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Comparison of Machine Learning and Traditional
Classifiers in Glaucoma Diagnosis
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Abstract—Glaucoma is a progressive optic neuropathy with [2]. Standard automated perimetry (SAP) is currently the vi-
characteristic structural changes in the optic nerve head reflected sual function test most relied upon to measure visual function in
in the vlis.ual field.. The visual-field sensitivity test is commonly used glaucoma. Automated threshold perimetry gives detailed quan-
in a clinical setting to evaluate glaucoma. Standard automated ;e data. However, even with all the experience that has ac-
perimetry (SAP) is a common computerized visual-field test . . . .
whose output is amenable to machine leaming. We compared cum_ulated for evaluating standard perimetry, sometimes inter-
the performance of a number of machine learing algorithms Preting the results of SAP can be problematic. Early detection
with STATPAC indexes mean deviation, pattern standard devi- often requires interpretation of borderline visual-field results
ationZ and corrected patte;rn s.tandard deviation. The machine [3]. Separating true vision loss due to glaucoma from fluctu-
learning algorithms  studied included multilayer perceptron  ations in the field is extremely difficult and challenging. In this
(MLP), support vector machine (SVM), and linear (LDA) and 556 4 number of machine learning classifiers will be applied

quadratic discriminant analysis (QDA), Parzen window, mixture . . .
of Gaussian (MOG), and mixture of generalized Gaussian (MGG). to glaucoma diagnosis from SAP and compared with STATPAC,

MLP and SVM are classifiers that work directly on the decision @ Specialized statistical analyses package currently employed by
boundary and fall under the discriminative paradigm. Generative ~clinicians to interpret SAP.
classifiers, which first model the data probability density and The motivation behind this paper is to develop a better un-
then perform classification via Bayes’ rule, usually give deeper derstanding of the machine classification process, to evaluate
',\r/‘lg%h,tw'l'g%’ttﬁ) Ztggﬁfi\ﬂ sgfzgr?ﬁinsdp:vﬁb :’r\]/g Ckl‘:g’;ﬁ?gggﬁd the classification in terms of receiver operator characteristics
of glaucoma from SAP. Performance of the various classifiers was (ROCs) Curves, .and to apalyze the Weaknesses and str.engths
compared by the areas under their receiver operating charac- Of known classifiers to this problem. The detailed analysis al-
teristic curves and by sensitivities (true-positive rates) at chosen lows us to compare the results not only in terms of their accu-
specificities (true-negative rates). The machine-learning-type racy but also in terms of other properties such as training and
classifiers showed improved performance over the best indexes testing speed, feature selection method, ease of use, and possible
::?eThoigﬁgzﬁﬁr'th':e?ri\:quirg\'/see(;etﬁleoglagggcgﬁgrfv;l:tg:rwgglﬁgs interpretation. These issues are important to the application of
the potential to reduce testing time by diminishing the number of machine classifiers in glaucoma research and to_ clinicians and
visual-field location measurements. researchers who would like to get an understanding of the clas-
sification process and analysis. Similar approaches may also be
helpful in diagnosing other diseases.

This paper is outlined as follows: Section Il summarizes
several discriminative and generative machine classifiers that

I. INTRODUCTION are used in this study. Section Il describes the data-acquisition

LAUCOMA is a progressive optic neuropathy with charnethod and STATPAC tha’g is currently a state-of-t.he-art
acteristic structural changes in the optic nerve head r@€thod for glaucoma analysis. In Section IV, we describe the
flected in the visual field [1]. Three million people in the Unitedr@ining and testing data and the application process to the ma-
States and as many as 100 million worldwide are affected Bgne classifiers. In Section V, we evaluate the results in terms
glaucoma. Itis the second leading cause of blindness in all Nofh ROC and classification accuracy. Section VI depicts the
Americans. feature selection methodology for one classifier evaluated with
In the clinical setting, glaucoma is commonly evaluated usirf&oc curves for different numbers of features. In Section VII,

visual-field testing or funduscopic examination of the optic disW®€ discuss the results in comparison to STATPAC, within the
machine classifiers and also within the generative and discrim-

inative class of classifiers. We conclude in Section VIII and
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is to first model the class-conditional probabilityx|C1) for cluding the input layer) can in principle approximate any con-

each clas€’y, and then employ the Bayes’ rule tinuous function [17]. The MLP has been successfully applied
to a wide class of problems such as face recognition [18] and
P(Cilx) = p(xwi)P(Ci). (1) optical character recognition [19].
p(x) In a two-class classification problem, for a given input
Under the Cox Axioms [4], the Bayes' rule is the only consiS(—xl, Y
tent way to manipulate beliefs and plausibility, if they are rep- D
resented by real numbers. Classification using (1) is also known 2z =g <Z wjqry + ij) )
as the generative paradigm, since the probability of generating el

the data poink is first modeled. This effectively reduces the J

problem of classification to that of modeling the class-condi- _ o

tional probability distribution(x|C..) for the two classes. I =h Z:l vi%j + v )
However, it has always been difficult to mode{x|Cy) =

accurately. Naive Bayes' classifier [5] assumes independerfgy / = 1:- -,/ are the activations of the hidden-layer units.
between components of input Modeling P(C4|x) through %jd are the welghts between t_hemputqnd the hidden layer. Sim-
p(x|Cy) is known to be inefficient [6] as it generally re_|lar'ly, v; are weights connecting the hldden layer to_ the output
quires the estimation of more parameters. Take the examplit /- The termsw;o andw, are the biases for the hidden and
of performing classification by classical linear discrimiPUtPut units.A(t) and g(t) are continuous sigmoid fun_cttlon,
nant analysis (LDA): modeling the two classes of data wit#Sually of the formanh(t) or the logistic function /(1+¢™).
Gaussian densities of same variance but different means. I "€ MLP is the most popular architectures among other

takesD(D + 1)/2 + D + D parameters in this approach. Thdeural networks, such as the radial basis function [20], because
resulting classifier is well known to be a linear discriminarff ¢an be efficiently trained by error backpropagation [21].

functionu(x) = w - x + b which only needsD + 1 parameters. The proper error function in classification is, however, not the

For a dataset of finite size, this means that we have fewer dgi§an-squared error (MSE), but the negative log likelihood
points for each parameter in the generative approach. Unifgaction [22]

the equivariance assumption fits well to the data, the classical N
LDA will be less efficient, for the sole purpose of classification. —log£=—=> wilog fi + (1 —y)log(1 - fi). (4)
On the other hand, the logistic regression [7] makes fewer =1

assumptions about the classes and is generally more rodiigte, itis assumed that the logistic function is usediay and
against outliers and noise in the data. Another weakness of tig outputlabey takes the values dfl, 0} instead of +1, —1}.
generative approach is that the model parameters are usuBppite having a different error function, the equations in the
optimized by maximum-likelihood (ML) estimation [8]. It €rror backpropagation remain unchanged. The error function in
is widely believed that discriminative classifiers are to bg#) has multiple local minima. This requires repeated training
preferred since the discriminative criterion is more closefjom different random initial conditions and convergence to the
related to classification error. global solution is not guaranteed.

The above suggests we may be better off using the discrirCn— SUM
inative approach in which the posterior probabilit&C |x) '
are directly estimated. Logistic regression is a well-known ex- The SVM is a recently developed technique for solving a va-
ample of the discriminative approach and is widely used in medety of classification and regression problems [23]-[25]. The
ical research. Decision trees, such as CART [9] or C4.5 [10], avesic idea of SVM is to find the decision plane that has max-
another kind of discriminative classifier. Recently, attention hagum distance (margin) from the nearest training patterns. The
shifted to neural-network-type classifiers [11], [12] and the sugeneral form of the decision functiar(x) for SVM is

port vector machine (SVM) [13]. In some of these classifiers, N
there estimation of the posterior probabilities is unnecessary. u(x) = Z‘”yik(x’ x;) +b (5)
The classifier simply returns the labglby applying discrim- i
ination functions on the input. wherek(x;, x;) is known as the kernel function; the;s are

The advantage of discriminative classifiers is that they coBhosen by the SVM through training, subjected to constraints
centrate on the decision boundary and, hence, are usually robst,;;;, = 0 and0 < «; < A. A is a user-defined penalty term
against irrelevant outliers in the training data. However, theggulating the generalization performance of the SVM. Upon
provide less insight into the structure of the data space andriining, only a fraction of the;;s will be nonzero. The architec-
is difficult to handle data containing missing entries. The multture of the SVM in classification is shown in Fig. 1. SVMs have
layer perceptron (MLP) and SVM often serve as black boxes diemonstrated good generalization performance in face recogni
classification and it is very difficult for humans to comprehengon [26], text categorization [27], and optical character recog-
how the decision is made. nition [28], [29]. It has also been applied to data from gene ex-

pression [30], DNA and protein analysis [31], [32].

B. MLP

The MLP [11], [14], [15], also termed feedforward networkP- MOGS
is a generalization of the single-layer perceptron studied in [16].As mentioned in Section |, the generative approach is to
The MLP is a universal approximator to any real valued funcaodel the class-conditional densityx|Cy ). Since the input
tions. In fact, a feedforward network of just two layers (not inef the glaucoma data contains only continuous valuables (see
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Fig.2. Architecture of the MOG used in a binary classification setg|+ )

are the generative models for the two classes. Each is composed of a MOGs
[p4+(x|my) or p_(x|m_)]. Output P(+|x) is obtained by applying Bayes’

rule (1) onp(x|+£).

Fig. 1. A visualization of the architecture of SVM in classificatienis the
D-dimensional input vectork(x, x;) is the kernel function betweern and
support vectorsk;; u(x) is the output wherev; andy; are the weight and
training labels, respectively, associated vuith

Section I1l) we may want to model eagiix|C.) by a normal E- Mixture of Generalized Gaussians (MGGs)

multivarjant_dens[ty. This Wou_ld result in a class_;ical LDA or a Although the MOGs provides a more flexible model to fit
quadratic discriminant analy§|_$ (QDA), depen.dlng on whethgfe density of the data, it would be undesirable to fit a density
or not the two normal densities are constrained to have t§ej,nq tajis with two Gaussians. In addition to adequately fit-
same covariance. However, in many careful stuc_jles_ of r eald the data density, a user may also want to understand the
the distributions usually do not follow a normal distribution b”%tructure of the data in terms of number of real clusters and

have slightly heavier tails, skewed or even bi-modal structurgir geviation from normality. With the development of the
In these problems a single Gaussian is not flexible enough 4@nerajized Gaussian mixture model [38], we are able to model
model adequately the distribution of data. _ the class-conditional densitigéx|C..) with higher flexibility,

In simple nonparametric methods such as the histografile preserving the possibility to comprehend the statistical
method, the input space is divided into many small hypercubgg,perties of the data in terms of means, variances, and kurtosis,
and thenp(x) is estimated for each of them. Besides Nqtic The MGG uses the same mixture model (6) as the MOG.

providing much useful insight in the statistical structure of thagwever, each cluster is now described by a linear combination
data, binning the data space subjects the classifiers to the Cysgon-Gaussian random variables

of dimensionality. To model properly the probability distribu-
tion of the data, semi-parametric models with “in-between”
flexibility are useful. The mixture of Gaussians (MOG) [33], p(x|m) = /6[X — (Amsm + ba)lp(sm)dsm — (8)
[34] has been popular for its simplicity.
Adopted to our classification problem, the probability densi-e.,s,,s are the independent hidden sources in cluste¥spon-
ties for the positive and negative classes are each modeled fiibte for generating the observatias givenA,,, andb,,. s,,
as a mixture of multivariant normal densities [35], [36], will assume a generalized Gaussian density [39] of zero mean,
unit variance, and shape parameggy

M
p(x) =Y p(x|m)P(m) (6) D
m p(snl|ﬂnl) = Hp(srndvjrnd) (9)
d
where for each cluster,
p(srnd“jrnd) = (ﬂrnd) €Xp [_c(ﬁnld)|Snld|2/(l+’8’Md):|
1
px|m) = — e (10)
(2m)P ||
1 Tl wherew(3) is the normalization constant [39}.is a measure
X exp [—§(X — ) X (X =) - (7) of kurtosis of the source
3 1
The expectation-maximation (EM) algorithm [37] is used to find kurtosis = r [5(1 * ﬁ)] r [5(1 * /3)] -3 (11)
the parameter®(m), p,, and¥,,. P(C1) needed in (1) can P31+ /3)]2

also be obtained by ML. Similar to the MLP, multiple trials are

required to avoid local minima. However, a learning rate is nand will be adapted together with,,,, b,,, and P(m) during
required as EM automatically chooses the optimal one. The &maining. This is done by gradient ascent on the data likelihood
chitecture of the MOG classifier is shown in Fig. 2. [38], [40].



966 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2002

P=SrEeTre— - = procedure worldwide is the full threshold SAP test, program
—— o - 24-2 or 30-2 of the Humphrey Visual Field Analyzer (HFA,
Bt 8 A o Humphrey-Zeiss, Dublin, CA). With the 24-2 program of HFA,
e e e L i Sl the target is randomly presented to 54 locations oveér &4
R I 2-dB resolution. The displayed outputs (Fig. 3) are the absolute
adnaagy B T 4 AL sensitivity, the gray scale, the age-corrected total deviation
bt mm F S E e E 1 (numerical and probability), the pattern deviation (numerical
Sga e e eSSty k. and probability), the glaucoma Hemifield test (GHT) result,
EREIEE RN % and several global indexes (see below). The age-corrected
il iy g I total deviation is the absolute sensitivity subtracted from an
— age-matched normal surface. The pattern deviation is the total
Mgt o o w3 deviation compensated by global depression to account for
1 mam txaaiig e cataracts or other nonglaucoma conditions that may globally
; o T R I depress the visual field. The initial output of the Humphrey
e el s sty = o) field analyzer (HFA) is the absolute sensitivity at each of the
. i e 54 visual-field locations. This output is represented in decibels
e e Az relative to the maximum intensity of the machine (set at 0 dB)
S e R b with a minimum of 40 dB. The values for 52 locations (two
i o locations corresponding to the blind spot are excluded) and the
y - B B age of the patient will constitute the raw input of our classifiers.
L st EEE L] * ri r A H B
2 ra—— T E| B. STATPAC
e The HFA comes with a statistical analysis package
i it o (STATPAC) that provides both the raw data and several spe-
ol T e et ) cialized statistical analyses related to diagnosing glaucoma.
=tete—=tas E ! ! .. a | The purpose of these analyses is to aid the clinician in inter-

———  pretation of the visual field. The global indexes included in
_ ' STATPAC are mean deviation (MD), pattern standard deviation
Fig. 3. A sample STATPAC printout from the HFA. Top row: absolutgpgpy) short-term fluctuation (SF), corrected pattern standard
sensitivities and gray scale plot over the 54 locations on the retina. Middle: age . 2. h is th . f th
corrected total deviation and pattern deviation (total deviation compensa 9\/_|at|0n (CPSD? and the GHT. MD is the depression of the
by global depression). Bottom: probability plots of total deviation and pattefatient’s overall field (all test locations averaged) as compared
deviation. with the age-corrected normative database within the HFA.
PSD is a measurement of the degree to which the shape of the
field departs from the age-corrected reference fields. Glaucoma
_ _ ~ typically begins as a localized loss of visual sensitivities. SF is
The Parzen window is a kernel-based nonparametric ajh index of the consistency of the patient’'s answers during the

F. Parzen Windows

proach to density estimation [41], [42] field test and is obtained by testing twice at ten predetermined
N points. CPSD is the PSD corrected for SF in attempt to remove
1 1 X—X; the effects of patient variability during the test and to reveal

plx) = N ; h_DH < h ) (12) only irregularities caused by actual field loss.

The GHT divides the superior hemifield into five zones and
whereH (u) is known as thé®arzen windovand has to satisfy compares locations within each zone to those within a mirror
H(u) > 0and H(u)du = 1. If we use the isotropic Gaussianimage zone in the inferior hemifield. The five pairs of mirroring
Parzen windowH (u) o< exp(—|u|?/2), it becomes a special in- sectors are compared and a difference score for each is deter-
stance of the MOG density estimation (6) and (7). Goodnessmined. Glaucoma rarely affects both hemifields in the early
fit to data density and performance of the resulting Bayes clagages of the disease. So, the GHT has a high sensitivity for early
sifier (1) largely depend on the choice of the width paramiter glaucoma relative to other clinically used measures. If the differ-
Drawbacks of the Parzen windows method are that it provideace score is outside the 99.5% limits in any one pair compared
very little information on the structure of the data and requiresith the difference score found in age-corrected normal eyes,
storage of the entire training set for classification. the field is flagged “outside normal limits (ONL).” Ifitis outside

the 97% limit the field is flagged “borderline (BL)". Fewer dif-
ferences are considered “within normal limits (WNL).” These
. SAP analyses are universally used to help the clinician in interpreta-
tion of the visual field.
We will evaluate the efficiency of GHT, and the indexes PSD
In SAP, a target 0.47in diameter of variable intensity is and CPSD in glaucoma diagnosis. Their results will be used
flashed for 200 ms against a background of 31.5 apostilbs [46 the baseline against which our classifiers’ performance are
candelas/meter squargdd/nt)]. The most commonly used measured.

A. Humphrey Visual-Field Analyzer
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Sensitivity & Specificity kernels. We implemented the sequential minimal optimization
‘ ' ' ' ' [45], [46] in MATLAB code to train the SVM.

For the generative classifiers,= 3 was used for the Parzen
window classifier. For the MOG and MGG classifiers, due to the
limited availability of data, we first performed principle compo-
nent analysis (PCA) on the normalized data to reduce the dimen-
sion. The data were projected onto the subspace of the first eight
components, which accounted for more than 80% of total vari-
ance. Class-conditional densitig&x|Cy. ) were modeled sepa-
rately on the two classes. In the MOG, there were two clusters
- _ve class for the glaucoma class and one cluster for the normal class. In

s — +veclass the MGG, only 1 cluster was found for each class.

; For a fair comparison, all other classifiers were also trained
; in the eight dimensional subspace, to single out the gain or loss
4 1 from dimension reduction. Some user-chosen parameters were
re-estimated in this reduced-dimensional space: five hidden
: : : units for MLP; o = 3.4 for the Gaussian SVM; ankl = 2 for

I3 2 40 1 2 3 4 . o
classifier output u(x) the Parzen window classifier.

0.3 T

@
[N

o
o

Distrubution Density

Fig. 4. Sample distribution of classifier outputx) on a two classes dataset.
V. RESULTS

IV. EXPERIMENTAL SETTINGS A. ROC Curve

A. Data A simple way to assess the performance of classifiers is to

) ) compare their average misclassification rate. In biomedical data,

Currently there is no gold standard to determine whethgfe gataset usually comes with a higher proportion of normal

or not a patient has glaucoma. Instead, we use glaucomatpuge cjass). Classifiers will, hence, tend to achieve an overall
optic neuropathy (GON) as our teaching label [43]. Patients, misclassification rate by sacrificing theve class data, re-
and normal controls were labeled based on masked analysigQfing in a higher misclassification rate on thee class than

S|_multane_ous stereophotographs OT the optic disk and oc RE —ve class. However, the misclassification cost associated
history without referencg to visual f'?'ds (the SAP dat_a). OWith the+ve class is usually higher than that-efre class. For

glaucoma dataset contains a collection of 156 eyes with GO, . gifier which outputs a scalar value for a given data point

and 189 eyes without GON. The STATPAC indexes MD, S e ;
. ’ , showing its likelihood of belonging to théve class [such
PSD, and CPSD are scalar values and can be directly useigﬁ(cmx) or u(x) in (5)], we would like to pick a decision

classifiers outputi(x) (Fig. 4) to create the ROC curves (se :
Section V-A). Since the amount of data available is IimiteghreShOIOI other than 0.'5 fap(C.[x) (or 0 foru(x)), in favor
%fethe +ve class. In Fig. 4, the data points of two classes are

we used a 25-fold cross-validation scheme to evaluate { . . .
‘Jlaced next to the: axis according to the value wufx) given

classifiers. The dataset was divided uniformly into 25 subseg lassifier The fractional densiti thed hist
Each subset was in turn held aside as the test set when i C¢'aSSMer. 1he lractional densities (smoothed histograms)

other 24 were used to train the classifiers. The results on (Hg°W the distribution 0&i(x) for the two classes. Different clas-

25 subsets were combined into one single ROC plot for eaphers would have different distributions fafx). The true-pos-
classification method. To facilitate training, we first normalize'Ve rate, also known as sensitivity, is the fraction (or %) of pos

each of the 52 locations raw sensitivity threshold values aftlYe!y labeled test data classified as/e. This is also the area
age to have zero mean and unit variance. under the positive class density curve, to the right of the decision

threshold (zero in Fig. 4). Specificity is the true-negative rate,
) » the fraction of negatively labeled examples classified-as.
B. Machine Classifiers Varying the threshold levél such that a given exampewill

The user-chosen parameters in all machine classifiers wBfeclassified as positive if(x) > ¢ leads to a tradeoff between
set by optimizing their cross-validation performance in fiv8€nsitivity and specificity. The receiver operating characteristic
out of the 25 partitions. The MLP was setup and trained usifBOC) [47] curve is a plot of sensitivity versus 1-specificity (or
the MATLAB Neural Network Toolbox 4.0 (The MathWorks, true-positive rate versus false-positive rate). The area under the
Natick, MA). The network contained a hidden layer of 10 tanROC curve summarizes the quality of classification over a wide
units and a logistic output unit. The network was trained usirignge of misclassification costs [48]. We estimate the variance
the Levenberg—Marquardt method [44]. Early stopping wé¥the ROC area by a nonparametric method as described in [49].
used to prevent overfitting. This was done by reserving one Bhere is an interesting interpretation of the ROC area: itis equal
the 24 subsets constituting the training set as the “stopping sé@.'the probability of a random sample from positive class
In each fold of the cross validation, 20 networks were trainduing assigned by the classifienéx, ) [or P(CL |x4 )] value
and their output were averaged to return a singlg’,|x) greater than that of a random sample from negative class. i.e.,
value for each testing data poirt In the SVM, we tried both ROC area= Prob(u(xy) > u(x_)), for any random sample
the linear(A = 0.5) and Gaussiano( = 3.6 and A = 1.5) pair(x4,x_) drawn from the two classes.
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TABLE | 1 . : : : :
A COMPARISON OF PERFORMANCE OF
CLASSIFIERS BY THEIR ROC AREAS AND SENSITIVITIES AT SELECTED
SPECIFICITIES 0
ROC area Sensitivities at
(std. err.) specificities of §o.
090  0.75 +
D
STATPAC: 2
GHT' 0.667 o
2
MD 0.838 (0.022) | 0.654 0.731 =
SF 0.694 (0.029) | 0.365  0.532 ga .
PSD 0.883 (0.020) { 0.756  0.846 3
CPSD 0.844 (0.025) | 0.737  0.782
Discriminative: 0
(full dim.) / : : [0~ mLp 0.883
Q == SVM (gaussian) 50.914
MLP 0.883 (0.019) | 0.660  0.859 ARE ' ' -+ SV (Linear) 10.893
gaussian SVM 0.914 (0.016) | 0.776  0.878 o . 02 03 o 0.5 0.6
linear SVM 0.893 (0.017) | 0.660  0.853 1-Specificity (false +ve)
(PCA reduced dim.) @
MLP 0.898 (0.017) | 0.713  0.846 e ; ' ' ' '
gaussian SVM 0.904 (0.016) | 0.744  0.833
linear SVM 0.888 (0.018) | 0.667 0.853 0.
Generative:
(full dim.) -
[}
LDA 0.824 (0.023) | 0.583  0.756 o
QDA 0.916 (0.016) | 0.788  0.865 o
Parzen Window 0.892 (0.017) | 0.673 0.840 E’o
(PCA reduced dim.) 2>
LDA 0.880 (0.018) | 0.647 0.833 -E
I
QDA 0.921 (0.015) | 0.782  0.872 S
Parzen Window 0.903 (0.016) | 0.724  0.808 »
MOG 0.923 (0.014) | 0.769 0.846 0
MGG 0.902 (0.016) | 0.750 0.821 : . :
[=o="mre 0.898
: : — ian):0.904
T The specificity of GHT cannot be varied. Reported sensitivity corre- : : L+ 333 f?iﬁiii‘?“) :0.888
sponds to the specificity of 1.0 on the test data. 0.4 st = TR P [N R
0 0.1 0.2 0.3 0.4 0.5 0.6
1-Specificity (false +ve)

B. Classification Results

b
The ROC areas for the classifiers are summarized in Table |, )

; ; e ier~riminafigd. 5. ROC curves for the discriminative classifiers on (a) full-dimension and
grouped into the fO||0W|ng categories: STATPAC, Discrimina, b) PCA-reduced dimension data. The area under the curves for each classifier

tive (in full- and PCA-reduced dimension) and Generative (fulls given in the insert.

and PCA-reduced dimension). We also listed the sensitivities of

the classifiers at specificities of 0.90 and 0.75. The ROC curves

for the four categories of classifiers are plotted in Figs. 5 amthssifiers using the nonparametric method outlined in [49].

6. The index PSD is very competitive to our classifiers. Th&ince the ROC curves are generated from classifiers applying

CPSD, which is derived from PSD by correcting for SF in vien the same data set, correlation between the ROC areas must

sual-field sensitivity, does not exhibit improvement over PSIhe taken into account. For instance, the difference in ROC

The GHT identified 66.7% of the glaucoma eyes as “outsidaeas between the SVMs with Gaussian and linear kernels on

normal limits” and all of the normals as “within normal limits” the full-dimensional data is 0.021. This is small compared with

or “borderline,” Probably this is because GHT was designed tioeir std. err. of 0.016. Howevergavalue of 7% is obtained on

have a specificity value of 99.5%. a two-tails test when correlation between ROC areas are take
To compare the classifiers quantitatively, we compute tlieto account. In Tables II-I1V, we report thevalues between

p-values for a two-tails test among the ROC areas of thbe ROC areas of the classifiers. For the full-dimensional data,
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VI. FEATURE SELECTION

It is always useful and interesting to identify the subset
of input variables that contribute most in the classification.
Eliminating irrelevant input variables that introduce noise
often improves classification. Since exhaustive search over
all possible combinations of input variables to identify the
best subset is prohibitively expensive, here we use forward
selection and backward elimination [12], to rank the variables
and identify the subset that would give best classification.
Forward selection is sequentially adding variables one at a
time, choosing the next variable that most increases or least
decreases classification. Backward elimination starts with all
input variables and sequentially deletes the next variable that
most decreases or least increases classification. These two
greedy feature selection methods may not find the optimal
feature set, but, nonetheless, their time complexity is only
quadratic in the number of features as compared with the
exponential growth for exhaustive search.

From Table I, QDA is the best classifier that can work directly
on the full-dimensional input. In addition, its fast training and
global convergence allows repeated training in a short period
of time. We performed forward selection and backward elim-
ination using the QDA to rank the input variables. The ROC
area from the 25-fold cross-validation was used as the criteria
for selecting the next variable to add/delete. In Fig. 8, the ROC
areas are plotted as a function of number of variables included
from the list ranked by forward selection and backward elimina-
tion. Performance of the full 53 dimensions input was achieved
by using less than ten most important input variables. Also,
both forward and backward selection methods peaked around
20 variables. This can reasonably be interpreted as the intrinsic
dimensionality of the data, since visual fields next to each other
should have correlated sensitivities. Besides giving better classi-
fication accuracy, using only 20 input variables reduces the time
spent by the patients in SAP from 15 to 6 min/eye and, hence,
more screening can be done. Moreover, real-time classification
is made possible when the visual locations are tested in the order
ranked by feature selection.

In Fig. 9 we plot the ranks given by forward selection and
backward elimination to the 53 input variables on a two di-
mensional space. Visual-field locations are labeled 1-54 as dis-
played in the lower right insert (cf. Fig. 3). Locations 18 and
31 corresponding to the blind spot are omitted. Variables near
the origin (e.g., location 5 and 47, etc.) are considered by both

Fig. 6. ROC curves for the generative classifiers on (a) full-dimension and fgrward selection and backward elimination most important to-

PCA-reduced dimension data.

ward glaucoma diagnosis. The two rankings from forward and
backward selection agreed with each other well, as the variables

the SVM with Gaussian kernel is significantly better than PSlie approximately along the diagonal.

at 5% level, while the QDA is significantly better than PSD at We could have used the Gaussian SVM in our forward and
1% level. In the PCA-reduced dimension, the QDA and MO®Gackward feature selection, since it performed as well as the
are significantly better than PSD at 1% level. From Tables IQDA and does not required multiple runs. This would also
and IV, only the LDA showed substantial improvement wheverify how the set of optimal variables changes with different
working on data in PCA-reduced dimension. Both linear aralassifiers. However, the parametetsand o depend on the
Gaussian SVMs performed worse in the PCA-reduced dimeamimber of variables used and have to be selected carefully in
sion, though the differences were not statistically significamtrder to give reliable ranking result. This is a major concern
The ROC curves of the best classifier from each category dog the wrapper-type methods [50], [51]. There are feature

plotted together in Fig. 7 for comparison.

selection methods tailored for individual classifiers. We are
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p-VALUES FOR THETWO-TAILS TESTBETWEENROC AREAS gﬁ?tEES'II',IATPAC PSD NDEX AND THE MACHINE-LEARNING CLASSIFIERS
STATPAC full dim. PCA reduced dim.
PSD MLP SVM-g SVM- | MLP SVM-g SVM-]
ROC area 0.883 0.883 0.914 0.893 0.898 0.904 0.888
STATPAC
PSD 0.883 0.956  0.023 0.606 0.336 0.180 0.801
full dim.
LDA 0.824 0.018 0.001  <.0005 <.0005 | <.0005 <.0005 <.0005
QDA 0.916 0.002 0.041  0.922 0.130 0.183 0.379 0.071
Parzen 0.893 0.633 0.433 0.067 0.919 0.545 0.282 0.622
PCA reduced dim.
LDA 0.880 0.877 0.880  0.016 0.065 0.104 0.053 0.222
QDA 0.921 0.008 0.008 0.611 0.062 0.055 0.108 0.041
Parzen 0.903 0.221 0.100  0.319 0.192 0.547 0.943 0.095
MOG 0.923 0.005 0.004 0.485 0.029 0.023 0.054 0.019
MGG 0.902 0.208 0.173  0.365 0.512 0.720 0.901 0.359
TABLE IlI VII. DiscussIioN

P-VALUES FOR TWO-TAILS TEST BETWEEN ROC AREAS OF THE
DISCRIMINATIVE CLASSIFIERS

full dim. PCA reduced dim.
MLP SVM-g SVM- | MLP SVM-g SVM-l
ROC area 0.883 0.914 0.893 | 0.898 0.904 0.888
full dim.

MLP 0.002 0.361 | 0.196 0.052 0.662
SVM-g 0.069 | 0.140 0.234 0.041
SVM-1 0.555  0.287 0.275

PCA reduced dim.

MLP 0.474 0.277

SVM-g 0.139
TABLE IV

P-VALUE FOR THE TWO-TAILS TEST BETWEEN ROC AREAS OF THE
GENERATIVE CLASSIFIERS

full dim. PCA reduced dim.
QDA  Parzen | LDA QDA Parzen MOG MGG
ROC area 0916  0.892 | 0.880 0.921 0903 0923  0.902
full dim.
LDA <.0005 <.0005 ) 0.001 <.0005 <.0005 <.0005 <.0005
QDA 0.132 [ 0.036 0.718 0.375 0.599 0.363
Parzen 0.193  0.489 0.066 0.020 0.472
PCA reduced dim.

LDA 0.015 0.024 0.006 0.170
QDA 0.164 0.605 0.004
Parzen 0.078 0.955
MOG 0.001

A. Compared with STATPAC

From Tables | and Il and Fig. 7, our best machine classifiers
such as Gaussian SVM, QDA, and MOG perform better than
the STATPAC indexes PSD and CPSD in terms of ROC areas as
well as sensitivities at selected specificities. In fact, our machine
classifiers are at a relative disadvantage since the STATPAC in-
dexes are derived using age corrected reference visual fields
from a much larger normative database within the HFA. Our
classifiers were trained on the raw sensitivity threshold values
(and age) from a relatively limited dataset. Currently, ophthal-
mologists at clinics rely on the STATPAC indexes when diag-
nosing glaucoma from SAP. The improvement of the machine
classifiers over STATPAC indexes shows promise for assisting
ophthalmologists in interpreting the HFA output (Fig. 3).

Glaucoma experts have extensive experience with SAP
and interpreting the results from the HFA output using
STATPAC. However, there are newer perimetric tests such as
short-wavelength automated perimetry [43], frequency-dou-
bling technology perimetry [56], [57], and structural tests such
as the Heidelberg Retina Tomograph and GDx Nerve Fiber
Analyzer [58]. The machine classifiers explored here have
great potential for extending their use on these data to assist
the glaucoma experts in interpreting these less familiar but
improved tests.

B. Among the Machine Classifiers

When considering the full-dimensional data, the Gaussian
SVM shows significantly better performance over the MLP in
terms of ROC area and sensitivities at chosen specificities. How-
ever, it did not benefit from the dimension reduction of the data
as much as the MLP, both in terms of training time (Table V)

currently studying several methods for our SAP data, includirgnd classification accuracy. In fact, both the Gaussian and linear
the LEAPS [52] for LDA, saliency metric [53] for MLP and SVM degraded in the reduced-dimension space. On the other
some others for SVM [54], [55].

hand, the SVM does not require repeated training with random



CHAN et al. COMPARISON OF MACHINE LEARNING AND TRADITIONAL CLASSIFIERS IN GLAUCOMA DIAGNOSIS 971

11— . . : : : 60 : . T T T
-
: : : : 1
0. 50F R . 'g4 2 g
: : : Q: 45
(] : : : PN 26
—é : q2 ‘16
? & | | | R R
= 0. — : : : (3?: j
T C4O ............. S R EEERRPTIITR .124 ........
® o : : : 6.40 : :
B r s
2 O 22 ;
= D % 29
0. @ : 80,5
b wso ................. e AAAAAAA .......... 6644 ..................................
> 2 54 ;
= © o : :
w E 27 a4 : :
co. : : G2
¢} O 5L . .83 Ll J
()] w20 : - R0 a3
: < n a1
: : ; : 2 | a0 z 95 :
ol b o= Fs0 twees] ] O D a8 : e
. —%— 3VM (gaussian) :0.914 Y| q9 :
- = QDA :0.916 10+ . 6 - L 4
-0 SVM (gaussian, reduced Dim.):0.904 ‘52 . . 25 EZ gg %3 }‘1’ 10
=0~ MOG (reduced Dim) :0.923 -%7 ; : : ©22211520 7 1 8 39
- - - 653 : : 1101716 2 3 4 5 6
L o - o o s o ] - o3 : ©32 30 29 42 43 44 45 46
0.4 i K : H , age’ : : 135 34 28 33 47 41 48 49
i i i i i 47 - : : D a8 5736 50 51 s
0 0.1 0.2 0.3 0.4 0.5 0.6 ol% i i i i o
1-Specificity (false +ve) 0 10 20 30 40 50 60

Fig. 7. ROC curves of best classifier from each category in Table I. QDA backward elimination ranks

Fig. 9. Correlation of rankings given by forward selection and backward

QDA elimination on the variables (52 visual-field locatiofisAge). Variables close
0.96 T T T T to origin (e.g., location 5 and 47, etc.) are more informative in glaucoma
diagnosis. Lower right insert displays the relative positions on the retina of the
0.95- | variables.
. O
. 38922X999é®®6®9655 % 69@96
0.94} @X ©oy J TABLE V
58 Q@@ TYPICAL TRAINING TIME (IN SECONDS FOR THE VARIOUS CLASSIFIERS
x 2 ALL CLASSIFIERSARE IMPLEMENTED IN MATLAB R UNNING ON A
o3 g 5, 1 PC WITH THE PENTIUM 11l 500-MHz CPU
—_ <]
<ol o % 1
o ® full dim. PCA reduced dim.
©) o ®
g 0.91F x ] MLP?t 23 1.8
° gaussian SVM 7.0 7.1
09 x  backward elimination i linear SVM 5.1 6.0
0.0l o forward selection | LDA 0.050 0.038
o QDA 0.095 0.040
0.88 o 1'0 2'0 3'0 4'0 5‘0 60 Parzen Window 1.1 0.54
first N variables used MoGt 2.0
Fig. 8. ROC area as a function of number of variables used in QDA. Variables :
are added according to the rank given by forward selection or backward MGG 32

elimination. * The MLP, MOG, and MGG classfiers require multiple runs from different random
initial conditions. Reported times are from a single run only.
initial conditions. Since the SVM by itself is a linearly con-
strained quadratic programming problem, it will not get stuck approximation fit our data distribution well and the resulted
a local minimum during training. The performance of the SVMlassifier was among the best in our experiments. Surprisingly,
is insensitive to the exact choice of the parameters sudheasl the MOG added only one Gaussian to the glaucoma class and
o. Their values found in cross validation can be used to train tharely improved the results over the QDA. Although the MGG
whole dataset for prediction of future unseen examples. is an improvement of the MOG in modeling densities of contin-
The LDA was the fastest to train, but it performed theous variables, the MG& Bayes’ rule did not improve classi-
poorest in our experiments. The LDA benefited most ification over the MOG. One explanation is that our data were
case of the dimension reduced data set (as indicated by these to Gaussian and already modeled well by the mixture
p-values,Table 1V) yet still did not give improved performancenodel, and the extra flexibility in modeling non-Gaussian densi-
compared with other classifiers. In contrast, the simple Parzigs introduced additional free parameters. This resulted in over-
window classifier achieved an ROC area similar to those of tfiting the training data and poor generalization to unseen testing
MLP and SVMs. data. In summary, QDA is to be preferred in our SAP data for its
QDA is an extension over the LDA as it models the normdast training, simple implementation, global convergence, clas-
and glaucoma class with independent Gaussian densities. Hifisation performance, and ease of interpretation.
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C. The Linear Discriminant Function (LDF) SAP data. In general, the machine classifiers give statistically
In this paper, the classical LDA is categorized under geﬁ'—gn'f'Cant improvement over the STATPAC indexes as mea-
erative classifiers despite the word “discriminant” in its namé.ure_d by the_ area upder the ROC curve. They ShOVY promise for

An LDF can be either generative or discriminative, dependi emna cI|n!caI setting together with _the STATPAC mdexe§ for
on whether or not its weights are obtained from first modeli aucoma diagnosis. FOFW"?‘”’ sel_ecnon ar_ld backward elimina-
p(x|CL). Logistic regression, a single layer MLP or a SV on were used to rank the visual-field locations. Important loca-
with linear dot product kernél are all effectively linear clast—iO”S forglau_coma diagnosis were ide_ntified. Pr_ope_rti_es, _advan-
sifiers. LDFs derived from them should be considered as di€9€S and q!sadvantaggs of generative and discriminative ma-
ine classifiers as applied to our SAP data have been compared.

criminative since they work directly on the decision bounda h fth hi lassifiers in the SAP d
during training. As seen from Table |, the linear SVM performe e success of the machine classifiers in the ata suggest

better than the classical LDA both in the full and reduced—dﬁ— ey may be even more promising for their applications in pro-

mension space. Moreover, the LDA showed markable imprO\%r—es_Slon predlc_t|on and fqr diagnosis using other less familiar,
It improved visual function or structural tests for glaucoma,

ment when working in the reduced-dimension space. This sﬁ h hort lenath aut red imetrv 1661 and opil
gests that linear SVM is generally more robust against irrelev ch as short-wavelength automated perimetry [66] and optic
Jerve head topography [67].

input variables. This is likely because the number of paramet
for the classical LDA grows a&(D?) (D is the dimension of

the input space). As aresult, our LDA is intrinsically more com-
plex in structure. [59] theoretically and empirically compare the

discriminative and generative LDFs. They concluded that gen-The authors would like to thank the reviewers for their valu-

erative learning has higher asymptotic error but approaches thisle comments and suggestions that have improved the quality
limit faster as a function of number of training examples.  f the paper.
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