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Studies of motor learning in the vestibule-ocular reflex (VOR) of monkeys have 

identified brain cells that change their firing in association with learning. However, the 

site of learning has remained controversiall~. A neural network model now shows how the 

sites of learning are constrained by physiological and behavioral data about the operation 

of the VOR The model reveals that learning must be mediated by cellular changes in both 

the cerebellum and the brain stem and it suggests a new hypothesis in which changes in 

the dynamics of the signals in the brain cause modification of the amplitude of the VOR. 

Good vision requires that images remain stationary on the retina in spite of 

movements of the subject or the target. The oculomotor system provides several 

mechanisms that use visual and vestibular sensory inputs to help maintain image stability. 

The vestibulo-ocular reflex (VOR) generates compensatory eye movements that maintain 

3 the stability of the eyes with respect to the stationary surroundings during head turns . 
Visual tracking generates smooth eye movements that maintain eye speed equal to target 

speed, whether the target is a small object or a large moving field4. Experiments in awake 

monkeys have suggested that the brain stem and cerebellar pathways for these two kinds of 

movements are organized as shown in Fig. 1A. The direct VOR pathways include 

vestibular sensory inputs that encode angular head velocity, interneurons in the vestibular 

5 nucleus, and motor outputs through extraocular motoneurons . A second VOR pathway 

. goes through the flocculus and ventral paraflocculus of the cerebellum (hence called the 

flocculus), and acts as an inhibitory side loop of the direct VOR pathway6. The current 

command for smooth eye velocity is returned over a positive feedback pathway to the 

flocculus, where it forms part of the command for future smooth eye movements4. Visual 

inputs access the tracking system at least in the flocmlus7 and probably also in the brain 

stem. 

If the VOR is functioning properly, then head turns will be associated with little 

motion of retinal images from the stationary surroundings. Whenever image motion occurs 



consistently during head turns, the VOR undergoes motor learning to restore the proper ' 

compensatory eye movements8. In the laboratory, learning is induced by fitting monkeys 

with spectacles that magnify or miniaturize vision so that the VOR must become either 

9 larger or smaller than normal . The performance of the reflex is estimated before and 

after learning by calculating the gain of the VOR, defined as eye speed divided by head 

speed during passive angular head rotation in darkness. 

The organization of the VOR pathways has suggested two hypotheses for the site 

and mechanism of motor learning. Ito has postulated that the gain of the VOR is reduced 

by increasing the transmission of vestibular signals through the f l o c c u l ~ s ~ ~  (site a), while 

Miles and Lisberger have proposed that the gain of the VOR is reduced by decreasing the 

transmission in parallel through both the brain stem and the f l o c c ~ l u s ~ ~  (sites a and d). 

Miles et all2 developed the model in Fig. 1B as a quantitative way to represent the 

organization illustrated in Fig. 1A Analytical solution of their model reveals that the gain 

of the VOR in the steady-state is (d-eka)/(l-ekb) and demonstrates that both hypotheses 

are feasible. In support of Ito's hypothesis, increases in the value of a would cause 

decreases in the gain of the VOR in the model. In support of Miles and Lisberger's 

hypothesis, appropriate decreases in the values of a and d would also decrease the gain of 

the VOR in the model. Miles et all2 favored the latter alternative because their data 

showed that the value of a decreases when the gain of the VOR is decreased in monkeys. 

The model in Fig. lB, although instructive, is inadequate for evaluating how motor 

learning occurs in the brain. The brain subjects its inputs to dynamic transformations and 

processes inputs and outputs that vary as a function of time. The model, in contrast, lacks 

dynamics and predicts only the steady-state eye velocity. Most previous experiments on 

motor learning in the VOR have employed low-frequency sinusoidal head rotation and 

have not required dynamic models. In addition, previous models have assumed that the 

cellular mechanisms of learning in the VOR could be represented by multiplication factors 

like the elements in Fig. 1B. 



Recent experiments have provided a new class of data that requires new models. 

The use of transient head motions has provided information about the performance of the 

VOR and about the responses of brain cells on a millisecond time scale. Interpretation of 

these data requires dynamic models that process time-varying inputs and generate time- 

varying outputs. We have now analyzed the performance of a dynamic model to determine 

how learning can occur in the VOR and to reevaluate the hypotheses of 1t02 and of Miles 

and ~ i s b e r ~ e r l l  in the light of these new data. We will show that both hypotheses are 

incomplete. We will also suggest a novel mechanism of learning that can cause appropriate 

changes in the gain of the VOR without contradicting available data. 

Structure of the network model 

We have designed a network model (Fig. 1C) with the following constraints: the 

output of the model had to be correct when the sensory inputs and the eye movement 

outputs varied as a function of time; the structure the model had to account for the known 

flow of signals in the VOR pathways; and the model had to perform realistic visual as well 

as vestibular tracking. The model consisted of artificial processing units, each with an 

adjustable time constant of leaky integration and with an output that was a sigmoid 

function of its summed inputs. The units were grouped into clusters and the clusters were 

interconnected in a pattern that is consistent with Fig. 1A. Cluster F represents the 

flocculus, cluster V represents brain stem cells that receive monosynaptic inhibition from 

the f l o c c ~ l u s ~ ~ ,  cluster M represents extraocular motoneurons, and cluster E consists of an 

eye velocity output unit. The performance of the model did not depend on the number of 

units in each cluster; Fig. 1C shows the number actually used. Each arrow in Fig. 1C 

indicates that all the units of one cluster were connected to all the units of another cluster. 

Each connection between two units was defined by an adjustable weight and a fixed time 

delay. 

The model network employes sensory input to guide tracking continuously. 

Summing junction " R  compares target and eye motion with respect to.the head and yields 



a dynamically-varying sensory signal that is related to the velocity of the visual images. To 

mimic the latency of tracking, we placed a fixed delay of 100 ms in the visual inputs to 

cluster 10. Vestibular inputs related to head velocity and head acceleration allow the 

model to fixate stationary targets in spite of head motion; to mimic the latency of the VOR, 

we placed a fixed delay of 14 ms in the outputs fiom cluster 1. The simulation environment 

provided a gradient descent optimization algorithm that we used to find combinations of 

14 parameters that minimized output error . 
The structure of the model in Fig. 1C was selected to account for the known flow of 

signals in the brain stem and cerebellar pathways that guide pursuit and the VOR. To 

show the homology between our model and the static model of Miles et all2, the relevant 

connections in Fig. 1C have been labeled with lower case letters that correspond to the 

letters used as multiplication factors in Fig. 1B. We will refer to the connections by these 

letters. The model in Fig. 1C was not intended to be a literal representation of the 

anatomy of the VOR pathways in the brain, which is not entirely known. Some of the units, 

for example those in clusters 2 and 3, were required because of technical considerations 

related to the simulations. We do not think that these deviations from anatomical realism 

pose a problem because the issues addressed by the present paper deal with the flow of 

information and not with the exact synaptic organization of the VOR pathways. 

Organization of the normal tracking model 

We first fixed the weights in connections a and b at zero and allowed the 

optimization algorithm to adjust other parameters until the network generated an accurate 

VOR during rapid changes in head velocity in the dark (Fig. 2). Cluster 1 included four 

vestibular input units that were preprogrammed to have reciprocal responses; two were 

excited and two were inhibited by each head turn. Of each pair of input units, one 

provided a tonic input related only to head velocity while the other provided a phasic-tonic 

input related to head acceleration and head velocity15. The gradient aescent optimization 

algorithm then modified the weights in the brain stem VOR pathways (connections 1->2, 



d, 3- > V, and V- > M) until the actual eye velocity was nearly equal to and opposite head 

velocity and the gain of the VOR was close to 1. This resulted in the eye velocity and unit 

responses shown in Fig. 2. The model used both the tonic and the phasic-tonic vestibular 

inputs, so that the phasic behavior in the responses of the units in cluster V was 

intermediate between that of these two kinds of inputs (Fig. 2). 

We next trained the model to track a step change in target velocity from 0 to 30°/s. 

Through trial and error, we established the minimum number of parameters that needed to 

be adjusted by the optimization algorithm to achieve the excellent tracking shown in Fig. 

3A. Good performance, defined as a rapid increase in output followed by stable tracking, 

was achieved only when the eye velocity pathway through cluster 7 was configured in 

positive feedback. If positive feedback of eye velocity was prevented by fixing the weights 

in connection b at zero, then the optimization algorithm could not find a combination of 

parameters that allowed the model to achieve a rapid rising phase in simulated eye velocity 

without developing severe oscillations like those shown in Fig. 3B. Stable tracking also 

required adjustment of the time constants in cluster 7: in four different simulations with 

fixed visual feedback delays of 40,70, 100, and 130 rns, the optimization algorithm adjusted 

the time constants to be 44,63,78, and 89 ms, respectively. 

The final step in the development of she normal tracking model was to free enough 

additional parameters for adjustment so that a single configuration could perform the VOR 

(Fig. 3C), visual tracking with the head fixed (Fig. 3A), and an additional tracking task 

called cancellation of the VOR in which the head and target moved together (not 

shown)16. To accomplish these tasks, the model required the vestibular pathway through 

clusters 9 and F, which became configured as an inhibitory side-loop of the VOR, 

mimicking the known anatomy of the vestibular pathways through the flocculus6. It also 

required that the time constants in cluster 9 were similar to those in cluster 7 and that the 

vestibular inputs to cluster F arose from the tonic units in cluster 1. Even if phasic-tonic 

inputs were available, the weights in their connections to cluster F were set to zero by the 



optimization algorithm. In agreement with the physiology of the flocculus in the primate, ' 

the units in cluster F showed approximately equal sensitivity to head velocity and eye 

velocity inputs 17918 and their output was almost unmodulated during the normal 

The positive feedback configuration of the eye velocity input to cluster F is required 

in our model to produce realistic tracking of smooth target motion with the head stationary 

(compare Fig. 3A and B). Positive feedback would not be required in a static model like 

that in Fig. lB, where it could be replaced with an amplifier. In a dynamic model, positive 

feedback acts as an integrator and affects the time course as well as the amplitude of the 

output from the model. In our model, positive feedback integrates the transient visual 

motion input caused by target motion and allows the eye velocity of the model to be 

sustained at a value close to target velocity during visual tracking. However, the same 

integration would cause a ramp increase in eye velocity for the sustained head velocity 

input that drives the VOR. In the model, the head velocity input to cluster F counteracts 

the eye velocity input so that the positive feedback loop is prevented from acting as an 

integrator during the VOR. The next section will show that the need to preserve balanced 

head and eye velocity inputs to cluster F during the VOR is a critical constraint on possible 

sites of motor learning in a dynamic model. . 
Sites of learning in the model 

We conducted a number of simulations, each of which began after the parameters of 

the model had been optimized to produce realistic visual tracking and a normal VOR. The 

parameters of the model were readjusted by the gradient descent optimization algorithm 

under conditions that required motor learning in the VOR. To model the effect of wearing 

miniaturizing spectacles, eye velocity was required to be opposite in direction and 25% of 

the amplitude of head velocity. We began by allowing the optimization algorithm to 

readjust the weights at connections a, b, d, and e and using a training set that included both 

visual tracking and the VOR. After learning (Fig. 3D), simulated eye velocity during the 



VOR (solid line) was close to the desired output (dashed line) and the model's 

performance during the other tracking tasks (not shown) was the same as in the original 

tracking model (Fig. 3A). Comparison of Fig. 3C and D shows that the change in the gain 

of the VOR was driven by changes in the output of units in cluster V with little change in 

the output from cluster F. 

We next subjected the normal tracking model to the same training conditions used 

above to reduce the gain of the VOW to 0.25, but now with the adjustment of weights 

restricted to different combinations of sites. Table I shows that the model did not achieve 

stable performance when weights could be adjusted only at connection a (Model V, Fig. 

3E) or only at connection d (Model 111): constant head velocity did not elicit constant eye 

velocity and the asymptotic value of output error was large. Only if the optimization 

algorithm was allowed to adjust the weights at connections a and d was the model able to 

achieve a small asymptotic value of output error. Eye velocity positive feedback 

necessitates multiple sites of learning. Without parallel modification of the weights at 

connections a and d, any changes in these weights will upset the balance between vestibular 

and eye velocity inputs to cluster F during the VOR; the integrating action of eye velocity 

positive feedback will convert the imbalance into a ramp of eye velocity. 

The presence or absence of training tasks that required visual tracking dictated how 

the model learned a VOR with a reduced gain. When the model was required to perform 

both the VOR and visual tracking but was allowed to change only the values of the weights 

in connections a and b, it was not able to learn a stable reduced VOR (Table I, Model VI). 

When the same weights were adjustable but visual tracking was not required, the 

optimization algorithm was able to achieve a small asymptotic output error in a VOR with 

a gain of 0.25. Motor learning in the VOR was then'ac~om~lished by parallel reductions in 

the weights in connections a and b, which compromised the performance of the model on 

visual tracking tasks. In monkeys, by contrast, motor learning in the VOR causes only tiny 



changes in smooth visual tracking and no change in the positive feedback of eye velocity 

through the f l occu lu~~~ .  

We next asked whether the magnitude of the changes in weights observed in the 

model were compatible with existing data from monkeys. In experiments on monkeys, 

Miles et all2 have made measurements that should be comparable to the values of the 

weights in connection a. They found that the sensitivity to vestibular inputs of Purkinje 

cells in the flocculus was reduced to 67% of normal when the gain of the VOR was reduced 

to 0.18. Table I shows that the weights in connection a of the model were reduced to 39- 

44% of their original values when the gain of the VOR was reduced to 0.25. Further 

analysis of model I1 revealed that the weights in connection a had to be reduced to 31% of 

normal to reduce the gain of the VOR to 0.18. Reducing the weights in connection a to the 

67% of normal found by Miles et a1 allowed the gain of the VOR in the model to be 

reduced only to 0.57. Thus, our model produces a stable VOR with a reduced gain when 

allowed to alter the weights in connections a and d, but it cannot make a given change in 

the gain of the VOR without changes in weight at connection a that exceed those recorded 

in monkeys. 

A new wav to im~lement learnine in the VOR 

Until now, models of the motor learning in the VOR have represented the cellular 

mechanism of learning as an multiplication factor. The optimization algorithm used for 

our simulations discovered that it is also possible to alter the gain of the VOR by changing 

the dynamics of the signals in the model. Fig. 4 shows how this mechanism worked when 

the optimization algorithm was allowed to adjust only the weights at connection a, a 

constraint that prevented learning of a stable VOR when the dynamics of the signals in the 

model were fixed. During the normal VOR, before learning, eye velocity was almost equal 

in amplitude to head velocity (Fig. 4A). Fig. 4C shows that the output from cluster F 

underwent very little modulation during the VOR, because the inputs to cluster F through 

connection a (labeled "Head velocity input" in Fig. 4C) and connection b ("Eye velocity 



input") cancelled each other: they were equal in amplitude but opposite in direction. In 

this version of the model, the optimization algorithm was allowed to adjust the weights in 

the inputs from both the tonic and the phasic-tonic vestibular afferents to cluster F. Fig. 4E 

shows that the optimization algorithm adjusted these weights so that the vestibular inputs 

to cluster F arose only from the tonic afferents (Fig. 4E) when the gain of the VOR was 1.0. 

Fig. 4B shows that this configuration of the model was able to learn a stable VOR 

with a reduced gain of 0.25. The dashed line labeled "H" in Fig. 4D shows that the head 

velocity input to cluster F became more transient when the gain of the VOR was 0.25 but 

retained the steady-state amplitude it had when the gain of the VOR was normal. Because 

the eye velocity of the VOR was reduced, the eye velocity input to cluster F ("E in Fig. 4D) 

was smaller than normal and the output from cluster F now underwent strong modulation 

during the VOR. Finally, Fig. 4F shows that the change in the transient behavior of the 

head velocity input to cluster F reflected an increase in the contribution of the phasic-tonic 

vestibular inputs and a decrease in that of the tonic inputs. 

The integrating action of the eye velocity positive feedback pathway makes it 

possible for the mechanism outlined in Fig. 4 to achieve a change in the gain of the VOR 

with little or no change in the steady-state amplitude of the vestibular inputs to the positive 

feedback pathway. The addition of a phkic component in the input to the positive 

feedback loop injects a transient signal into the loop that is integrated and remembered. If, 

as illustrated in Fig. 4, the transient is injected at cluster F, it causes a reduction in the gain 

of the VOR. Changes in the dynamics of the head velocity input to cluster V would also 

cause changes in the gain of the VOR, but would contradict other dataz1. 

Implications for the site of motor learning in the brain 

Our simulations demonstrate that both extant hypotheses for motor learning in the 

VOR are incomplete. Ito has proposed that the site of learning is in the cerebellar cortex 

and that increases in the cellular equivalent of synaptic weights would decrease the gain of 

the VOR~O. We have discovered that his hypothesis, when tested in a dynamic simulation, 



does not provide a stable VOR and excellent visual tracking after motor learning. Miles et 

a1 l2 and ~ i s b e r ~ e r '  proposed that parallel decreases in the cellular equivalent of weights 

in the brain stem and the cerebellum would work together to decrease the amplitude of the 

VOR. We have found that this hypothesis provides a stable VOR after learning, but that it 

fails to agree quantitatively with the following data. 1) In the model, the steady-state 

vestibular sensitivity in cluster F is reduced to 31% of normal when the gain of the VOR is 

reduced to 0.18. In the monkey, the same reduction in the gain of the VOW is associated 

with a reduction in the vestibular sensitivity of floccular Purkinje cells only to 67% of 

normal12. 2) In the model, learning occurs without changes in the output of cluster F 

(compare Fig. 3D and E). In the monkey, learning is associated with large changes in the 

responses of floccular Purkinje cells during the VOR 12,13,22 

We now propose a new hypothesis for motor learning in the VOR. The hypothesis 

allows stable performance of the VOR on a millisecond time scale when its inputs and 

outputs vary as a function of time. It also permits the model to maintain excellent visual 

tracking after motor learning in the VOR and it allows changes in weight at connection a 

that are consistent with the data of Miles et all2. The new hypothesis incorporates 

elements of those proposed by 1tol0 and by Miles et all2 and takes advantage of our 

discovery that the gain of the VOR can be altered by changing the dynamics of the signals 

in our model. We present the hypothesis by showing how the sequential application of two 

separate mechanisms can mimic the data of Miles et all2, but we assume that the 

mechanisms operate simultaneously in the brain. First, parallel decreases in the vestibular 

transmission through the brain stem and the flocculus would cause decreases in the gain of 

the VOR and would allow continued stable performance. The data of Miles et a1 require 

that the weights at connection a be reduced to 67% of normal, which means that this 

mechanism can reduce the gain of the VOR only to 0.57. Second, simultaneous increases 

in the weights for the phasic-tonic vestibular inputs to the flocculus and decreases in the 

weights for the tonic vestibular inputs would reduce the gain of the VOR to 0.18. After this 



change in the dynamics of the vestibular inputs to the flocculus, steady-state vestibular 

sensitivity in the flocculus would still be 67% of normal and the output of the flocculus 

would become modulated during the VOR, in agreement with available data 12,13,22 

Fig. 5 outlines the constraints that determine possible sites of motor learning in the 

VOR and shows how those constraints would be affected by other, hypothetical VOR 

pathways. We have found that positive feedback of eye velocity is essential for realistic 

pursuit, but that it causes the model to become unstable unless there is balance in the 

strength of vestibular transmission through the brain stem (d) and the cerebellum (a1 and 

at). The strong evidence that such a positive feedback pathway exists in the flocculus4, 

along with the fact that decreases in the gain of the VOR are associated with decreases in 

the steady-state transmission of vestibular inputs through the flocculus, argue that the 

hypotheses of Miles et all2 and ~ i s b e r ~ e r l  must form part of the mechanism of motor 

learning. Decreases in the gain of the VOR must be accomplished in part by parallel 

decreases in the value of d and in the steady-state component of a1 and a2. This 

conclusion would not be changed by including the well-known neural integrator in the brain 

stem and a more realistic description of the orbit and eyeball23, or by adding a parallel 

unmodified VOR pathway in the brain stem24. 

The dashed lines in Fig. 5 illustrate h ~ w  the constraints on the site of learning might 

be different in other configurations of the model. The pathway through a3 represents any 

other vestibular pathway that both drives eye movement and contributes to the positive 

feedback of eye velocity. This pathway, which could include floccular Purkinje cells that do 

not respond to eye velocity, operates under the same constraints as the pathways through 

a l ,  a2, and d. In fact, the inclusion of a3 would not alter the operation of the model at all 

because changes in the value of a3 would have the same effects as chgnges in d. The 

pathway through element c in Fig. 5 could supplement the mechanisms of motor learning 

proposed here. This pathway contains a site of learning and contributes to the signals that 

drive eye movements, but it does not provide inputs to the positive feedback through the 



flocculus. If such a pathway existed in the brain25, changes in its vestibular transmission 

(represented by the value of c in Fig. 5) would alter the gain of the VOR without affecting 

the stability of the VOR, the performance of visual tracking, or the discharge of the brain 

cells represented by clusters F and V in our model. The addition of other connections and 

pathways in Fig. 5 would not alter our conclusions because any other VOR pathway would 

be mathematically identical to one of the pathways that is already shown in this diagram. 

Conclusions 

Our analysis of a network model has pointed out the importance of considering 

motor learning in the VOR as a dynamical property of a system of neurons. We have 

found that earlier hypotheses based on individual sites of learning in the brain stem or 

cerebellum fail to account for the known behavior of the VOR. Even qualitative 

agreement between the performance of the model system and that of the biological system 

could be attained only by postulating highly-specific changes in vestibular transmission at a 

few carefully-chosen sites. 

We have introduced a new hypothesis that uses a shift in the balance of phasic-tonic 

and tonic inputs to the cerebellum to contribute to motor learning. The new mechanism is 

a specific implementation of a more general mechanism in which changes in dynamic 

processing inside a model can cause changes in the amplitude of its output. The power of 

this mechanism in our model raises the possibility that subtle changes in the cellular 

properties of neurons could have major effects on the properties of a system of neurons. 

Thus, brain mechanisms as subtle as a change in adaptation properties of neuronal firing 

rate or a modification of the dynamics of individual ionic conductances could mediate 

behavioral learning by causing large changes in the operation of interconnected networks 

of neurons. 
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25. Recordings from the ventral paraflocculus have implied that the eye velocity feedback 

signal represents the full command for smooth eye movement of visual and vestibular 

origin, making it unlikely that such a separate, modified VOR pathway exists. 

However, recent anatomical studies (N.M. Gerrits and J. Voogd, Exp. Brain Res. 

Suppl. 17: 26 (1989)) have identified the caudal portion of the flocculus, from which 

few recordings have been made in monkeys, as a region that may be involved in motor 

learning in a way that is not included in our hypothesis. If the output from the caudal 

flocculus ultimately provides part of the eye velocity feedback to the rostra1 flocculus 

and ventral paraflocculus, then this structure would have to function under the same 

constraints described here for the units in cluster F. If the caudal flocculus possesses a 

separate and private output pathway to motoneurons that does not access the eye 

velocity positive feedback, then these caudal Purkinje cells could still contribute to 

10,ll motor learning in the simpler way envisaged in early models of the VOR . 
26. Research supported by a grant from the Defense Advanced Research Project Agency, 

awarded through the Office of Naval Research. We thank numerous colleagues for 
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Table I. Changes in connection weight during learning of a reduced amplitude VOR 

with adjustment allowed in different combinations of connections. For each modifiable set 

of connections between clusters, we summed the absolute values of the weights before and 

after learning. Each entry in the table shows the summed final connection weight as a 

percentage of the summed initial weight. Entries of -- indicate that the model was 

configured to prevent modifications in that connection. The bottom row shows the 

asymptotic value of output error in a single VOR trial. The asymptotic output error did not 

become smaller if models 111-VI were altered so that the optimization algorithm was 

allowed to adjust the weights in connectiofi e or b. We did not allow the optimization 

algorithm to adjust the weights in connection V->M because of evidence that this 

connection is not modified in the brain1. Each configuration of the model was run with the 

same simulation parameters14: decay, los7; momentum, 0.5; learning rate for weights, 2.0; 

learning rate for time constants, 0.1. The performance of the model was similar in attempts 

to increase the amplitude of the VOR, although the non-linearities in the input-output 

characteristics of the processing units and the method for calculating output error yielded 

larger values for asymptotic output error. 



FIGURE LEGENDS 

Figure 1. A network model of the vestibule-ocular reflex (VOR) that is based on the 

current understanding of the anatomy and physiology of the VOR pathways in the brain 

stem and cerebellum. A: Block diagram showing the basic organization of the brain 

pathways. B: A static model of the brain stem and cerebellar pathways that subserve visual 

tracking and the VOR in monkeys, after Miles et all8. The arrows indicate the flow of 

signals in the model, from the head velocity input on the left to the eye velocity output on 

the right. Circles represent summing junctions and the boxes containing small letters 

represent gain elements that multiply their inputs by the value of the variable inside the 

box. C: A network model based on the biological network. Each group of units represents 

a separate cluster and the arrows indicate the direction of specific interconnections 

between clusters. Cluster F, representing the flocculus, inhibits cluster V, representing the 

cells in the brain stem that receive inhibition from the flocculus. Cluster 1 contains the 

input units, which signal head velocity and head acceleration, cluster M represents two 

extraocular motoneurons, and cluster E consists of an eye velocity output unit, needed to 

compare the actual output of the model with the desired output. The letters next to some 

of the arrows indicate the analogy among the connections where modifications were 

allowed when testing the site of learning in the model, the multipliers defined in the static 

configuration of B, and the postulated sites of learning in A. The circle with an "R" in it is a 

summing junction that represents the retina and provides an output proportional to the 

different between target velocity and eye velocity, both of which were represented relative 

to the potentially-moving head. The model in panel C lacks an explicit three-neuron arc, 

but includes one implicitly in the chain of connections through clusters 1, 2, 3, and V to 

tluster M. Cluster 2 was included so that the balance of tonic and phasic-tonic vestibular 

inputs to the brain stem VOR pathways could be fixed by preventing the optimization 

algorithm from adjusting connection 1->2. Cluster 3 was included as a buffer to ensure 



that the sites for learning in the two head velocity pathways to cluster V required back 

propagation from the output unit over the same number of connections. The number of 

connections in the pathway does not have a significant effect on the operation of the kind 

of artificial network studied here and the number of connections in a model of this kind 

bears no relation to the number of synaptic relays used by an equivalent circuit in the brain. 

Figure 2. Combined use of tonic and phasic-tonic vestibular inputs to generate eye velocity 

during the VOR. The input to the model was a 50-m ramp of head velocity from 0 to - 
30'1s followed by a constant head velocity of 30°/s. The tonic and phasic-tonic vestibular 

input units in cluster 1 provide inputs that are combined in cluster V to generate 

commands for eye velocity. The dashed line shows the desired eye velocity during the 

VOR. 

Figure 3. Performance of the normal tracking model for visual and vestibular stimuli. A: 

Tracking of target motion at 30°/s with the head stationary. There was a fixed delay of 100 

, ms in the visual inputs and the optimization algorithm had adjusted the weights in 

connection b as well as the time constants of integration in cluster 7. B: Optimal 

performance for the same stimulus shown in a, but with the weights in connection b 

constrained to be zero. C-E: Performance of the model and output from selected units 

during the VOR before (C) and after (D,E) motor learning to reduce the gain of the VOR 

to 25% of normal. In D, connections a, b, d, and e were modifiable. In E, the model had 

been optimized to have a reduced VOR with modifications allowed only in connection a. 

Each trace shows amplitude as a function of time in 2 ms steps. The dashed line in the 

bottom row of traces shows the desired eye velocity with respect to the orbit. The value at 

zero time in each trace shows zero eye or head velocity, or a unit output Mth a value of 0.5. 

The calibration bar holds for the eye and head velocity traces. The traces showing the 

outputs from cluster F and V have the same amplitude scale. Within each cluster, the 



outputs from all the units were qualitatively similar; we selected the unit that had the ' 

largest amplitude response to illustrate the output from each cluster. . 

Figure 4. Illustration of how changes in connection a can cause motor learning when the 

optimization algorithm is allowed to adjust the balance of phasic-tonic and tonic vestibular 

inputs to cluster F. The left and right colllmnfi show the performance before and after 

learning, respectively. A,B: Head velocity stimulus and eye velocity response during the 

VOR in the dark. The dashed lines show desired eye velocity. C,D: The solid line shows 

the output from a representative unit in cluster F. Because the vestibular stimulus was 

presented in the dark, the output from cluster F was determined entirely by the vestibular 

inputs from cluster 9 and the eye velocity inputs from cluster 7. The short dashed lines 

show the contribution of the vestibular inputs, derived by zeroing the connection weights 

between cluster 7 and this unit. The long dashed line shows the contribution of eye 

velocity, derived by subtracting the head velocity input from the output of the unit. E,F: 

The short and long dashed lines show the contributions of the phasic-tonic and tonic 

vestibular inputs to the output of cluster F. 

Figure 5. Schematic diagram summarizing the conclusions of our simulations. The solid 

arrows show the flow of signals in the new hypothesis suggested here. The dashed arrows 

show the flow of signals in two other possible VOR pathways. Each box acts as a 

multiplication factor that represents a possible site of learning and the circles labeled F, V, 

and R represent the flocculus, the flocculus target neurons in the vestibular nucleus, and 

the retina, respectively. The separate head velocity pathways (a1 and a2) to the circle 

labeled F provide a way to adjust separately the strength of the inputs from the tonic and 

the phasic-tonic vestibular afferents. 









Figure 4 

\ Head velocity 

Eye velocity 

- - - - - - -  
I 

/ Head velocity 
- - 
nput 

Cluster F output 

\ Eye velocity input - - - - -  

- - - - - - - - -  
/ 

/ Tonic vestib. input 

1 Phasic vestib. input ------------------------ 
I / Tonic 
2 ' ~ .  

I 200 rns I 






