. 1980). Although the two methods

are mathematically equivalent, the Newton-Euler method is far more
intuitive because it uses spatial vectors rather than joint angles and more
systematic because the computation is recursive backward from the distal
segments to more proximal segments. Moreover, the computation of
three-dimensional motion with the Newton-Euler method is no more
complicated than that of two-dimensional motion, whereas in the Euler-
Lagrange method a two-dimensional movement computation does not
straightforwardly generalize to three dimensions. Although the spatial
representation has been known for a long time in physics and robotics, it
has not been used for the purpose of understanding the functions of motor
cortex.

The recursive equations for translational forces and rotational
torques, which are solved backward from distal to proximal seg-
ments, are


 F�i � F�i�1 � miA�i,0

��i � ��i�1 � miX�i,i�1 � A�i,0 � X�i,i�1
e � F�i�1 � Ii�

�
i � ��i � �Ii��i�

�i � 1, · · · , n� (A1)

where X�j,j�1
e is a vector connecting the (j � 1)th joint to the jth joint,

Ii is the 3 � 3 inertial matrix, and ��i and ��i are angular velocity and

acceleration, respectively. F�i and ��i are force and torque vectors

exerted on the ith joint, respectively. No external force F�n�1 or torque
��n�1 at the endpoint is imposed, for simplicity. To illustrate how to
derive EOMs, we first consider a two-link (n � 2) segmental model.
First we begin with equations of the second segment as


 F�2 � m2A�20

��2 � m2X�21 � A�20 � I2��2 � ��2 � �I2��2�
(A2)

where we used F�3 � 0 and ��3 � 0. Recursively, the equations of the
first segment are


 F�1 � F�2 � m1A�10

��1 � ��2 � m1X�10 � A�10 � X�10
e � F�2 � I1��1 � ��1 � �I1��1�

(A3)

By noting using F�2 � m2A�20 and X�20 � X�10
e � X�21, the torque at the

shoulder joint in Eq. A3 now reads

��1 � m1X�10 � A�10 � m2X�20 � A�20 � I1��1 � ��1 � �I1��1� � I2��2

� ��2 � �I2��2� . (A4)

The angular velocities and angular accelerations have the following
spatial representations:

��i �
X�i,i�1 � V�i,i�1

ri
2 , ��i �

X�i,i�1 � A�i,i�1

ri
2 (A5)

so the EOMs Eqs. A2 and A4 in the spatial representation become

��1 � m1X�10 � A�10�I1

X�10 � A�10

r1
2 ��X�10 � V�10

r1
2 	��I1

X�10 � V�10

r1
2 	

� m2X�20 � A�20 � I2

X�21 � A�21

r2
2 � �X�21 � V�21

r2
2 	 � �I2

X�21 � V�21

r2
2 	

(A6)

��2 � m2X�21 � A�20 � I2

X�21 � A�21

r2
2 � �X�21 � V�21

r2
2 	 � �I2

X�21 � V�21

r2
2 	

(A7)

If the movement is restricted in the horizontal plane, the terms
quadratic in �� vanish because �� and I�� are parallel to each other, and
only the z-components of joint torques take nonzero values. For this
special case,

�1 � �m1X�10 � A�10 � I1

X�10 � A�10

r1
2 � m2X�20 � A�20 � I2

X�21 � A�21

r2
2 �

Z

(A8)

�2 � �m2X�21 � A�20 � I2

X�21 � A�21

r2
2 �

Z

(A9)

Here, the �is are z-components of the torque vector, ��i, and Iis are the
inertial momentum of the ith segment around the z-axis. These are the
EOMs we derived by using the Euler-Lagrange method in Eqs. 10 and
11 of the main text. The recursive nature of the Newton-Euler method
allows us to derive a general formula for an n-link system in three
dimensions:

��i � �
j�	i�

n �mjX� j,i�1 � A� j0 � I j

X� j,j�1 � A� j,j�1

rj
2

� �X� j,j�1 � V� j,j�1

rj
2 	 � �I j

X� j,j�1 � V� j,j�1

rj
2 	� (A10)

This is Eq. 13 in the main text. Again, by restricting the movement in
the horizontal plane, we finally arrive at the special case:

�i � �
j�	i�

n �mjX� j,i�1 � A� j0 � Ij

X� j,j�1 � A� j,j�1

rj
2 �

Z

(A11)

which is Eq. 12 in the main text.
As already shown for the two-dimensional movements, the com-

putation of torque for three-dimensional movements greatly simplifies
for spatial vector cross products compared with the expressions when
joint angles are used, in both the number and the complexity of the
terms. Therefore, our computational framework that postulates the use
of spatial representation is not restricted to two-dimensional move-
ments in the horizontal plane but generalizes to three-dimensional
movements.
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APPENDIX B

EOMs in Intrinsic Coordinates for a Three-Link Articulated Model

EOMs for the three-link system in the joint-angle representation are
shown for comparison with those in a spatial representation. These
equations are equivalent to Eqs. 27, 28, and 29 in the main text.

�1 � �I1 � I2 � I3 � m1r1
2 � m2�l1

2 � r2
2� � m3�l1

2 � l2
2 � r3

2�
�2m2l1r2cos�2 � 2m3l2r3cos�3

�2m3l1l2cos�2 � 2m3l1r3cos��2 � �2���̈1

� �I2 � I3 � m2r2
2 � m3�l2

2 � r3
2��m2l1r2cos�2

�m3l1r3cos��2 � �3� � 2m3l2r3cos�3 � m3l1l3cos�2��̈2

� �I3 � m3r3
2 � m3l2r3cos�2 � m3l1r3cos��2 � �3���̈3

� �m2l1r2sin�2 � m3l1l2sin�2 � m3l1r3sin��2 � �3���̇2
2

� �m3l2r3sin�3 � m3l1r3sin��2 � �3���̇3
2

� �2m2l1r2sin�2 � 2m3l1l2sin�2 � 2m3l1r3sin��2 � �3���̇1�̇2

��2m3l1r3sin��2 � �3� � 2m3l2r3sin�3��̇3�̇2

��2m3l1r3sin��2 � �3� � 2m3l2r3sin�3��̇3�̇1

� B1�̇1 (B1)

�2 � �I2 � I3 � m2r2
2 � m3�l2

2 � r3
2�

�m2l1r2cos�2 � m3l1l2cos�2

� 2m3l2r3cos�3 � m3l1r3cos��2 � �3���̈1

� �I2 � I3 � m2r2
2 � m3�l2

2 � r3
2� � 2m3l2r3cos�3��̈2

� �I3 � m3r3
2 � m3l2r3cos�3��̈3

� �m3l1l2sin�2 � m2l1r2sin�2 � m3l1r3sin��2 � �3���̇1
2

� m3l2r3sin�3�̇3
2

� 2m3l2r3sin�3�̇2�̇3

� 2m3l2r3sin�3�̇3�̇1

� B2�̇2 (B2)

�3 ��I3 � m3r3
2 � m3l2r3cos�3 � m3l1r3cos��2 � �3���̈1

��I3 � m3r3
2 � m3l2r3cos�3��̈2

��I3 � m3r3
2��̈3

��m3l2r3sin�3 � m3l1r3sin��2 � �3���̇1
2

�m3l2r3sin�3�̇2
2

�2m3l2r3sin�3�̇1�̇2

�B3�̇3

(B3)

APPENDIX C

Two-Link Articulated Model

Reaching movements and neural activities are modeled with the
three-link model in the main text, and qualitatively similar results
were obtained when a two-link model was used. For an articulated
arm model with two connected links, the spatial representation of the
EOMs including the viscosity terms is

�1 � �m2X�20 � A�20 �
I2

r2
2 X�21 � A�21 � m1X�10 � A�10 �

I1

r1
2 X�10 � A�10

� B1

X�10 � A�10

r1
2 �

Z

(C1)

�2 � �m2X�21 � A�20 �
I2

r2
2 X�21 � A�21

� B1�X�21 � V�21

r2
2 �

X�10 � V�10

r1
2 	�

Z

(C2)

There are five acceleration terms and two velocity terms, so a total of
seven model neurons are introduced.

R1
A � �m1X�10 � A�10�Z, R2

A � �m2X�20 � A�20�Z, R3
A � �m2X�21 � A�21�Z, R4

A � � I1

r1
2 X�10 � A�10�

Z

,

R5
A � � I2

r2
2 X�21 � A�21�

Z

, R6
V � �B1

r1
2 X�10 � V�10�

Z

, R7
V � �B2

r2
2 X�21 � V�21�

Z

(C3)

With these expressions and a minimum-jerk trajectory (Eq. 31),
temporal profiles of model neurons are computed. Essentially the
same results were obtained for cosine tuning (Fig. 3A), nonuniform
distribution of preferred directions (Fig. 3B), multiple coordinate
systems (Fig. 4, E and F), population vectors (Figs. 5 and 6), and
muscle computation (Figs. 7 and 8).
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