
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2002 963

Comparison of Machine Learning and Traditional
Classifiers in Glaucoma Diagnosis

Kwokleung Chan*, Te-Won Lee, Associate Member, IEEE, Pamela A. Sample, Michael H. Goldbaum,
Robert N. Weinreb, and Terrence J. Sejnowski, Fellow, IEEE

Abstract—Glaucoma is a progressive optic neuropathy with
characteristic structural changes in the optic nerve head reflected
in the visual field. The visual-field sensitivity test is commonly used
in a clinical setting to evaluate glaucoma. Standard automated
perimetry (SAP) is a common computerized visual-field test
whose output is amenable to machine learning. We compared
the performance of a number of machine learning algorithms
with STATPAC indexes mean deviation, pattern standard devi-
ation, and corrected pattern standard deviation. The machine
learning algorithms studied included multilayer perceptron
(MLP), support vector machine (SVM), and linear (LDA) and
quadratic discriminant analysis (QDA), Parzen window, mixture
of Gaussian (MOG), and mixture of generalized Gaussian (MGG).
MLP and SVM are classifiers that work directly on the decision
boundary and fall under the discriminative paradigm. Generative
classifiers, which first model the data probability density and
then perform classification via Bayes’ rule, usually give deeper
insight into the structure of the data space. We have applied
MOG, MGG, LDA, QDA, and Parzen window to the classification
of glaucoma from SAP. Performance of the various classifiers was
compared by the areas under their receiver operating charac-
teristic curves and by sensitivities (true-positive rates) at chosen
specificities (true-negative rates). The machine-learning-type
classifiers showed improved performance over the best indexes
from STATPAC. Forward-selection and backward-elimination
methodology further improved the classification rate and also has
the potential to reduce testing time by diminishing the number of
visual-field location measurements.

Index Terms—Bayes rule, neural network, standard automated
perimetry, STATPAC, support vector machine.

I. INTRODUCTION

GLAUCOMA is a progressive optic neuropathy with char-
acteristic structural changes in the optic nerve head re-

flected in the visual field [1]. Three million people in the United
States and as many as 100 million worldwide are affected by
glaucoma. It is the second leading cause of blindness in all North
Americans.

In the clinical setting, glaucoma is commonly evaluated using
visual-field testing or funduscopic examination of the optic disk
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[2]. Standard automated perimetry (SAP) is currently the vi-
sual function test most relied upon to measure visual function in
glaucoma. Automated threshold perimetry gives detailed quan-
titative data. However, even with all the experience that has ac-
cumulated for evaluating standard perimetry, sometimes inter-
preting the results of SAP can be problematic. Early detection
often requires interpretation of borderline visual-field results
[3]. Separating true vision loss due to glaucoma from fluctu-
ations in the field is extremely difficult and challenging. In this
paper, a number of machine learning classifiers will be applied
to glaucoma diagnosis from SAP and compared with STATPAC,
a specialized statistical analyses package currently employed by
clinicians to interpret SAP.

The motivation behind this paper is to develop a better un-
derstanding of the machine classification process, to evaluate
the classification in terms of receiver operator characteristics
(ROCs) curves, and to analyze the weaknesses and strengths
of known classifiers to this problem. The detailed analysis al-
lows us to compare the results not only in terms of their accu-
racy but also in terms of other properties such as training and
testing speed, feature selection method, ease of use, and possible
interpretation. These issues are important to the application of
machine classifiers in glaucoma research and to clinicians and
researchers who would like to get an understanding of the clas-
sification process and analysis. Similar approaches may also be
helpful in diagnosing other diseases.

This paper is outlined as follows: Section II summarizes
several discriminative and generative machine classifiers that
are used in this study. Section III describes the data-acquisition
method and STATPAC that is currently a state-of-the-art
method for glaucoma analysis. In Section IV, we describe the
training and testing data and the application process to the ma-
chine classifiers. In Section V, we evaluate the results in terms
of ROC and classification accuracy. Section VI depicts the
feature selection methodology for one classifier evaluated with
ROC curves for different numbers of features. In Section VII,
we discuss the results in comparison to STATPAC, within the
machine classifiers and also within the generative and discrim-
inative class of classifiers. We conclude in Section VIII and
express our near future research goals within this framework.

II. M ACHINE CLASSIFIERS

A. Discriminative and Generative Classification

In a two-class classification problem, we are given a training
dataset , where (could contain
both continuous and discrete entries) is the input and is
the output label. When performing classification, one approach
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is to first model the class-conditional probability for
each class , and then employ the Bayes’ rule

(1)

Under the Cox Axioms [4], the Bayes’ rule is the only consis-
tent way to manipulate beliefs and plausibility, if they are rep-
resented by real numbers. Classification using (1) is also known
as the generative paradigm, since the probability of generating
the data point is first modeled. This effectively reduces the
problem of classification to that of modeling the class-condi-
tional probability distribution for the two classes.

However, it has always been difficult to model
accurately. Naive Bayes’ classifier [5] assumes independency
between components of input. Modeling through

is known to be inefficient [6] as it generally re-
quires the estimation of more parameters. Take the example
of performing classification by classical linear discrimi-
nant analysis (LDA): modeling the two classes of data with
Gaussian densities of same variance but different means. It
takes parameters in this approach. The
resulting classifier is well known to be a linear discriminant
function which only needs parameters.
For a dataset of finite size, this means that we have fewer data
points for each parameter in the generative approach. Unless
the equivariance assumption fits well to the data, the classical
LDA will be less efficient, for the sole purpose of classification.
On the other hand, the logistic regression [7] makes fewer
assumptions about the classes and is generally more robust
against outliers and noise in the data. Another weakness of the
generative approach is that the model parameters are usually
optimized by maximum-likelihood (ML) estimation [8]. It
is widely believed that discriminative classifiers are to be
preferred since the discriminative criterion is more closely
related to classification error.

The above suggests we may be better off using the discrim-
inative approach in which the posterior probabilities
are directly estimated. Logistic regression is a well-known ex-
ample of the discriminative approach and is widely used in med-
ical research. Decision trees, such as CART [9] or C4.5 [10], are
another kind of discriminative classifier. Recently, attention has
shifted to neural-network-type classifiers [11], [12] and the sup-
port vector machine (SVM) [13]. In some of these classifiers,
there estimation of the posterior probabilities is unnecessary.
The classifier simply returns the labelby applying discrim-
ination functions on the input.

The advantage of discriminative classifiers is that they con-
centrate on the decision boundary and, hence, are usually robust
against irrelevant outliers in the training data. However, they
provide less insight into the structure of the data space and it
is difficult to handle data containing missing entries. The multi-
layer perceptron (MLP) and SVM often serve as black boxes in
classification and it is very difficult for humans to comprehend
how the decision is made.

B. MLP

The MLP [11], [14], [15], also termed feedforward network,
is a generalization of the single-layer perceptron studied in [16].
The MLP is a universal approximator to any real valued func-
tions. In fact, a feedforward network of just two layers (not in-

cluding the input layer) can in principle approximate any con-
tinuous function [17]. The MLP has been successfully applied
to a wide class of problems such as face recognition [18] and
optical character recognition [19].

In a two-class classification problem, for a given input

(2)

(3)

are the activations of the hidden-layer units.
are the weights between the input and the hidden layer. Sim-

ilarly, are weights connecting the hidden layer to the output
unit . The terms and are the biases for the hidden and
output units. and are continuous sigmoid function,
usually of the form or the logistic function .

The MLP is the most popular architectures among other
neural networks, such as the radial basis function [20], because
it can be efficiently trained by error backpropagation [21].
The proper error function in classification is, however, not the
mean-squared error (MSE), but the negative log likelihood
function [22]

(4)

Here, it is assumed that the logistic function is used for and
the output label takes the values of instead of .
Despite having a different error function, the equations in the
error backpropagation remain unchanged. The error function in
(4) has multiple local minima. This requires repeated training
from different random initial conditions and convergence to the
global solution is not guaranteed.

C. SVM

The SVM is a recently developed technique for solving a va-
riety of classification and regression problems [23]–[25]. The
basic idea of SVM is to find the decision plane that has max-
imum distance (margin) from the nearest training patterns. The
general form of the decision function for SVM is

(5)

where is known as the kernel function; the s are
chosen by the SVM through training, subjected to constraints

and . is a user-defined penalty term
regulating the generalization performance of the SVM. Upon
training, only a fraction of the s will be nonzero. The architec-
ture of the SVM in classification is shown in Fig. 1. SVMs have
demonstrated good generalization performance in face recogni-
tion [26], text categorization [27], and optical character recog-
nition [28], [29]. It has also been applied to data from gene ex-
pression [30], DNA and protein analysis [31], [32].

D. MOGs

As mentioned in Section I, the generative approach is to
model the class-conditional density . Since the input
of the glaucoma data contains only continuous valuables (see
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Fig. 1. A visualization of the architecture of SVM in classification.x is the
D-dimensional input vector;k(x;x ) is the kernel function betweenx and
support vectorsx ; u(x) is the output where� andy are the weight and
training labels, respectively, associated withx .

Section III) we may want to model each by a normal
multivariant density. This would result in a classical LDA or a
quadratic discriminant analysis (QDA), depending on whether
or not the two normal densities are constrained to have the
same covariance. However, in many careful studies of real data
the distributions usually do not follow a normal distribution but
have slightly heavier tails, skewed or even bi-modal structure.
In these problems a single Gaussian is not flexible enough to
model adequately the distribution of data.

In simple nonparametric methods such as the histogram
method, the input space is divided into many small hypercubes
and then is estimated for each of them. Besides not
providing much useful insight in the statistical structure of the
data, binning the data space subjects the classifiers to the curse
of dimensionality. To model properly the probability distribu-
tion of the data, semi-parametric models with “in-between”
flexibility are useful. The mixture of Gaussians (MOG) [33],
[34] has been popular for its simplicity.

Adopted to our classification problem, the probability densi-
ties for the positive and negative classes are each modeled first
as a mixture of multivariant normal densities [35], [36],

(6)

where for each cluster ,

(7)

The expectation-maximation (EM) algorithm [37] is used to find
the parameters , and . needed in (1) can
also be obtained by ML. Similar to the MLP, multiple trials are
required to avoid local minima. However, a learning rate is not
required as EM automatically chooses the optimal one. The ar-
chitecture of the MOG classifier is shown in Fig. 2.

Fig. 2. Architecture of the MOG used in a binary classification setting.p(xj�)
are the generative models for the two classes. Each is composed of a MOGs
[p (xjm ) or p (xjm )]. OutputP (+jx) is obtained by applying Bayes’
rule (1) onp(xj�).

E. Mixture of Generalized Gaussians (MGGs)

Although the MOGs provides a more flexible model to fit
the density of the data, it would be undesirable to fit a density
of long tails with two Gaussians. In addition to adequately fit-
ting the data density, a user may also want to understand the
structure of the data in terms of number of real clusters and
their deviation from normality. With the development of the
generalized Gaussian mixture model [38], we are able to model
the class-conditional densities with higher flexibility,
while preserving the possibility to comprehend the statistical
properties of the data in terms of means, variances, and kurtosis,
etc. The MGG uses the same mixture model (6) as the MOG.
However, each cluster is now described by a linear combination
of non-Gaussian random variables

(8)

i.e., s are the independent hidden sources in clusterrespon-
sible for generating the observations given and .
will assume a generalized Gaussian density [39] of zero mean,
unit variance, and shape parameter

(9)

(10)

where is the normalization constant [39]. is a measure
of kurtosis of the source

(11)

and will be adapted together with , and during
training. This is done by gradient ascent on the data likelihood
[38], [40].
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Fig. 3. A sample STATPAC printout from the HFA. Top row: absolute
sensitivities and gray scale plot over the 54 locations on the retina. Middle: age
corrected total deviation and pattern deviation (total deviation compensated
by global depression). Bottom: probability plots of total deviation and pattern
deviation.

F. Parzen Windows

The Parzen window is a kernel-based nonparametric ap-
proach to density estimation [41], [42]

(12)

where is known as theParzen windowand has to satisfy
and . If we use the isotropic Gaussian

Parzen window , it becomes a special in-
stance of the MOG density estimation (6) and (7). Goodness of
fit to data density and performance of the resulting Bayes clas-
sifier (1) largely depend on the choice of the width parameter.
Drawbacks of the Parzen windows method are that it provides
very little information on the structure of the data and requires
storage of the entire training set for classification.

III. SAP

A. Humphrey Visual-Field Analyzer

In SAP, a target 0.47in diameter of variable intensity is
flashed for 200 ms against a background of 31.5 apostilbs [10
candelas/meter squaredcd/m ]. The most commonly used

procedure worldwide is the full threshold SAP test, program
24-2 or 30-2 of the Humphrey Visual Field Analyzer (HFA,
Humphrey-Zeiss, Dublin, CA). With the 24-2 program of HFA,
the target is randomly presented to 54 locations over 24at
2-dB resolution. The displayed outputs (Fig. 3) are the absolute
sensitivity, the gray scale, the age-corrected total deviation
(numerical and probability), the pattern deviation (numerical
and probability), the glaucoma Hemifield test (GHT) result,
and several global indexes (see below). The age-corrected
total deviation is the absolute sensitivity subtracted from an
age-matched normal surface. The pattern deviation is the total
deviation compensated by global depression to account for
cataracts or other nonglaucoma conditions that may globally
depress the visual field. The initial output of the Humphrey
field analyzer (HFA) is the absolute sensitivity at each of the
54 visual-field locations. This output is represented in decibels
relative to the maximum intensity of the machine (set at 0 dB)
with a minimum of 40 dB. The values for 52 locations (two
locations corresponding to the blind spot are excluded) and the
age of the patient will constitute the raw input of our classifiers.

B. STATPAC

The HFA comes with a statistical analysis package
(STATPAC) that provides both the raw data and several spe-
cialized statistical analyses related to diagnosing glaucoma.
The purpose of these analyses is to aid the clinician in inter-
pretation of the visual field. The global indexes included in
STATPAC are mean deviation (MD), pattern standard deviation
(PSD), short-term fluctuation (SF), corrected pattern standard
deviation (CPSD) and the GHT. MD is the depression of the
patient’s overall field (all test locations averaged) as compared
with the age-corrected normative database within the HFA.
PSD is a measurement of the degree to which the shape of the
field departs from the age-corrected reference fields. Glaucoma
typically begins as a localized loss of visual sensitivities. SF is
an index of the consistency of the patient’s answers during the
field test and is obtained by testing twice at ten predetermined
points. CPSD is the PSD corrected for SF in attempt to remove
the effects of patient variability during the test and to reveal
only irregularities caused by actual field loss.

The GHT divides the superior hemifield into five zones and
compares locations within each zone to those within a mirror
image zone in the inferior hemifield. The five pairs of mirroring
sectors are compared and a difference score for each is deter-
mined. Glaucoma rarely affects both hemifields in the early
stages of the disease. So, the GHT has a high sensitivity for early
glaucoma relative to other clinically used measures. If the differ-
ence score is outside the 99.5% limits in any one pair compared
with the difference score found in age-corrected normal eyes,
the field is flagged “outside normal limits (ONL).” If it is outside
the 97% limit the field is flagged “borderline (BL)”. Fewer dif-
ferences are considered “within normal limits (WNL).” These
analyses are universally used to help the clinician in interpreta-
tion of the visual field.

We will evaluate the efficiency of GHT, and the indexes PSD
and CPSD in glaucoma diagnosis. Their results will be used
as the baseline against which our classifiers’ performance are
measured.
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Fig. 4. Sample distribution of classifier outputu(x) on a two classes dataset.

IV. EXPERIMENTAL SETTINGS

A. Data

Currently there is no gold standard to determine whether
or not a patient has glaucoma. Instead, we use glaucomatous
optic neuropathy (GON) as our teaching label [43]. Patients
and normal controls were labeled based on masked analysis of
simultaneous stereophotographs of the optic disk and ocular
history without reference to visual fields (the SAP data). Our
glaucoma dataset contains a collection of 156 eyes with GON
and 189 eyes without GON. The STATPAC indexes MD, SF,
PSD, and CPSD are scalar values and can be directly used as
classifiers output (Fig. 4) to create the ROC curves (see
Section V-A). Since the amount of data available is limited,
we used a 25-fold cross-validation scheme to evaluate the
classifiers. The dataset was divided uniformly into 25 subsets.
Each subset was in turn held aside as the test set when the
other 24 were used to train the classifiers. The results on the
25 subsets were combined into one single ROC plot for each
classification method. To facilitate training, we first normalized
each of the 52 locations raw sensitivity threshold values and
age to have zero mean and unit variance.

B. Machine Classifiers

The user-chosen parameters in all machine classifiers were
set by optimizing their cross-validation performance in five
out of the 25 partitions. The MLP was setup and trained using
the MATLAB Neural Network Toolbox 4.0 (The MathWorks,
Natick, MA). The network contained a hidden layer of 10 tanh
units and a logistic output unit. The network was trained using
the Levenberg–Marquardt method [44]. Early stopping was
used to prevent overfitting. This was done by reserving one of
the 24 subsets constituting the training set as the “stopping set.”
In each fold of the cross validation, 20 networks were trained
and their output were averaged to return a single
value for each testing data point. In the SVM, we tried both
the linear and Gaussian ( and )

kernels. We implemented the sequential minimal optimization
[45], [46] in MATLAB code to train the SVM.

For the generative classifiers, was used for the Parzen
window classifier. For the MOG and MGG classifiers, due to the
limited availability of data, we first performed principle compo-
nent analysis (PCA) on the normalized data to reduce the dimen-
sion. The data were projected onto the subspace of the first eight
components, which accounted for more than 80% of total vari-
ance. Class-conditional densities were modeled sepa-
rately on the two classes. In the MOG, there were two clusters
for the glaucoma class and one cluster for the normal class. In
the MGG, only 1 cluster was found for each class.

For a fair comparison, all other classifiers were also trained
in the eight dimensional subspace, to single out the gain or loss
from dimension reduction. Some user-chosen parameters were
re-estimated in this reduced-dimensional space: five hidden
units for MLP; for the Gaussian SVM; and for
the Parzen window classifier.

V. RESULTS

A. ROC Curve

A simple way to assess the performance of classifiers is to
compare their average misclassification rate. In biomedical data,
the dataset usually comes with a higher proportion of normal
( ve class). Classifiers will, hence, tend to achieve an overall
low misclassification rate by sacrificing theve class data, re-
sulting in a higher misclassification rate on theve class than
the ve class. However, the misclassification cost associated
with the ve class is usually higher than that ofve class. For
a classifier which outputs a scalar value for a given data point

, showing its likelihood of belonging to theve class [such
as or in (5)], we would like to pick a decision
threshold other than 0.5 for (or 0 for ), in favor
of the ve class. In Fig. 4, the data points of two classes are
placed next to the axis according to the value of given
by a classifier. The fractional densities (smoothed histograms)
show the distribution of for the two classes. Different clas-
sifiers would have different distributions for . The true-pos-
itive rate, also known as sensitivity, is the fraction (or %) of pos-
itively labeled test data classified asve. This is also the area
under the positive class density curve, to the right of the decision
threshold (zero in Fig. 4). Specificity is the true-negative rate,
the fraction of negatively labeled examples classified asve.

Varying the threshold levelsuch that a given examplewill
be classified as positive if leads to a tradeoff between
sensitivity and specificity. The receiver operating characteristic
(ROC) [47] curve is a plot of sensitivity versus 1–specificity (or
true-positive rate versus false-positive rate). The area under the
ROC curve summarizes the quality of classification over a wide
range of misclassification costs [48]. We estimate the variance
of the ROC area by a nonparametric method as described in [49].
There is an interesting interpretation of the ROC area: it is equal
to the probability of a random sample from positive class
being assigned by the classifier a [or ] value
greater than that of a random sample from negative class. i.e.,
ROC area Prob , for any random sample
pair drawn from the two classes.
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TABLE I
A COMPARISON OF PERFORMANCE OF

CLASSIFIERS BYTHEIR ROC AREAS AND SENSITIVITIES AT SELECTED

SPECIFICITIES

The specificity of GHT cannot be varied. Reported sensitivity corre-
sponds to the specificity of 1.0 on the test data.

B. Classification Results

The ROC areas for the classifiers are summarized in Table I,
grouped into the following categories: STATPAC, Discrimina-
tive (in full- and PCA-reduced dimension) and Generative (full-
and PCA-reduced dimension). We also listed the sensitivities of
the classifiers at specificities of 0.90 and 0.75. The ROC curves
for the four categories of classifiers are plotted in Figs. 5 and
6. The index PSD is very competitive to our classifiers. The
CPSD, which is derived from PSD by correcting for SF in vi-
sual-field sensitivity, does not exhibit improvement over PSD.
The GHT identified 66.7% of the glaucoma eyes as “outside
normal limits” and all of the normals as “within normal limits”
or “borderline,” Probably this is because GHT was designed to
have a specificity value of 99.5%.

To compare the classifiers quantitatively, we compute the
-values for a two-tails test among the ROC areas of the

(a)

(b)

Fig. 5. ROC curves for the discriminative classifiers on (a) full-dimension and
(b) PCA-reduced dimension data. The area under the curves for each classifier
is given in the insert.

classifiers using the nonparametric method outlined in [49].
Since the ROC curves are generated from classifiers applying
on the same data set, correlation between the ROC areas must
be taken into account. For instance, the difference in ROC
areas between the SVMs with Gaussian and linear kernels on
the full-dimensional data is 0.021. This is small compared with
their std. err. of 0.016. However, a-value of 7% is obtained on
a two-tails test when correlation between ROC areas are take
into account. In Tables II–IV, we report the-values between
the ROC areas of the classifiers. For the full-dimensional data,
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(a)

(b)

Fig. 6. ROC curves for the generative classifiers on (a) full-dimension and (b)
PCA-reduced dimension data.

the SVM with Gaussian kernel is significantly better than PSD
at 5% level, while the QDA is significantly better than PSD at
1% level. In the PCA-reduced dimension, the QDA and MOG
are significantly better than PSD at 1% level. From Tables III
and IV, only the LDA showed substantial improvement when
working on data in PCA-reduced dimension. Both linear and
Gaussian SVMs performed worse in the PCA-reduced dimen-
sion, though the differences were not statistically significant.
The ROC curves of the best classifier from each category are
plotted together in Fig. 7 for comparison.

VI. FEATURE SELECTION

It is always useful and interesting to identify the subset
of input variables that contribute most in the classification.
Eliminating irrelevant input variables that introduce noise
often improves classification. Since exhaustive search over
all possible combinations of input variables to identify the
best subset is prohibitively expensive, here we use forward
selection and backward elimination [12], to rank the variables
and identify the subset that would give best classification.
Forward selection is sequentially adding variables one at a
time, choosing the next variable that most increases or least
decreases classification. Backward elimination starts with all
input variables and sequentially deletes the next variable that
most decreases or least increases classification. These two
greedy feature selection methods may not find the optimal
feature set, but, nonetheless, their time complexity is only
quadratic in the number of features as compared with the
exponential growth for exhaustive search.

From Table I, QDA is the best classifier that can work directly
on the full-dimensional input. In addition, its fast training and
global convergence allows repeated training in a short period
of time. We performed forward selection and backward elim-
ination using the QDA to rank the input variables. The ROC
area from the 25-fold cross-validation was used as the criteria
for selecting the next variable to add/delete. In Fig. 8, the ROC
areas are plotted as a function of number of variables included
from the list ranked by forward selection and backward elimina-
tion. Performance of the full 53 dimensions input was achieved
by using less than ten most important input variables. Also,
both forward and backward selection methods peaked around
20 variables. This can reasonably be interpreted as the intrinsic
dimensionality of the data, since visual fields next to each other
should have correlated sensitivities. Besides giving better classi-
fication accuracy, using only 20 input variables reduces the time
spent by the patients in SAP from 15 to 6 min/eye and, hence,
more screening can be done. Moreover, real-time classification
is made possible when the visual locations are tested in the order
ranked by feature selection.

In Fig. 9 we plot the ranks given by forward selection and
backward elimination to the 53 input variables on a two di-
mensional space. Visual-field locations are labeled 1–54 as dis-
played in the lower right insert (cf. Fig. 3). Locations 18 and
31 corresponding to the blind spot are omitted. Variables near
the origin (e.g., location 5 and 47, etc.) are considered by both
forward selection and backward elimination most important to-
ward glaucoma diagnosis. The two rankings from forward and
backward selection agreed with each other well, as the variables
lie approximately along the diagonal.

We could have used the Gaussian SVM in our forward and
backward feature selection, since it performed as well as the
QDA and does not required multiple runs. This would also
verify how the set of optimal variables changes with different
classifiers. However, the parametersand depend on the
number of variables used and have to be selected carefully in
order to give reliable ranking result. This is a major concern
for the wrapper-type methods [50], [51]. There are feature
selection methods tailored for individual classifiers. We are
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TABLE II
p-VALUES FOR THETWO–TAILS TESTBETWEENROC AREAS OF THESTATPAC PSD INDEX AND THE MACHINE-LEARNING CLASSIFIERS

TABLE III
p-VALUES FOR TWO-TAILS TEST BETWEEN ROC AREAS OF THE

DISCRIMINATIVE CLASSIFIERS

TABLE IV
p-VALUE FOR THE TWO-TAILS TEST BETWEEN ROC AREAS OF THE

GENERATIVE CLASSIFIERS

currently studying several methods for our SAP data, including
the LEAPS [52] for LDA, saliency metric [53] for MLP and
some others for SVM [54], [55].

VII. D ISCUSSION

A. Compared with STATPAC

From Tables I and II and Fig. 7, our best machine classifiers
such as Gaussian SVM, QDA, and MOG perform better than
the STATPAC indexes PSD and CPSD in terms of ROC areas as
well as sensitivities at selected specificities. In fact, our machine
classifiers are at a relative disadvantage since the STATPAC in-
dexes are derived using age corrected reference visual fields
from a much larger normative database within the HFA. Our
classifiers were trained on the raw sensitivity threshold values
(and age) from a relatively limited dataset. Currently, ophthal-
mologists at clinics rely on the STATPAC indexes when diag-
nosing glaucoma from SAP. The improvement of the machine
classifiers over STATPAC indexes shows promise for assisting
ophthalmologists in interpreting the HFA output (Fig. 3).

Glaucoma experts have extensive experience with SAP
and interpreting the results from the HFA output using
STATPAC. However, there are newer perimetric tests such as
short-wavelength automated perimetry [43], frequency-dou-
bling technology perimetry [56], [57], and structural tests such
as the Heidelberg Retina Tomograph and GDx Nerve Fiber
Analyzer [58]. The machine classifiers explored here have
great potential for extending their use on these data to assist
the glaucoma experts in interpreting these less familiar but
improved tests.

B. Among the Machine Classifiers

When considering the full-dimensional data, the Gaussian
SVM shows significantly better performance over the MLP in
terms of ROC area and sensitivities at chosen specificities. How-
ever, it did not benefit from the dimension reduction of the data
as much as the MLP, both in terms of training time (Table V)
and classification accuracy. In fact, both the Gaussian and linear
SVM degraded in the reduced-dimension space. On the other
hand, the SVM does not require repeated training with random
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Fig. 7. ROC curves of best classifier from each category in Table I.

Fig. 8. ROC area as a function of number of variables used in QDA. Variables
are added according to the rank given by forward selection or backward
elimination.

initial conditions. Since the SVM by itself is a linearly con-
strained quadratic programming problem, it will not get stuck at
a local minimum during training. The performance of the SVM
is insensitive to the exact choice of the parameters such asand

. Their values found in cross validation can be used to train the
whole dataset for prediction of future unseen examples.

The LDA was the fastest to train, but it performed the
poorest in our experiments. The LDA benefited most in
case of the dimension reduced data set (as indicated by the
-values,Table IV) yet still did not give improved performance

compared with other classifiers. In contrast, the simple Parzen
window classifier achieved an ROC area similar to those of the
MLP and SVMs.

QDA is an extension over the LDA as it models the normal
and glaucoma class with independent Gaussian densities. This

Fig. 9. Correlation of rankings given by forward selection and backward
elimination on the variables (52 visual-field locations+ Age). Variables close
to origin (e.g., location 5 and 47, etc.) are more informative in glaucoma
diagnosis. Lower right insert displays the relative positions on the retina of the
variables.

TABLE V
TYPICAL TRAINING TIME (IN SECONDS) FOR THEVARIOUS CLASSIFIERS.

ALL CLASSIFIERSARE IMPLEMENTED IN MATLAB R UNNING ON A

PC WITH THE PENTIUM III 500-MHZ CPU

The MLP, MOG, and MGG classfiers require multiple runs from different random
initial conditions. Reported times are from a single run only.

approximation fit our data distribution well and the resulted
classifier was among the best in our experiments. Surprisingly,
the MOG added only one Gaussian to the glaucoma class and
barely improved the results over the QDA. Although the MGG
is an improvement of the MOG in modeling densities of contin-
uous variables, the MGG Bayes’ rule did not improve classi-
fication over the MOG. One explanation is that our data were
close to Gaussian and already modeled well by the mixture
model, and the extra flexibility in modeling non-Gaussian densi-
ties introduced additional free parameters. This resulted in over-
fitting the training data and poor generalization to unseen testing
data. In summary, QDA is to be preferred in our SAP data for its
fast training, simple implementation, global convergence, clas-
sification performance, and ease of interpretation.
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C. The Linear Discriminant Function (LDF)

In this paper, the classical LDA is categorized under gen-
erative classifiers despite the word “discriminant” in its name.
An LDF can be either generative or discriminative, depending
on whether or not its weights are obtained from first modeling

. Logistic regression, a single layer MLP or a SVM
with linear dot product kernel are all effectively linear clas-
sifiers. LDFs derived from them should be considered as dis-
criminative since they work directly on the decision boundary
during training. As seen from Table I, the linear SVM performed
better than the classical LDA both in the full and reduced-di-
mension space. Moreover, the LDA showed markable improve-
ment when working in the reduced-dimension space. This sug-
gests that linear SVM is generally more robust against irrelevant
input variables. This is likely because the number of parameters
for the classical LDA grows as ( is the dimension of
the input space). As a result, our LDA is intrinsically more com-
plex in structure. [59] theoretically and empirically compare the
discriminative and generative LDFs. They concluded that gen-
erative learning has higher asymptotic error but approaches this
limit faster as a function of number of training examples.

D. Generative Versus Discriminative

Although the posterior probabilities are insensi-
tive to minor variations in class-conditional densities ,
since is usually vulnerable to noise and outliers of the
data [60], classifiers based on the generative model often show
a lower degree of robustness. It has been proposed that robust
estimators [61] be used instead of ML ones in the data genera-
tive model to guard against outliers. Discriminative classifier on
the other hand are more sensitive to “outliers” near the decision
boundary. In Gaussian SVM, the value ofis adjusted to pre-
vent overfitting. In MLP, this is done by weight decay and early
stopping [11].

In addition to a binary classification, it is desirable for a clas-
sifier to output a scalar value showing its belief in classification.
The generative classifiers give their output as , but this
is not easy to obtain from discriminative classifiers such as deci-
sion trees. Methods have been developed to make SVM output
probabilistic [62]. In generative classifiers, the availability of

can be used to detect outliers that belong to neither of the
two classes. New examples containing missing entries can also
be handled by marginalizing over .

The performance of QDA and MOG in our glaucoma problem
demonstrates the power of Bayes’ rule in classification, pro-
vided that we can model the underlying statistical structure of
the data accurately (compare LDA, QDA, and MOG). Recently,
there has been growing interest in combining the generative and
discriminative approaches to train classifiers [63]–[65]. These
studies aim to exploit the advantages of the two paradigms. En-
couraging results were obtained in hand-written digit recogni-
tion [8]. It would be interesting to see, for example, how well a
discriminative QDA or MOG perform when applied to the SAP
data.

VIII. C ONCLUSION

We have compared a variety of machine classifiers with the
STATPAC indexes traditionally used for glaucoma diagnosis on

SAP data. In general, the machine classifiers give statistically
significant improvement over the STATPAC indexes as mea-
sured by the area under the ROC curve. They show promise for
use in a clinical setting together with the STATPAC indexes for
glaucoma diagnosis. Forward selection and backward elimina-
tion were used to rank the visual-field locations. Important loca-
tions for glaucoma diagnosis were identified. Properties, advan-
tages and disadvantages of generative and discriminative ma-
chine classifiers as applied to our SAP data have been compared.
The success of the machine classifiers in the SAP data suggest
they may be even more promising for their applications in pro-
gression prediction and for diagnosis using other less familiar,
but improved visual function or structural tests for glaucoma,
such as short-wavelength automated perimetry [66] and optic
nerve head topography [67].
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