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Intrinsic noise and random synaptic inputs generate a fluctuating current across neuron membranes. We
determine the statistics of the output spike train of a biophysical model neuron as a function of the mean and
variance of the fluctuating current, when the current is white noise, or when it derives from Poisson trains of
excitatory and inhibitory postsynaptic conductances. In the first case, the firing rate increases with increasing
variance of the current, whereas in the latter case it decreases. In contrast, the firing rate is independent of
variance(for constant megnin the commonly used random walk, and perfect integrate-and-fire models for
spike generation. The model neuron can be in the current-dominated state, representative of neurans in the
vitro slice preparation, or in the fluctuation-dominated state, representatimevivfo neurons. We discuss the
functional relevance of these states to cortical information processing.

PACS numbes): 87.19.La, 87.17.Nn, 87.17.Aa

I. INTRODUCTION and variancd, and a Poisson train of excitatory and inhibi-
tory postsynaptic conductances, characterized by mwan
The random-walk (RW) [1,2], and integrate-and-fire and variancey, of the resulting synaptic currents. The main
(IAF) models[3] were introduced to account for the stochas-result is that the source of the fluctuating currents matters:
tic discharge of neurons that was measured experimentallyl.he firing rate is differently affected by the varianég,of a
Recently, the highly variable discharge of cortical neurions White-noise current drive compared to the variangeof a
vivo has led to renewed interest in these modélsg]. In conductance drive. The commonly used RW model does not
vivo neocortical neurons undergo a constant bombardmergccount for this effect of the v_ariance on the_firing rate. Also,
by excitatory and inhibitory postsynaptic potentiéEPSPs the _model neuron can.be in the fluctuation- or current-
and IPSPE Under these conditions, the IAF model neurondominated state depending on the value of the variance. The
produces a regular spike traifow coefficient of variation, poteﬂtl&}l |nfor.mat|on _encodlng capacity of the neuron is
Cy<1, see below whereas in the cortex the neurons actu—qual'tat'\/e'y different in these states.
ally fire with aCy~1 [4]. A number of modifications of the
standard IAF have been proposed to make it spike at a higher
Cy, such as balanced excitatory and inhibitory synaptic in- A. Model equations
put; [5.8l, physiological'gair[9], apd partial reset after an The neuron is modeled as a single compartment with
emitted spike{10]. The issue of higiCy values has, how- ,4qin-Huxley-type voltage-gated sodium and potassium
ever, only partially been addressed using more realistic biog,rrents, with the rate functions and values for the maximum

physical model neurons,11,13. How do theCy values of  conductances as given in Ré14]. Briefly, the equation for
the neuronal discharge of a biophysical neuron depend on thfie membrane potentia of a neuron is

statistical characteristics of its fluctuating input current? How

is the neuron’sn vivo dynamics different from that in thie

vitro preparation? Cmaz ~Ina= Tk =L = Tsynt lappt Cmé. @

Here we address these two issues theoretically. We sys-

tematically study a biophysical model neuron with Hodgkin-Here I g, Ik, I, lsyn, lapp, @ndCpé are the sodium, po-

Huxley voltage-gated channels. The model neuron producdsssium, leak, synaptic, externally applied, and noise cur-

short duration action potentials with a fast after-rents, respectively. A detailed description of the model can

hyperpolarization, and it can fire at high sustained firingbe found in Ref[15]. The currents are measuredi/cm?

rates, consistent with the properties of regular and fast spikanits andC,,=1 wF/cn? is the membrane capacitance. The

ing cortical neuron§13]. We apply to the model neuron two resulting equations are integrated using an adapted second-

fluctuating current drives: a white-noise current with méan order Runge-Kutta method designed for stochastic differen-
tial equationg16], with a step sizelt=0.01 ms. The accu-
racy of the zero noise results was checked against results

* Author to whom correspondence should be addressed. FAX: 858btained with a smaller step size and using a fourth-order
455 7933. Email address: tiesinga@salk.edu Runge-Kutta algorithni17].

Il. METHODS
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There were two types of noise models. The first was éow this synaptic drive affects the dynamics of a current-
white-noise current, i.e(£(t)é(t'))=2D4S(t—t') (D isex-  clamped neuron as a function gfand 7.
pressed in m¥ms) as in[18], and the synaptic curreit,,
in Eq. (1) was set to zero. The second was a sum of inhibi- C. Calculated quantities

tory and excitatory conductances, . . .
y y The raw data obtained from the simulations are the volt-

lsyn=GeSe() (V—Eg) +0isi(t)(V—E)), 2) ageV(t) traces at discrete timés=n dt. Theith spike time
is defined as the timg (expressed in mswvhen the voltage

where the maximum conductance dgg=g;=2.0 mS/c, crosses 0 mV from below. Thi¢h interspike interva(lSl) is
and the reversal potentials eeg=0 mV andE;=—75mV,  given byr,=t;,;—t;. We calculate its mearm,g,, and stan-
for the excitatory and inhibitory synapses, respectively. Uni-dard deviationo,g,. The coefficient of variation@,) is de-
tary EPSPEIPSP$ are modeled as quantal conductance in-fined as the raticCy= o5 /7. The firing rate in Hz is
creasesAs,=0.001 (As;=0.005), in the synaptic kinetic given by f=1000/g,. We also determined the interspike
variablesg(t) [si(t)]. The conductance pulses #3(t) and interval histogram(ISIH) in 500 bins of width A 7= (50
si(t) decay exponentially in time with a time constard  —400)dt. We calculated the entroggof the ISIH[19] when
=2 ms (r;=10 ms. The postsynaptic potentials are inde- at least 99% of the intervals generated in the simulations are
pendent and Poisson-distributed with average firing rgtes accounted for in the ISIH:
andf;, respectively. For the si2r11ulati0ns of the conductance-
driven neuron,| =0.10 uA/cm?, yielding a resting mem- _
brane potentiaV,es= —62.305 mV. S= Z Pilog, pitlog, AT @
B. Mean and variance of the current for a conductance drive ~ Herep; is the numerical estimate for the probability of an IS

. . falling in bin i. The information ratR is S/ 7.
The goal is to characterize the effects of the average syn- We performed least-squares fits of the ISIH to a gamma

aptic drive and its variance. This is not as straightforward as . o ; . X

in the white-noise case. The EPSPs and IPSPs open synapBE:Obab”'ty d|str|put|on function,P(t), with fitting param
. ; etersu, r, andry:

channels, and thus result in an increased conductance, a

changed average driving current, and a new resting mem- (Mr)r(t_Td)rflef,u.r(tf‘rd)
brane potential. The statistical properties of the driving force P(t)= (t>7qg), 8
lsyn are the mean, I'(r)

7= {15y = Be(Se) + Bi(Si). (3) andPis equal to zero fot<ry. The fitting parameters can

be related to the moments of the distributiong,= (1/uw)
With Be=ge(Ee— Vies) aNd(Se) = 7ofcAS, (With similar ex-  + 74, o= Llur, andCy=1[r (1 + u7g)].
pressions for the inhibitory part in this formula, and the ones We used both the Powell and Marquardt-Levenberg rou-

that follow); and the variance, tines from Ref[17] to minimize the square of the deviation
) 5 between the fitting function and the data. A fit was accept-
72=(lgn = 7°=Aet A, (4 able when the average and variance of the ISIH and the
. 1o 1o fitting function differed less than 2%, the value pf (for
with Ag= 3 Be(Se)Ase and A=z Bi(si)As; . optimal bin width, se¢17]) was less than 2 and the param-

To keepy constant, with the membrane potential clampedeters obtained by the different optimization routines differed
at Vieg;, it is necessary to covargfe andAf; according to  py |ess than 10%.

_ BiAsiTi
BeAseTe

whereas to keepy, constant,

Afe= Af;, (5) ll. RESULTS
A. White-noise-driven neuron

First consider the behavior of a white-noise-driven neuron
as a function of the driving curreht(Fig. 1). The rheobase is

2\ 2
Afo=— m fi. (6)  defined as the curren,e, at which the neuron starts firing
B2ASZT, repetitively, herd ,.+~0.16. ForD =0, the firing rate versus

current {-1) characteristic resembles a square-root function
Here we usd .=f2+Af, andf;=f+Af;, with initial pr-  above the rheobad@0], and below the rheobase the firing
esynaptic firing rateég andfio. Because of the effects of the rate is zero. There is low-frequency noise-induced spiking
synaptic conductances on the resting potential, and the pobelow the rheobase fd =0.004. In that case, th@,, starts
sible generation of action potentials, the mean of the actuabut at values close to 1 for currents near the rheobase, but
synaptic currents is not constant for constantThis would  quickly decreases with increasing current. For stronger noise,
only be the case when the synaptic conductances are smél=2, the f-1 is approximately linear over its entire range
compared to the leak conductancehe quantitiesy andz,,  [21], and theC,, does not vary strongly with current.
however, do have a clear experimental correlate. They are We studied the output statistics as a functiorbdor two
the mean and variance of the current that needs to be injecteulirrent values) =0.16, close to, but still below, the rheo-
into a neuron to keep its voltage constdmbltage clamp  base, and =0.6, above the rheobagEig. 2). The variance
while receiving a specific synaptic drive. Here we investigateo g, increases with increasirg for | = 0.6, butdecreases$or



PRE 62 COMPARISON OF CURRENT-DRIVEN AD . .. 8415

current-dominated state. These results are consistent with the
theory presented in Ref20] for the excitable(fluctuation-
dominatedl and oscillatory (current-dominated regime of
their type-l neuron. We also determine the Shannon entropy
[Eq. (7)] of the distribution of ISIgFig. 2(c)]. It represents
the maximum amount of information thit principle can be
coded in one intervdl22,19. For | =0.16 it decreases with
D, whereas forl =0.6, it initially increases, and then con-
verges to the =0.16 result. The information capacity per
interval for | =0.16 is higher compared to the capacity for
| =0.6. However, the converse holds for the information rate
R, since the firing rate fot=0.6 is higher.
00 L= e—— In Fig. 3, five ISIHs with the corresponding voltage time
0.0 02 04 06 08 1.0 traces are shown witD increasing from top to bottom. We
I (uA/cmz) fitted the ISIH to a gamma probability density functigurdf),
given in Eq.(8). ForD =0.024, the spike train is regular, the
FIG. 1. White-noise-driven neurofe) The firing ratef, and(b) ISIH is sharp, and it is fitted by a gamma pdf of order
the coefficient of variatiorCy as a function of injected curremt >30. In fact, a Gaussian distribution is also a goodrfibt
From top to bottom, the noise strengthDs=8, 2, 0.2, 0.04, and shown. For higherD values, the spike train is more variable
0.004. Averages are calculated over20)* ms after discarding a and the ISIH is broader. The ISIH is also more asymmetric:
transient of 500 ms. The solid lines for=8, 2, and 0.2 are running  the left-hand side of the ISIH is less stretched compared to
averages over four points. The original data points are plotted ags tail on the right-hand side. Thevalue of the fitting func-
small circles. tion decreases to approximately 3. fr 36, the neuron is
in the fluctuation-dominated regime. Thevalue is close to
| =0.16. At the same time, the firing rate increases approxid, corresponding to a Poisson spike train, and the ISIH re-
mately asyD for | =0.16, whereas it spikes repetitively at an sembles an exponential distribution. However, the fit shown
approximately constant firing rate from=0 to D~1 for  in Fig. 3(i) did not satisfy the criteria for a good fisee Sec.
=0.6. The model neuron can thus be in two dynamicalll). The voltage trace fdD = 36 resembles those measured in
states depending on its input: Fo=0.16, it is in the in vivo experiment§23,24.
fluctuation-dominated state, and fb=0.60 D<1), in the The entropy of the Gaussian, gamma, and exponential dis-
tributions are, respectivelp 9],

f(Hz)

Sgauss 109, 05+ 3 log, 27re, 9)

N
g Sgamma=10Gp 05 +100, (1) +[(1=1)¢s(r) +r]/In 2&10)
Sexp: |092 0'|S|+ 1/In 2. (11)

HereI is the gamma function ang is its logarithmic de-
rivative [25]. The entropy depends ang as log aig with

an additive constant that depends on the shape of the distri-
bution. The Gaussian distribution has the highest entropy for
a given variance: the additive constant is J8ge~2.05,
compared to 1/In21.44 for the exponential distribution.

O (ms)

< The additive constant for the gamma pdf takes a value be-

£ . .

e tween the Gaussian and exponential resultrrferl, Syamma
= Sexp, and for larger, Syamma— Scauss Therefore, there is
an optimum in the entropy per interval in Fig(c® since
there is a maximum imr,g, itself [Fig. 2(b)] and ther value

%‘ of the distribution decreases from>30 tor=1.

5

~ B. Conductance-driven neuron

e e For the conductance-driven neuron, we usand 7, as
10© 10 100 10 ) X .
D (mV/ms) paramet_ers_, _but in the S|mulat|on_s we actu_a_llly vary the pr-
esynaptic firing rated; and f.. Since the firing rates are
FIG. 2. White-noise-driven neurofa) The firing ratef, (b) the ~ @lways positive, it is not possible to have a finifevhile at

standard deviatiow,, (c) the entropyS per interval, andd) the ~ the same timep,=0. The current-dominated regime found
entropy rateR versus noise variancB. We usedl =0.16 (filled in the white-noise-driven neuron for low variance and mod-

circles andl=0.60(filled triangles. Averages are calculated over erate mean is small in the conductance-driven neuron for the
200x 10° ms after discarding a transient o&<3.0° ms. parameter values used here.
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0.05 T T .

0.00 ) ; :
0.02 -C 1 d FIG. 3. White-noise-driven neuron. Left-hand
I | side: ISIH(solid line), and the gamma probability
density function fitted to it(dashed ling as a
000 ——— function of the interspike intervat; right-hand

el ' ' f side: corresponding voltage time traces. From top
0.01 - 1 MM to bottom,D =0.024(a,by, 0.08(c,d), 0.8(e,f, 4
e (g,h), and 36(i,j) with  =0.6. The fitting param-

0.00 . " eters are f.r,7q,x%)=(0.096,30.0,15.6,1.3),
' T (0.071,17.1,11.9,1.2), (0.061,3.2,9.0,1.2),
0.01 | & . h (0.059,1.6,5.9,3.0), and (0.10,1.0,3.2,4.2), re-
) spectively. See text for details. Averages are cal-
L P, " culated over 208 10° ms after discarding a tran-
0.00 T 50 - . sient of 500 ms.
= 0.02 h 1 % o ]
i [\\‘.\7\‘7 | ; P
0.00 1 —! : -100 ' :
0 20 40 60 800 900 1000

T (ms) t (ms)

We first keepz, constant, and vary. The results are the white-noise-driven neuron.
similar to those in Fig. 1. The firing rate increases when In Fig. 5 we show the ISIHs and the gamma-pdf least-
increasingz, but theC,, and the entropy per interval de- squares fit. The value of the fitting function decreases from
creasgFig. 4(1)]. Note that thef- 7 characteristic is sublin- approximately 3 to 1 with decreasing The first three fits
ear for smally [Fig. 4(1a)]. have relatively highy? values, due to significant deviations
The behavior for constany and varying, is shown in  Of the ISIH from a gamma pdf for large ISI values. However,
Fig. 4(Il). The firing rate novdecreasesvith increasing vari- the deviations for ISI vglues near the mode of the distribu-
ance. This counterintuitive effect occurs because in order t§On are small and the fit appears reasonable.
increase the variance, more synaptic channels need to be
opened. As a result, the total conductance increisesthe C. Comparison of Cy-7g curves
input resistance is reducgdnaking it harder for the current In Fig. 6, we comparéa) the RW and IAF modeldp) the
to drive the neuron to a spiking threshold. Hence the firingwhite-noise-driven, andc) the conductance-driven neuron.
rate decreases. TI®, increases with the varianog, as for ~ We plot theCy, versusrg curves for constant mean of the

a I I

FIG. 4. Conductance-driven neurofa) The
firing ratef, (b) the coefficient of variatiorC,,,
(c) the entropyS per interval, versu§l) the mean
drive » and (ll) the variance of the drivey,.
Here (1) 7,=0.0251 (circles, 0.137 (squarep
and 0.216 (diamond$, and (lI) #=0.0997
(circles, 0.174(squares and 0.263(diamond$.
Averages are calculated over at least 2a0°
ms after discarding a transient of at least 50°
ms.

4 1 1 1 1 1 1
00 0.1 02 03 04 05 000 005, 010 0.5
N (HAfem') N, (WA fem’)
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0.04 a b
0.02 {k . FIG. 5. Conductance-driven neuron. Left-
0.00 I . 1 hand side: ISIHsolid ling), and the gamma prob-
’ —— ability density function fitted to itdashed lingas
0.01 C | d a function of the interspike interval, right-hand
J‘UMm .Uum ‘Hm U ‘ ‘ ”‘ m HHH m side: corresponding voltage time traces. From top
bl et e s e to bottom: »=0.254 (a,b, 0.151 (c,d), 0.069
0.00 S (e,f), 0.023(g,h) with 7,=0.0251. The fitting pa-

0.02 | """ e | rameters are g,r,7q,x%)=(0.048,3.3,27.2,28),
0.01 H | f J‘ M H ’ (0.021,1.7,36.4,5.9), (0.0051,1.3,43.9,2.44), and
) b J ‘ | (0.0015,1.1,52.0,1.1), respectively. See text for

details. Averages are calculated over 580@°

0.00 i i .

001 F 7 0r h ms after discarding a transient ok8.0°> ms. The
~ g E 0 action potentials appear to vary in amplitude.
@ > _50 This is due to the undersampling of the voltage

> - " trace at 0.5 ms for display purposes.

0.00 : -100 Pt

0 50 1000 0 1000 2000 3000 4000 5000
7 (ms) t (ms)

current drive(solid lineg, d, I, and %, respectively, and for same time, because the firing rate decreases with variance

constant variancédashed lines D, D, and 7,, respectively. [see also Fig. @]. The dashed curves are concave com-
The mean and variance of the interspike intervals can bgared to convex in Figs.(& and Gb).

calculated analytically for the RW and perfect IAF model. In summary, the most important difference between the

For the RW model, we havi6]. four different neuron/driving force models is their behavior
0 1.0
TsI— g
6D
TI= @ (12

Hered is the mean an® the variance of the drive, anlis

the spiking threshold. In the perfect IAF model, the mem-
brane potential does not decay in time, and the postsynaptic
potentials are modeled aspulses with strengtla; anda,,

for inhibitory and excitatory pulses, respectively. In that 1 [C
case, Egs(12) also hold[26], with d=a.f.—a;f; andD i
=a2f+a’f; and presynaptic firing ratels andf,. In Fig. SO05F -

6(a), we plot the constanD andd lines according to Egs.
(12). The solid curves in Fig. (@) are parallel to th&,, axis.
The firing rate is constant; only th@, increases witlb. The 0
dashed curves are conve®y~ 7is.

In Fig. 6(b) there are two types of solid lines. Solid lines
that start atCy,=0 with a finite value ofrg (current-
dominated regime On these lines the firing rate is constant

while theC,, increases. However, for high€x, values these

FIG. 6. TheC,, versusrg curves for(a) RW and perfect IAF
model, (b) white-noise-driven neuron, an@) conductance-driven

. ) neuron. On the solid lines the mean current is kept constant,
lines curve towards the left of the graph: tiy and the whereas on the dashed lines the variance is kept constant. The

firing rate increase at the same time. The othgr Sgl'd(m curves in(b) and (c) are obtained from numerical simulations,
show only one examplt_a, deno_te_d by an asterisk *) s_tarts OlWhereas those @) are the analytical results from E¢l2). The
at large mig) values with a finiteCy value (fluctuation-  ,arameter values ifb) are, for solid lines from right to left]
dominated regime The dashed lines all curve upwards; the — 16 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9: and for the dashed
Cy increases with increasingg,. Thus the same noise vari- |ines from bottom to topP =0.004, 0.04, 0.20, 2.0, and 8.0. (¢)
anceD leads to comparatively more jitter for lower firing we have from right to leftsolid line9, =0.10, 0.17, and 0.2629;
rates. and from bottom to top(dashed lines 7,=0.015, 0.025, and
For the conductance-driven neurpRig. 6(c)], the solid  0.041. Averages are calculated over at least200° ms after dis-
lines curve toward the right: th€,, and 7|5, increase at the carding a transient of at least 500 ms.
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as a function of the variance of the fluctuating current. Fowvalues[9,10]. This approach is useful when considering a
the white-noise-driven neuron, the firing rate increases witeuron in isolation. However, in a network of neurons it is
the variance, whereas in the conductance-driven neuron &lso important to correctly model how a neuron responds to
decreases, and for the RW and perfect IAF models it remaindynamical changes in the mean and variance of the fluctuat-
the same. ing drive. Here we have shown that these models do not
account for the variance effects of fluctuating currents that
IV. DISCUSSION were observed in more realistic biophysical models. It is im-
) ) ~portant to include the contributions of synaptic noise explic-
The model neuron can be in two different dynamlcaliﬂy as synaptic conductances. Salinas and Sejnoi28]
states that have clear physiological correlates. Neurons in theyye shown that the leaky IAF model can account for the
in vitro slice preparation are characterized by a low intrinsicvariabi”ty observed in experimeri8] if synaptic conduc-
noise level[27], and they receive little synaptic drive. This tances are included. An important issue is whether and to
suggests that their dynamics is current-dominated. In conyhat extent that would change results obtained previously in
trast, in vivo neurons are constantly being bombarded bynetworks of integrate-and-fire neurons without synaptic con-
EPSPs and IPSPs, and fire at higl values[8]. Indeed, ductances, such as, for example, Ré830,31. This re-
recent experiments show that the input resistance of corticghains for future study.
neuronsn vivo can be up to five times lower than their input  \ve have also studied the statistics of the output spike
resistance in the absence of synaptic inpB8&24). The vari-  {rain of a biophysical model neuron as a function of the mean
ance of the voltage fluctuations is also higher with synaptigng variance of the stochastic driving current. As mentioned
inputs  present[23,24. This resembles the fluctuation- pefore, the input parameters have a clear experimental ana-
dominated conductance-driven state reported in this paper. iBg: they are the mean and variance of the injected currents
what follows, we discuss the functionally relevant differ- in voltage-clamp mode that are necessary to keep the neuron
ences between these two states and suggest future expefta constant membrane potential. However, during current-
ments. . o . clamp mode the voltage is able to change according the neu-
Thef-1 in the current-dominated state is highly nonlinear.ronal dynamics, allowing the statistics of the output spike
Close to the rheobase, a small increase in input current cagain to be determined. Usinip vivo measurements of the
lead to a large increase in firing rate. THel in the  mean and variance of the fluctuating current, and the distri-
f|uctuati0n-d0minated state iS Iinear f0r White-noise-drivenbution of EPSP and IPSP CharacteristiCS, one can estimate
neurons, and it can be sublinear for conductance-driven neyne presynaptic spiking ratésandf . using Eqs(3) and(4).
rons. The dynamical range is much larger in fluctuation-The output statistics can subsequently be measured in the
dominated, conductance-driven neurons. As a result, COftiC@urrent-clamp mode. Durin@ vivo experiments, however,
neurons are able to maintain their firing rate within a fixedone has relatively little control over the statistics of the syn-
range despite their constant synaptic bombardment and #ytic inputs, but duringn vitro experiments one can inject a
wide range of input frequenci¢s]. o current with arbitrary statistical properties. One of the key
In the current-dominated state, the ISI are distributed acresylts in this paper is that the source of the variance matters:
cording to a Gaussian, or gamriwith r>1) [Eq.(8)], prob- 3 current drive is different from a conductance drive. One
ability distribution. The information capacity of a Gaussian therefore has to inject conductances into the neuron using the
distribution is maximal at a given value for the variancerecenﬂy developed dynamic-clamp techniddg]. The Cy,
gs| - Therefore, the pOtential information content iS maximalversusTISI diagrams can then be reconstructed by Systemati_
neous firing rate, ¥ (see Sec. ) In the fluctuation- pe reproduced in thim vitro preparation by injecting synap-
dominated state, the ISI are distributed according to djc conductances? Does the firing rate of neurons decrease
gamma distribution with values close to 1. A Poisson spike when the variance of the fluctuating current is increased?

train (r=1) has the highest information rate per spike timegxperiments are presently in progress to address these ques-
at a given firing ratg28,19. In the fluctuation-dominated tjons[33].

state, therefore, the potential information content of the spike

times is ma>§|mal. .ThIS suggests thgt the nature pf informa- ACKNOWLEDGMENTS

tion processing might be different in the fluctuation versus

current-dominated states. It also lends support to the idea We thank Jean-Marc Fellous and Emilio Salinas for help-

that the neuron can act as a rate coder or a spike-time cod&rl comments. Part of the numerical calculations has been

depending on the input types. performed at the High Performance Computer Center at
Simple models, such as the perfect IAF and RW, wereNortheastern University. This work was supported by the

used in previous studies of neuronal variability3,8]. These  Sloan Center for Theoretical Neurobiology at the Salk Insti-

models can produce spike trains with almost any value fotute, and the Center for Interdisciplinary Research on Com-

the firing rate andC,, for more or less realistic parameter plex Systems at Northeastern University.

[1] G.L. Gerstein and B. Mandelbrot, Biophys.4).41 (1964. [5] M.N. Shadlen and W.T. Newsome, Curr. Opin. Neurobdbl.
[2] B.J. West and W. Deering, Phys. R&a6, 1 (1994. 569 (1994.
[3] R.B. Stein, Biophys. B, 173(1965. [6] W.R. Softky, Curr. Opin. Neurobiob, 239 (1995.

[4] W.R. Softky and C. Koch, J. Neurosdi3, 334 (1993. [7] M.N. Shadlen and W.T. Newsome, Curr. Opin. Neurobgl.



PRE 62 COMPARISON OF CURRENT-DRIVEN AD . .. 8419

248 (1995. [21] F.E. Theunissen, F.H. Eeckman, and J.P. Miller,Neural
[8] M.N. Shadlen and W.T. Newsome, J. Neurost8 3870 Systems: Analysis and Modelingdited by F. EeckmatKlu-
(1998. wer Academic, Dordrecht, 1993pp. 127-136.
[9] T.W. Troyer and K.D. Miller, Neural Compuf, 971 (1997. [22] C.E. Shannon and W. Weaverhe Mathematical Theory of
[10] G. Bugmann, C. Christodoulou, and J.G. Taylor, Neural Com- Communication(University of lllinois Press, Urbana, 19419
put. 9, 985(1997. [23] D. Pare, E. Shink, H. Gaudreau, A. Destexhe, and E.J. Lang, J.
[11] D. Brown, J. Feng, and S. Feerick. Phys. Rev. L&#.4731 Neurophysiol.79, 1450(1998.
(1999. [24] D. Pare and A. Destexhe, J. Neurophys&il, 1531(1999.
[12] P.H.E. Tiesinga and J.V. Jashleurocomputing26-27, 299  [25] M. Abramowitz and |. StegunHandbook of Mathematical
(1999. Functions(Dover, New York, 1974
[13] G.M. ShepherdSynaptic Organization of the Braifth ed.  [26] H.C. Tuckwell, Introduction to Theoretical Neurobiology | &
(Oxford University Press, Oxford, 1988 Il (Cambridge University Press, Cambridge, England, 1988
[14] X.J. Wang and G. Buz&a J. Neuroscil6, 6402(1996. [27] Z.F. Mainen and T.J. Sejnowski, Scien2@8 1503(1995.
[15] P.H.E. Tiesinga and J.V. Jasdetwork 11, 1 (2000. [28] F. Rieke, D. Warland, R.R. de Ruyter van Steveninck, and W.
[16] H.S. Greenside and E. Helfand, Bell Syst. Tech6@. 1927 Bialek, Spikes: Exploring the Neural CodMIT Press, Cam-
(19812). bridge, 1997.

[17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flan-[29] E. Salinas and T.J. Sejnowski, J. Neurog€, 6193(2000.
nery, Numerical RecipesCambridge University Press, Cam- [30] M.V. Tsodyks and T.J. Sejnowski, Netwofk 111 (1995.

bridge, England, 1992 [31] C. van Vreeswijk and H. Sompolinsky, Scieng@4, 1274
[18] D. Golomb and J. Rinzel, J. Neurophysi@R, 1109(1994. (1996.
[19] T.M. Cover and J.A. Thomaglements of Information Theory [32] A.A. Sharp, M.B. O'Neil, L.F. Abbott, and E. Marder, J. Neu-
(Wiley, New York, 199). rophysiol. 69, 992 (1993.

[20] B.S. Gutkin and G.B. Ermentrout, Neural Complif, 1047  [33] J.-M. Fellous, A. Destexhe, and T.J. Sejnowski, Abstr. Soc.
(1998. Neurosci.26, 1623(2000.



