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Terrence j. Sejnowski and Patricia S .  Churchland 

Computation in the Age of Neuroscience 

B RAINS ARE MASSIVELY PARALLEL, ANALOG, biological com- 
puters. They are far more powerful, flexible, and compact 
than any manufactured computer. The computational prin- 

ciples that make brains such effective computers are radically 
chfferent from those that are used in conventional digital designs.' 
Some neurocomputational principles, such as analog processing 
in dendritic trees and synaptic plasticity, have already been dis- 
covered by biologists, but many more principles have yet to be 
identified. Analog VLSI (very large scale integration) technology 

' may provide a medmm for exploring these principles and creating 
new computational architectures. A partnership between neuros- 
cience and computer technology is opening a path toward building 
silicon brains that can grapple with the real world. In the next 
century, this partnership could provide new insights into the na- 
ture of our own brains as well as engender ideas for remarkable 
new machines made in our image. 

BEES AND AGRIBOTS 

Imagine a computing device that would revolutionize the stoop 
labor sector of agriculture. In midsummer, the agribot travels up 
and down rows of tomato plants, picking those tomatoes red- 
dened to maturity while leaving small green tomatoes on the vine. 
It sorts the harvest according to size, tossing down for fertilizer 
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any fruit spoiled by rotten spots. Its sister agribots rove the tomato 
fields in ea~ly  spring, some pulling up weeds and some picking 
off grubs, thereby reducing the farm's dependence on pesticides 
and herbicides. Other agribots toil in the peach orchards; some 
prune the trees in early spring, some delicately pick the fruit during 
the summer. 

Although mechanical devices, including tomato-pickers, have 
been invented for agriculture, typically the machine-product in- 
terface requires downgrading the produce so that nondiscerning 
and inflexible machines can be used. But this compromise is not 
inevitable. Unafraid of heights and unwearying in their chores, 
the agribots allow farmers to grow high quality, as opposed to 
rubbery and tough, fruit and vegetables. 

What would it take to make this appealing science fiction real? 
First, the agribots need computational insides &at are very small, 
very cheap, and enomously powerful. Second, the computational 
style of the devices must allow for flexibility in sensory categori- 
zation and adaptability in motor control. Abandoning the con- 
ventional wisdom-"program a universal machine to create a 
precise virtual machinem- engineers will have to harken to a very 
different strategy: "create a real-time machine with feedback 
mechanisms, and let it learn to perform its task." Is this fantasy 
within the realm of engineering possibility? 

Superficially, the bets would appear to be against. Existing 
digital computers lack the autonomy, flexibility, and adaptability 
required by the fictional agribots. Nothing remotely close to the 
desired miniaturization and energy efficiency is available in the 
electronics marketplace. 

A more positive response, however, comes from noting that 
biological computers replete with the agribot's features do already 
exist. Brains of insects, birds, fish, and mammals represent an 
existence proof for powerful, fast, flexible, and self-reliant com- 
puters. Nature did it, so it ought to be possible for us to do it. 
Nevertheless, between the existence proof and the construction 
lut lies a vast gap. 

Consider, for example, the brain of a honeybee, which has 
about a million neurons compared with the 100 billion neurons 
in a human brain (figure 1). Consider energy eficiency: the bee's 
brain dissipates less than 10 microwatts superior by about 
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Figure 1. Circuitry in the visual system of the fly (Musca domesticus). The 
organization is very like that in bees, butterflies, and other insects. This drawing 
shows only about 10% of the actual number of neurons in the region. Even 
without identifying each pathway and each neuron type, the system's highly 
organized and regular structure is visible. Note that the large neurons (black, 
left) differ systematically in the level of their destination, the choice of cells to 
contact, and the precise location of contact with specific cells. Scale bar is 20 
Fm. (Drawing by N. J. Strausfeld, Atlas of an Insect Brain. New York: Springer- 
Verlag, 1976) 
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7 orders of magnitude to the most efficient manufactured com- 
puter. Consider speed: a bee brain, on a rough and conservative 
estimate, performs about 10 teraflops (a thousand gigaflops); the 
most powerful computers approach speeds of only 10 gigaflops 
(a billion operations per second). Consider behavioral repertoire: 
honeybees harvest nectar from flowers and bring the nectar back 
to the hive. They maximize foraging benefits and minimize for- 
aging costs, for example, by recognizing high nectar sites and 
remembering which flowers have been visited. They can see, smell, 
fly, walk, and maintain balance. They can navigate long distances, 
and they can predict changes in nectar location by extrapolating 
from the past regularities. They communicate nectar sources to 
worker bees in the hive, they recognize intruders and attack, they 
remove garbage and dead bees from the hive, and when the hive 
becomes crowded, a subpopulation will swarm in search for a 
new home. Consider autonomy and self-reliance: bees manage all 
this on their own, without the aid of human intelligence to su- 
pervise them, repair them, or nurse them along. A supercomputer, 
by contrast, needs the constant tender care of a cadre of maintai- 
ners and programmers, not to mention financiers. Finally, the 
entire bee brain takes up only about a few cubic millimeters of 
space, a marvel of miniaturization. 

Research aimed at understanding how brains work will likely 
be a profitable undertaking, even in the near future. On the one 
hand are important medical consequences, not to mention the 
sheer intellectual value of understanding ourselves. Less appreci- 
ated, but potentially more significant in economic terms, are tech- 
nological spin-offs. Knowledge of evolution's computational 
tricks and architectural ingenuities for speed, power, and flexibil- 
ity can be applied to a variety of problem domains. 

Agriculture may be but one such domain; deep sea mining, 
defense, pollution clean-ups, and space exploration are others. 
Current generation neural nets capture some highly general fea- 
tures of brains, such as parallel architecture. Primitive as they are, 
neural nets of 1990 vintage might be epoched as the "Bronze 
Age" artifacts of brain-style computer technology. This is not to 
belittle their very significant beginning, but only to affirm that 
they are just a beginning. Still ahead are epochs advancing the art 
beyond this first step. 
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A B C 

Figure 2. Figure-ground reversal. There are two perceptual interpretations of 
these images: a pair of black faces, or a white vase. The interpretation can be 
influenced by conscious attention and biased by features in the image. Thus, the 
face interpretation is generally favored in A and the vase interpretation in C. 
(From S. Coren and L. W. Ward, Sensation and Perception. San Diego: Harcourt 
Brace Janovich, 1989) 

REVERSE ENGINEERING THE BRAIN 

In a very general sense, brains compute. The net result is that they 
represent the world and manage to survive in it. Computational 
neuroscience is an emerging field dedicated to figuring out how 
real brains represent and compute. Computer modeling of neural 
circuits is essential to the enterprise as a means of addressing how 
neurons (the cellular components of nervous systems) interact 
with each other to produce complex effects such as segregating 
figure from ground, recognizing a banana in many different ori- 
entations, or visual tracking of moving targets in 3-D space (figure 
2) .  

Neuroscience contributes three main ingredients to the neuro- 
modeling enterprise: (I) anatomical parameters such as the precise 
tree structure of various neuron types and the exact connectivity 
between neurons (who talks to whom) in a pamcular real net- 
work; (2) physiological parameters such as response characteris- 
tics of neurons, time constants, synaptic sign, etc., and (3) clues 
to the network's function and its computational, modus operandi 
in executing that function. The main techniques involve interven- 
ing jn the system, for example by lesioning or by electrical stim- 
ulation (figure 3). 

Models highly constrained by neurobiological parameters pro- 
vide a particularly efficient means for exploring the computational 
wherewithal of nervous systems. Analysis of a highly constrained 
working model, in turn, can inform neurobiologists about unsus- 
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Figure 3. Levels of organization in nervous systems. According to spatial scale, 
the components of the nervous systems as currently understood include (A) 
central nervous system behavior, including the brain and spinal cord; (B) systems, 
such as the visual system, auditory system, and motor system; in many regions 
of the brain the topography of neurons corresponds to the topography of its 
input domain, such as the retina or the skin; (C) networks of neurons, which 
may consist of many thousands of interconnected neurons; (D) the individual 
neuron, which can be either excited or inhibited by inputs from other neurons. 
(E) On small patches of dendrite of a given cell, the input to synapses interact 
to constitute a. microcircuit. (F) At the synapse, a signal is passed from the 
sending cell to the receiving cell, usually by means of a chemical released from 
the sender that attaches to the receiving cell -and changes the cell's voltage a tiny 
amount. (G) On the molecular level, ion channels consist of proteins in the 
membrane that may reconfigure under restricted conditions to allow specific 
ions, for example ~2+, to enter the cell in response to chemical or electrical 
signals. (From G. Shepherd, Neurobiology, 2nd edition. Oxford: Oxford Uni- 
versity Press, 1988) 
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pected mechanisms and interactions, whose reality can then be 
tested in actual nervous systems. 

By continuously inspiring, correcting, and informing each other, 
neuroscience and computer modeling can co-evolve to greater 
accuracy and greater adequacy, respectively. This co-evolution is 
already producing ideas for innovative computational procedures 
and architectural design relevant to such problems as real-time 
interacting, efficient associative memory storage, mixed modality 
coordination, multiplexing, and attentional selectivity. - 

SIMULATE OR SYNTHESIZE? 

As in simulating a hurricane or a heart on a &&a1 machine, 
simulating neurons runs afoul of the real time problem. Such 
machines are not yet powerful enough to both faithfully simulate 
the system's processes and do it in real time. Either close imitation 
of neuronal operations or real time has to be sacrificed. The 
problem is that the simulation strategy consists of compartmen- 
talizing the phenomenon and solving vast numbers of differential 
equations. It is, therefore, pitifully slow, relative to the real per- 
formance-time of the system simulated. 

In a neuron, ions pass back and forth across the membrane, 
signals are integrated, output spikes are producedz-all in a matter 
of a few milliseconds (figure 4). To simulate a millisecond in the 
life of a neuron, however, thousands of coupled nonlinear differ- 
ential equations have to be solved. To compound the difficulty, 
these equation are "stiff," in the sense that they embrace a wide 
variety of time scales. This means that the simulation's time steps 
can only be as long as the shortest significant interval. Conse- 
quently, even a powerful work station will take minutes to sim- 
ulate a millisecond of real time of a single neuron ( m e  5). 

Constructing dedicated hardware for synthetic neurons and 
synthetic nervous systems is the way to circumvent this dead- 
ending ponderousness of simulation. One obvious strategy, then, 
is to construct neuron-like chips. To construct chips that compute 
as wondrously as real neurons, we must first understand how real 
neurons do. it. The production of a spike in the axon of a neuron 
is indeed an all-or-nothing affair, but the purely digital properties 
of neurons stop there. Processing in dendrites is analog, including 



Figure 4. Inhibitory and excitatory synapses on a neuron. (A) The inhibitory 
postsynaptic potential (IPSP) means that the postsynaptic cell hyperpolarizes 
(dropping from -70 mv to -72 mv), and the excitatory postsynaptic potential 
(EPSP) means that the postsynaptic cells depolarizes (from -70 mv to -67 mv). 
(B) The EPSP was triggered about 1, 3, and 5 sec after the onset of the IPSP. 
(C) The subsynaptic conductance changes occurring when excitatory and inhi- 
bitory synapses are activated simultaneously (left) and when only the excitatory 
synapse is activated (right). (From R. F. Schmidt, Fundamentals of Neurophys- 
iology. Berlin: Springer-Verlag, 1978) 
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Repetitive Bursting 

Figure 5. Differences in intrinsic firing patterns of cortical neurons. (A) When 
stimulated with a suprathreshold step of depolarizing current, regular-spiking 

- neurons respond with an initiaI high-frequency spike output that rapidly declines 
to much lower sustained frequencies. Intracellular voltages are displayed in the 
toy trace, injected current steps in the bottom trace. (B) Under similar conditions, 
fast-spiking cells generate high frequencies that are sustained for the duration 
of the stimulus. (C) Repetitive intrinsic bursting to a prolonged stimulus. Mean 
inter-burst frequency was about 9 Hz. (From B. W. Connors and M. J. Gutnick, 
"Intrinsic firing patterns of diverse neocortical neurons." Trends in Neurosci- 
ences 13,1990: 98-99). 
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both active nonlinear mechanisms that amplify signals as well as 
passive cable properties. Even axonal spiking is analog in some 
respects; the time when the spike occurs (it can be any time), the 
frequency of spikes in a train, the duration of the repolarization 
period, and so on (figure 6). 

Real circuits, of course, have many imperfections. Invariably, 
they lapse from idealizations and component homogeneity, mem- 
branes are typically leaky, components malfunction or drop dead, 
there can be cross-coupling, and so forth. Contrary to the impulse 
to shun chip construction in favor of simulation, the farseeing 
advice is that we find the secret of how to get precision, speed, 
and power out of imperfect and imprecise components. The point 
is, somehow neurons operate in real time and cope magnificently, 
probably exploiting "imperfections" to their advantage. Conse- 
quently, the coping capacity of real-world neurons is itself com- 
putationally interesting. 

Neurons are organic. They use lipid mdecules to make resistive 
membranes, complex proteins for ion channels that allow current 
flow across the membrane, and cytoplasm in which current trav- 
els; mitochondria are the micro powerpacks, circulating oxygen 
is the energy source, and so on. What can the engineer use to 
construct synthetic neurons, if not these materials? 

THE TECHNOLOGY OF CHOICE: ANALOG VLSI 

Analog VLSI technology turns out to be well suited to the con- 
struction task for two reasons, one theoretical and one practicaL3 
(1) The device physics of doped silicon, when operating in 
subthreshold regions, is comparable to the biophysics of ion chan- 
nels in neuron membrane; that is, the current passing through a 
membrane's ion channels follows Boltzmann statistics. This allows 
one to implement the differential equations directly with analog 
circuits in CMOS (complementary oxide semiconductor) VLSI. 
(2) The very same techniques used for creating digital VLSI chips 
can be adapted to make analog VLSI chips. Carver Mead (at Cal 
Tech and Synaptics) and Federico Faggin of Synaptics, who played 
leading roles in digital chip technology, are now spearheading the 
development of analog chip technology for neural systems (table 
1). 
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Figure 6.  Neurons and neural mechanisms. (A) Examples of neurons illustrating the variety of shapes in different areas of the brain. 
id 

(From S. W. Kuffler, J. G. Nicholls and A. R. Martin, From Neuron to Brain: A Cellular Approach to the Function of the Nervous 
System, 2nd edition, Sunderland, Mass.: Sinauer, 1984) (B) Working hypothesis for a voltage-gated channel. The transmembrane * 

w protein is shown with a pore that allows sodium ions to flow between the extracellular and intracellular sides of the membrane y 
when the gate is open. (From B. Hille, Ionic Channels of Excitable Membranes. Sunderland, Mass.: Sinauer, 1984) 
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TABLE I. VLSI neural nets: figures o f  merit. Analog VLSI is strikingly 
superior to digital technology in terms of cost, power and computation 
density. (From Federico Faggin) 

Computat~on 
Power Dens~ty 

Cost (MCS'l$) (MCSiWatt) (MCSI~') 

1991 2000 1991 2000 1991 2000 

Conventional .002 .1 .1 10 .2 10 
d~g~ta l  
Special .1 4 10 10K 10 1000 
purpose 
digital 
Dedicated 5 200 500 5OK 40 3K 
digital 
Dedicated 500 20K 50K SM 4K 4M 
analog 
Human brainb 1 o9 10l0 10" 

' MCS = million connection updateslsecond 
Assumes that the cost of a human brain is $10M 

Digital technology is still very much in its heyday. It dominates 
not only the marketplace but also the imagination-space most 
people explore in thinking about a problem. The tremendous 
potential' of analog VLSI, especially in addressing messy real- 
world problems, as opposed to made-exact bench problems, has 
yet to be fathomed. For example, current algorithms running on 
a digital machine can perform at about 60% reading written 
numerals on credit card sales forms. They do this well only be- 
cause the sales slip "exactifies" the data: numerals must be written 
in the blue boxes. This serves to segment the several numerals, 
guarantee an exact location, and very narrowly limit numeral size. 
The blue boxes mean that the really trenchant problem of seg- 
mentation does not have to be solved by the machine. 

By contrast, machine reading zip codes on mail is an essentially 
unsolved problem even in the relatively tidy case where the nu- 
merals are machine-printed rather than handwritten. The trouble 
is, the preprocessing regimentations for numeral entry on the sales 
slips largely do not exist in the mail-world. Here the computer 
readers have to face the localization problem (where are the nu- 
merals and in what order?) and the segmentation probl& (what 
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does a squiggle belong to?) as well as the recognition problem (is 
it a 0 or a 62). 

The crux of the difficulty is that digital machines typically 
serialize the problem, so naturally they are programmed first to 
solve the segmentation problem and after that, to solve the rec- 
ognition problem by a template procedure. Should the machine 
missolve or fail to solve the segmentation problem, recognition is 
doomed. In the absence of strict standardization of location, font, 
size, relation to other numerals, relation of zip code to other lines, 
and so forth, digital machines regularly fumble the segmentation 
problem. The best can not yet read even 50% of real mail pre- 
sented. 

Brains, it appears, do not serialize the segmentation and rec- 
ognition problems in lockstep fashion. Often as not, recognitional 
sues are used to solve the segmentation problem. In general the 
brain's approach looks more like cooperative computation or 
constraint satisfaction than like theorem-proving. Interactive 
problem solving appears to be typical in the nervous system, 
whether the problem is speech recognition, object recognition, or 
organizing a bodily movement during prey-catching. A major 
advantage of analog VLSI is that the chip can follow the brain's 
example, solving the segmentation and recognition problems con- 
currently. 

SILICON NEURONS 

The first step in building silicon neurons was reported by Mahow- 
ald and Douglas, in Nature 1992. Using analog VLSI, they created 
a chip with selected prominent properties of pyrapidal neurons, 
a type found in cortical structures whose basic properties have 
been intensively studied by neuroscientists. Their silicon neuron 
was highly simplified, consisting of only one compartment (an 
axon) and four types of ion channels in the axon membrane. A 
real pyramidal neuron, by contrast, might have thousands of 
dendritic segments as well as an axon, tens of thousands of syn- 
apses, and scores of types of ion channels (figure 7). 

As a pilot project, however, it rates as successful on several 
counts. First, it ran in real time. A bonus of achieving the difficult 
goal of real-timeliness is that Mahowald and Douglas could also 
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Silicon Real 



Age of Neuroscience 

Figure 7. Comparison between the output from a silicon neuron and a biological 
neuron. (Top left) Magnified view of a part of a VLSI circuit for a silicon neuron. 
(Top right) Cortical neuron stained with the Goldi technique and a recording 
microelearode. (From D. Hubel, "The brain," Scientific American Sept. 1979: 
44-53). (Bottom left) Response of the silicon neuron to depolarizing current 
steps. A subthreshold current step (broken lines) injected into the cell body 
compartment of the silicon neuron evokes a passive charging curve. Larger inputs 
evoke adapting discharges of action potentials. Response of a cortical pyramidal 
cell recorded in vitro is provided for comparison. (From M. Mahowald and R. 
Douglas, "A silicon neuron." Nature 354, 1991: 515-5 18.) 
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conduct experiments by tweaking many parameters in real time, 
such as density of channels of a given type, or kinetic rate con- 
stants for channel opening. Second, the silicon neuron's output 
behavior for various injections of current, as displayed by traces 
on an oscilloscope, closely resembled the output of a real pyra- 
midal cell under various physiological conditions. Third, the 
Mahowald-Douglas neuron consumes very little power. 

With the successful debut of the single, simplified synthetic 
neuron, a number of developments are on the agenda. One is to 
upgrade the inaugural realism, for example by adding more com- 
partments (correspondmg to dendrites), and a wider range of ion 
channels. Another step is to build many neurons on a single chip. 
These synthetic neural circuits can then be explored to learn more 
about the computational possibilities inherent in the interaction 
of the various parameters. 

A major challenge on this front is the interface between the 
human creator and the chip. Ideally, the scientist should be able 
to tweak thousands of parameters in real time, and hence rhe 
interface has to be flexible and user-friendly. Using synthetic cir- 
cuits as experimental preparations means researchers can explore 
virtual neural-reality rather than sit at a work station watching 
points appear on a graph. 

A further refinement is to make the chip modifiable by "expe- 
rience" so that hand-setting of neuronal connectivity can be re- 
placed by a training regimen. Mead and his group are currently 
developing trainable chips, where connectivity is modifiable ac- 
cording to learning rules similar to those believed to underlie 
plasticity in nervous systems, such as the Hebb rule. Ultimately, 
one will want to create chips with subpopulations of neurons 
specialized for different tasks, in the manner that distinct brain 
regions-visual cortex, auditory cortex, motor cortex, etc.-are 
specialized. Here again, fruitful ideas may come from seeing how 
Nature engineers specialization and integration. 

Following Nature may require that we model patterns of neu- 
ronal connectivity, both long range (on the order of centimeters) 
and short range (millimeters). Nervous systems are remarkably 
fault tolerant, in the sense that a circuit and its function can 
survive quite well the death of individual neurons in the cir&it. 
Comparable fault tolerance might be achievable for arrificial sys- 
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tems by imitating the connectivity, modifiability, and processing 
style of the brain. 

NEURAL CIRCUITS IN SILICON 

Peripheral sensory organs such as the eye are highly specialized 
for transduction of external physical signals, such as photons, into 
electricity activity. The retina is a powerful preprocessor that 
transforms information about photons into a form suitable for- 
neural representation and c~mputation.~ In many animals, sensory 
transducers and preprocessors have evolved to a sensitivity close 
to the limits of physical possibility. In primates, photoreceptors 
in the retina will respond to a few photons; the human ear is close 
to the limits set by the noise from Brownian motion. These trans- 
ducers do not discretize time as digital computers must do but 
use powerful analog preprocessors to shape the information to a 
neural-friendly form. Can these inventions of nature be reverse 
engineered? 

Carver Mead has built a family of silicon retinae. Each is a 
VLSI chip, merely a square centimeter in area; it weighs about a 
gram, and it consumes only about a milliwatt of power. Between 
arrays of phototransistors etched in silicon, dedicated circuits 
execute smoothing, contrast enhancement, and motion processing. 
The chip operates in its subthreshold, analog mode. Compared 
with a typical CCD (charge-coupled device) camera and standard 
digital image processor, the Mead chip is a paragon of efficiency, 
power, and compactness. The special-purpose digital equivalent 
would be about as large as a washing machine. Unlike cameras 
that must time-sample, typically 60 frames per second, the analog 
retina works continuously without the need to sample until the 
information leaves the chip already preprocessed (figure 8): 

The operations performed on the current generation of chips 
capture some of the operations performed by real retinae. For 
example, resistive grids mimic the function of the layer of hori- 
zontal cells that provide lateral interaction between photorecep- 
tors to effect smoothing. There are, however, many more circuits 
in real retinae that are not included in Mead's synthetic retina, 
such as amacrine cell circuits. About 30 types of amacrine cells 
exist in the retina, some are known to perform temporal filtering 



Figure 8. Comparison between the organization of biological and silicon retinae. 
(A) Diagram showing a close-up of a tiny region on the retina that illustrates 
several prominent cell types. The outer plexiform layer contains synaptic con- 
nections between photoreceptors, horizontal cells that provide lateral interac- 
tions, and bipolar cells that carry signals to the ganglion cells. (B) Horizontal 
cells in the white perch retina. (Left) A single horizontal cell injected with a 
fluoresecent dye. (Right) Horizontal cells have reciprocal connections as revealed 
here by dye coupling from one cell. (From J. E. Dowling [I9871 The Retina: An 
Approachable Part of the Brain. Cambridge: Haward University Press.) (C) 
Diagram of the silicon retina showing the resistive network similar in its function 
to the array of horizontal cells in the retina; a single pixel element is illustrated 
in the circular window. The silicon model of the triad synapse consists of a 
follower-connected transconductance amplifier by which the photoreceptor 
drives the resistive network, and an amplifier that takes the difference between 
the photoreceptor output and the voltage stored on the capacitance of the 
resistive network. These pixels are tiled in an hexagonal way. The resistive 
netwprk results from an hexagonal tiling of pixels. (From C. Mead 119891. 
Analog VLSI and Neural Systems. Reading, Mass.: Addison-Wesley.) 
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and to provide adaptational mechanisms. So far, however, the 
precise function of most amacrine cells is not known. The retina 
is a prime place for the co-evolution of chip design and experi- 
mental neurobiology. 

To maximize efficiency in the three critical dimensions (power, 
cost, and density), it makes good sense to build chips. To approx- 
imate neural efficiency, however, the technology still has a very 
long way to go. The commercial incentive to push forward with 
analog VLSI technology will depend on whether the commercial 
payoff in the long haul looks promising. 

SENSORIMOTOR CONTROL 

Visual perception in animals, as we all know, is breathtakingly 
difficult computationally. So far nothing in computer vision has 
come close even to matching the visual capacity of a bee, let alone 
that of a rat. In addition to good visual perception, robots will 
require good coordination between their "eyes" and their 
"hands." Several observations on the neurobiology of sensori- 
motor control may provoke new computational insights. 

Three features of neurobiological solutions to the problems of 
sensorimotor control stand out: 

1. Control is not assigned to a control center; brains do not 
have a central executive or planner or dictator. Control is widely 
distributed in the nervous system, though the secret of how this 
works has not yet been discovered. 

2. In managing control, brains use both positive and negative 
feedback. This is uncommon in engineered control systems, partly 
because the combination often causes instabilities. The nervous 
system, however, combines them in a highly successful way. It 
uses positive feedback signals to predict what happens next in a 
feedforward control pathway, and negative feedback signals to 
make small corrections within the moveinent. This gives the sys- 
tem speed of response with minimum corrective wiggle. 

3. Movement of sensory input systems, such as the eyes, ap- 
pears to make certain computational problems of visual percep- 
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tion simpler rather than more difficult. For example, head and 
body movement help in determining depth of objects in a scene 
by creating motion parallax (near objects have greater relative 
motion than far, and objects in front of the fixation point move 
opposite to head direction, those beyond fixation point move 
isodirectionally). Hence animals often head-bob in order to ex- 
tract more information through differences in relative motion of 
objects. 

Body Movement Allows Representational Economies 
In a surprising way, eye movement reduces the brain's computa- 
tional load by reducing how much has to be represented in detail 
at any given saccade (small eye movements we scarcely notice but 
normally make about every 300 msec). As Dana Ballard, a com- 
puter scientist at the University of Rochester, points out, eye 
movement behavior takes advantage of the general stability of the 
world to economize on proces~ing.~ Ballard's idea is that only a 
small part of the visual field, roughly the central 2% (the foveal 
region), is processed to a high level. 

On each saccade the brain samples a new 2% sector of the 
visual field. Attentional and motivational mechanisms appear to 
help guide the scan paths of the eyes. Psychophysical research 
shows that the eyes systematically scan a scene, returning many 
times to areas of high interest, relative to animal's current task. 
Ballard's hypothesis is that the brain does not need to have a 
ridly articulated model of the whole world, because the world is 
out there to be sampled again and again. The world is largely 
stable, and relevant changes in the world scene can be picked up 
quickly. 

Nonsmeary Vision During Head Movement 
In neurobiology, an especially well-studied and revealing example 

. of active sensorimotor control is the oculomotor system (figure 
9). This circuitry is responsible for keeping the visual perception 
stable and crisp when head or eye (or both) are moving. But for 
its remarkable speed and tremendous accuracy, our visual image 
would smear every time we moved our heads. For a basketball 
player or a cheetah chasing a gazelle, this would be catastrophic. 
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Figure 9. Pathways for visual tracking.6 (Top) When the head moves, the per- 
ception of the object remains crisp as the eyes make compensating movements 
in the opposite direction. (Bottom) The input comes from the head acceleration- 
detectors in the semicircular canals. Information is processed in the vestibular 
nuclei, and the eye muscles are precisely signaled to contract so that the eyeball 
moves appropriately. (From G. Shepherd, Neurobiology, 2nd edition. Oxford: 
Oxford University Press, 1988) 
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Enough experimental detail about the anatomy and physiolagy 
of the oculomotor system is now known to support the interplay 
between dry modeling and wet experiments. This research is be- 
ginning to reveal how the oculomotor system can be so fast, how 
it modifies itself to accommodate structural changes in the eyeball, 
and how it makes efficient use of both feedforward and feedback 
signals. 

Chips for handing the processing of head and eyeball movement 
are currently in the works at Caltech. Assuming continued prog- 
ress in neurobiology and chip technology, a Mark I silicon "eye" 
that tracks slowly moving objects should be ready in a few years. 
An "oculobot" is still a long way from our fictional, full-fledged 
agribots, to be sure. Nevertheless, some of the ideas and technol- 
ogy leading in that direction are now in hand. 

NEURO-REVOLUTIONS 

We are on the brink of two "neuro-revolutions"-one in the 
science of the brain, and the other in the technology of brain-style 
computing. Growth of knowledge follows an exponential curve. 
Often, the more you have, the more you get-and the faster you 
get it. So it is with knowledge in neuroscience. Almost daily, 
surprising discoveries about the organization and mechanisms of 
nervous systems are reported. Setting neurobiological facts in a 
computational framework raises new questions about how net- 
works of neurons work, which in turn give rise to productive, 
testable theories about how brains work-about how brains see, 
learn, and make decisions. In computer science, the VLSI revo- 
lution has provided us with unprecedented computational tools 
to transform what we know about the brain into silicon. Silicon 
retinae are in production, silicon cochlea are nearing production, 
and "oculobots" are on the drawing board. Although it is next 
to impossible to predict precisely other brainwaves in the genre, 
it is easy to forecast that ever more sophisticated neuro-engineer- 
ing is in our future.+ 

*Portions of this article were based on our paper "Silicon Brains,' Byte. October 1992 
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