
Neuroscience Year 
Supplement 1 to the 

Encyclopedia of Neuroscience 

Edited by 
George Adelman I 

With 77 Figures 
- 

A Pro Scientia Viva Title 

BIRKHAUSER 
Boston Basel . Berlin 



First printing, 1989 

Library of Congress Cataloging-in-Publication Data 
Neuroscience year. 1989: supplement 1 to the Encyclopedia of 

neuroscience I George Adelman, editor. 
p. cm. 

"A Pro scientia viva title." 
Bibliography: p. 
Includes index. 
ISBN 0-8176-33839 
1. Neurology. 2. Neuropsychology. I. Adelman, George, 1926- 

RC329.N48 1989 
88-39373 

CIP 

O 1989 by Birkhauser Boston, Inc. 
Copyright is not claimed for works by U.S. Government employees. 
All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Birkhauser Boston, Inc., 675 Massachusetts Avenue, Cambridge, Massachusetts 
02139, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection 
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed is forbidden. 
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former 
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks 
and Merchandise Marks Act, may accordingly be used freely by anyone. 
While the advice and information in this book are believed to be true and accurate at the date of going to 
press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors 
or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein. 

Typeset by Arcata GraphicsiKingsport, Kingsport, Tennessee. 
Printed and bound by Arcata GraphicslHalliday, West Hanover, Massachusetts. 
Printed in the United States of America. 

ISBN 0-81763383-9 
ISBN 3-7643-3383-9 



Computational Neuroscience 4 1 

Computational Neuroscience 
Terrence J .  Sejnowski, ~hristof Koch, and Patricia S. Churchland 

The ultimate aim of computational neuroscience is to explain 
how electrical and chemical signals are used in the brain to 
process information. This goal is not new, but much has 
changed in the last decade: more is known about the brain 
because of advances in neuroscience, much more computing 
power is available for performing simulations of neural sys- 
tems, and new insights are available from simplified models 
of large networks of neurons. Brain models connect the micro- 
scopic level accessible by molecular and cellular techniques 
with the systems level accessible by-studying behavior. 

Understanding the brain is a challenge that is attracting a 
growing number of scientists from many disciplines. While 
there has been an explosion of discoveries over the last several 
decades concerning the structure of the brain at the cellular 
and molecular levels, we do not yet understand how the ner- 
vous system enables us to see and hear, to learn skills and 
remember events, to plan actions and make choices. Modeling 
of the brain represents a valuable technique for generating 
hypotheses about brain function. 

Computation 

Although the digital computer in our age has become the proto- 
typical example of a system that computes, many analog de- 
vices such as slide rules, optical Fourier analyzers, and even 
marbles rolling downhill can also compute. In each of these 
examples, the states of the physical system can be mapped 
onto the states in a more abstract algorithm that solves a class 
of computational problems (Sejnowski, et al., 1988). States 
of the nervous system represent events and states of affairs 
in the world. Computational explanations for states of the 
nervous system differ from mechanical Qr causal explanations 
in that a mapping can be made from the states of the brain 
onto information-bearing states of an abstract algorithm that 
solves a computational problem. 

Existing computational devices invented by man may not 
be good guides to the computational solutions evolved by na- 
ture at least for the reason that evolutionary changes are made 
within the context of a design and architecture that already is 

'in place. Evolution cannot start from scratch, even when the 
optimal design would require that course. As Francois Jacob 
has remarked in his book, "The Possible and the Actual," 
evolution is a tinkerer, and it fashions its modifications out 
of available materials, limited by earlier decisions. Moreover, 
any given capacity, such as binocular depth perception, is 
part of a much larger package subserving sensory-motor control 
and survival in general. 

Levels of analysis 

An influential framework for analyzing information processing 
was articulated by David Marr in 1982. Three levels were 
characterized: (1) The computational level of abstract problem 
analysis, wherein the task (e.g. determining depth from binocu- 
lar images) is decomposed into its fundamental constituents; 
(2) the level of the algorithm, which specifies a formal proce- 
dure by which, for a given input, the correct output could be 
given, and the task thereby performed; and (3) the level of 
physical implementation of the computation. In a programma- 
ble digital computer the computational level is independent 
of the algorithmic and implementation levels, in the sense 

that the same computational problem can be solved by many 
different algorithms, and in turn each algorithm can be imple- 
mented with digital circuits constructed with many different 
technologies. 

Unlike a digital computer, which is general purpose and 
can be programmed to run any algorithm, the brain appears 
to be a collection of special purpose systems that are limited 
in their flexibility, but very efficient at performing their tasks. 
In contrast to the doctrine of independence of computation 
from implementation, current research in neuroscience sug- 
gests that considerations of implementation play a vital role 
in the kinds of algorithms that are devised and the kinds of 
computational insights that are available. Even Marr, who 
advocated a top-down approach, was highly influenced by 
neurobiological considerations. 

Another consideration is the relationship between levels of 
analysis and structural levels. At each structurally specified 
stratum from synapses to systems we can raise the question: 
What does it contribute to the wider, computational organiza- 
tion of the brain? Thus, the range of implementation levels 
in the brain is probably accompanied by an equally rich range 
of algorithms and task descriptions. Rather than seeking a 
single computational explanation we must expect a spectrum 
of explanations depending on the spatial and temporal scale 
of the phenomenon. 

- 
Realistic brain models 

Most of our information about the representation of sensory 
information and motor commands is based on recording from 
single neurons. This technique is revealing but it is also confin- 
ing insofar as it biases us toward thinking about the cellular 
level rather than the subcellular or circuit levels. We are espe- 
cially in need of techniques that would allow us to monitor 
populations of neurons. Modeling promises to be an important 
adjunct to these experimental techniques and is essential in 
addressing the conceptual issues that arise when studying infor- 
mation processing in the brain. The advantages of brain models 
are varied: (1) A model can make more accessible to scrutiny 
the consequences of a complex, nonlinear brain system with 
many interacting components. (2) New phenomena may be 
discovered by comparing the predictions of a simulation to 
experimental results and new experiments can be designed 
based on these predictions. (3) Experiments that are difficult 
or even impossible to perform in living tissue, such as the 
selective lesion of particular channels, synapses, neurons, or 
pathways, can be simulated using a model. 

As knowledge in neuroscience accumulates at the cellular 
and molecular levels, it is tempting to incorporate all that is 
known into a model that aims to reproduce as much of the 
nervous system as possible. One problem with this approach 
is that a genuinely perfect model, faithful in every detail, is 
likely to be as incomprehensible as the nervous system itself. 
Another problem is that a model based on incorrect or incom- 
plete knowledge may give misleading results. Nonetheless, 
this class of models, which we call realistic models, can pro- 
vide valuable insights into the emergent properties of the ner- 
vous system, such as rhythmic pattern generation in neural 
circuits. 

The range of spatial scales over which the nervous system 
has been explored spans over eight orders of magnitudes from 
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molecular dimensions measured in angstroms to fiber tracts 
that span many centimeters. Physiological time scales span 
over ten orders of magnitude from fractions of a millisecond 
in the case of gating of single ion channels to days or weeks 
for biophysical and biochemical events underlying memory 
(McNaughton and Moms, 1987). Organizational principles 
emerge on a hierarchy of spatial levels and time scales that 
are directly relevant to the function of the nervous system 
(Table 1). A few of these principles will be summarized here 
to serve as a framework for discussing concrete examples. 

No single neural model can be expected to span all levels, 
and an essential feature at one level of organization may be 
an insignificant detail at another. The multiplicity of levels 
of organization is a feature not only of neuroscience, but also 
of physics and chemistry, where explanations of phenomena 
on distinct levels or organization are more developed. Assum- 
ing a comprehensive "theory of the brain" does emerge, it 
will involve establishing a successive and overlapping chain 
of explanations from the lowest levels to the highest, encom- 
passing the various spatial, temporal, structural, and computa- 
tional levels. 

It is rare for a model to jump over many levels, and the 
most successful models typically link only neighboring levels. 
For example, the Hodgkin-Huxley ionic model of the initiation 
and propagation of action potentials links measurements of 
ionic currents in the whole axon to the kinetics of single ion 
channels, although such channels were only hypothetical at 
that time in 1952 when the model was proposed. Assumptions 
beyond the data available at one level are sometimes needed 
in order to reach a better understanding at that level. It is 
only with the introduction of single channel patch clamp re- 
cording techniques developed decades after the Hodgkin-Hux- 
ley model that their assumptions regarding the nature of ion 
channels could be verified by Bert Sackmann and Erwin Neher 
in 1976. Wilfrid Rall in the 1970s studied the detailed spread 
of current in dendrites using cable models, and more recently 
the effects of voltage-dependent processing have been included 
in these models by a number of investigators. 

Sensory information tends to be organized in spatial maps 
that are topographically organized in brain structures that are 
often laminated, such as the retina and cerebral cortex. Topo- 
graphic maps and laminae are special cases of a more general 
principle, which is the exploitation of geometry in the design 
of information processing systems. Spatial proximity may be 
an efficient way for biological systems to get together the 
information needed rapidly to solve difficult computational 

Table 1. Levels of Investigation of the Nervous System.* 

Structural Analysis Measurement 
- - 

Channels Implementation Single channel 
Synapses Algorithmic Single cell 
Dendrites Computational Multiple cell 
Local circuits EEGIERPIPETIMRI 
Glomeruli Psychophysics 
Ganglia Behavior 
NucleiIMaps 
Systems 

* Structural elements in the nervous svstem can be studied at manv 
spatial scales. Measurements can be made with many physiological 
techniques at each of these structural levels. Analysis of the infonna- 
tion processing aspects of the nervous system can occur on three 
levels of abstraction (see text). Models typically link neighboring 
structural levels and are based on measurements made with several 
techniques. 

problems. For example, it is often important to compute the 
differences between similar features of a stimulus at nearby 
locations in space. By maintaining neighborhood relationships 
the total length of the connections needed to bring together 
the signals isminimized. Maps also make it easier tosyn&ron- 
ize the timing of information flow through an array of neurons. 
Perhaps the most successful realistic model of spatial process- 
ing in maps is the Hartline-Ratliff model of lateral inhibition 
in the Limulus lateral eye (Ratliff, 1974). 

Simplifying brain models 

Models of the brain based on simplifying assumptions have 
a role in computational neuroscience that is very different from 
realistic models. Textbook examples in physics and other sim- 
plified problems that admit exact solutions are usually unrealis- 
tic, but they often illustrate important principles. In neurosci- 
ence, the study of simple models can provide a conceptual 
framework for studying the complex organizations in nervous 
systems. They may also help us to isolate the crucial issues 
and to understand the limitations of these kinds of systems. 

The class of models that is currently being investigated under 
the general headings of connectionist models, parallel dis- 
tributed processing models, and "neural networks" is of this 
second type, which we shall hereafter refer to as simplifying 
brain models. These models abstract from the complexity of 
individual neurons and the patterns of connectivity in exchange 
for analytic tractability (Hopfield and Tank, 1986). These mod- 
els are being been investigated as prototypes of new computer 
architectures or as models for psychological phenomena. None- 
theless, many of the results are applicable to the brain. - 

One of the best studied architectures is the class of layered 
feedforward networks. In this architecture, information is 
coded as a pattern of activity in an input layer of model neurons 
and is transformed by successive layers receiving converging 
synaptic inputs from preceding layers. Three findings are of 
significance for brain models: (1) Even systems with only a 
few intermediate layers have enormous power in representing 
complex nonlinear functions. (2) The performance of a network 
in specific problem domains (such as visual and speech pro- 
cessing) depends critically on how the incoming information 
is represented by the neurons (such as the type of preprocess- 
ing) and the symmetries in the pattern of connections. (3) 
For difficult problems the processing units in the middle or 
"hidden" layers generally encode many different combinations 
of input variables using a semidistributed type of representation 
(Sejnowski and Rosenberg, 1987). By combining the power 
of these models with further constraints from neurophysiology 
and neuroanatomy it may be possible to interpret some of 
the properties that have been observed from single-unit record- 
ings, as we illustrate in the next section. 

These simplifying brain models also make an important 
bridge to computer science and other disciplines that study 
information processing. Issues such as convergence of the net- 
work to a stable solution, the amount of time needed for the 
network to achieve a solution, and the capacity of networks 
to store information are being investigated in simplifying mod- 
els in ways thatke  not at present feasible with realistic models. 
The scaling of these properties with the size of the network 
is crucially importantfo the practical feasibility of the model 
and its plausibility as a brain model. 

Technology for brain modeling 

Computational brain models are almost always simulated on 
digital computers. Computers are getting faster, but they must 
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Conclusions 

A scientific field is defined primarily by its problem-space 
and its successful large-scale theories. Until there are such 
theories in computational neuroscience, the field is defined 
mostly by the problems it seeks to solve, and the general 
methodology and specific techniques it hopes will yield suc- 
cessful theories. Models of brain function driven primarily 
by functional considerations can provide only the most general 
guidance about what might be happening in the brain; con- 
versely, models driven primarily by signal measurements and 
anatomy can easily miss those aspects of the signals that are 
relevant for information processing. Both realistic and simpli- 
fying models are being used to explore information processing 
by brain mechanisms at many different levels of structural 
organization, as indicated in Table 2. 

Realistic and simplifying brain models have been distin- 
guished to reveal their separate strengths and weakness. Nei- 
ther type of model should be used uncritically. Realistic models 
require a substantial empirical database; it is all too easy to 
make a complex model fit a limited subset of the data. Simpli- 
fying models are essential but are also dangerously seductive; 
a model can become an end in itself and lose touch with 
nature. Ideally these two types of models should complement 
each other. For example, the same mathematical tools and 
techniques that are developed for studying a simplifying model 
could well be applied to analyzing a realistic model, or even 

perform the many parallel operations in the brain one at a 
time and are many orders of magnitude too slow. Parallel 
computers with thousands of processdrs are being developed, 
but are still inadequate. A new approach towards simulating 
biological circuitry is being pioneered by Carver Mead, who 
is constructing hardware devices with components that directly 
mimic the circuits in the brain. The severe physical restrictions 
imposed on the density of wires and the cost of communications 
in electronic circuits are similar to the constraints that are 
imposed on biological circuits. Fast hardware can deliver the 
computing power necessary to evaluate the performance of 
models in real time. This approach, which he terms "synthetic 
neurobiology," allows for the rapid determination of the 
strengths and limitations of a theory. 

Mead uses analog subthreshold CMOS VLSI (very large 
scale integrated circuit) technology. Several chips that imple- 
ment simplifying models of visual information processing have 
already been produced that are highly efficient. A "retina" 
chip computes the spatial and temporal derivative of arbitrary 
images projected onto an hexagonal array of 48 by 48 photo- 
transistors-which are approximately logarithmic over 5 orders 
of magnitude of light amplitude--coupled via a horizontal 
resistive grid and injecting current into model "amacrine" 
cells that compute a temporal derivative. Similar circuits can 
be designed for computing optical flow in real time. 

These VLSI chips and new techniques in optical information 
processing may lead to a new computing technology, some- 
times called artificial neural systems, or neurocomputing. This 
technology for performing massively parallel computation 
could have a major influence on the next generation of research 
in computational neuroscience. For example, an analog VLSI 
model of a neuron that included conductance mechanisms, 
synaptic apparatus, and dendritic geometry could be produced 
in great quantities. These chips could be used as coprocessors 
in a conventional digital computer to greatly increase the speed 
of realistic simulations. If this technology is developed now, 
it should be possible to simulate our visual system in real 
time by the 21st century. 

the brain itself. More accurately, the two types of models 
are really end points of a continuum, and any given model 
may have features of both. Thus, we expect future brain models 
to be intermediate types that combine the advantages of both 
realistic and simplifying models. 

At this stage in our understanding of the brain, it may be 
fruitful to concentrate on models that suggest new and promis- 
ing lines of experimentation, at all levels of organization. In 
this spirit, a model should be considered a provisional frame- 
work for organizing possible ways of thinking about the ner- 
vous system. The model may not be able to generate a full 
range of predictions owing to incompleteness, some assump- 
tions may be unrealistic simplifications, and some details may 
even be demonstrably wrong. Nevertheless, if the computa- 
tional model is firmly based on the available experimental 
data, it can evolve along with the experimental program and 
help to guide future research directions. 
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