
on a wider range of social systems. Finally, to
understand the evolutionary significance of
network dynamics, we must explicitly mea-
sure their fitness effects on the social group
(7). This interplay between network dynam-
ics and selection is just beginning to be ex-
plored, and social insects have the potential
to be on the leading edge.
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R E V I E W

Communication in Neuronal Networks
Simon B. Laughlin1 and Terrence J. Sejnowski2,3*

Brains perform with remarkable efficiency, are capable of prodigious computation,
and are marvels of communication. We are beginning to understand some of the
geometric, biophysical, and energy constraints that have governed the evolution of
cortical networks. To operate efficiently within these constraints, nature has opti-
mized the structure and function of cortical networks with design principles similar
to those used in electronic networks. The brain also exploits the adaptability of
biological systems to reconfigure in response to changing needs.

Neuronal networks have been extensively stud-
ied as computational systems, but they also
serve as communications networks in transfer-
ring large amounts of information between
brain areas. Recent work suggests that their
structure and function are governed by basic
principles of resource allocation and constraint
minimization, and that some of these principles
are shared with human-made electronic devices
and communications networks. The discovery
that neuronal networks follow simple design
rules resembling those found in other networks
is striking because nervous systems have many
unique properties.

To generate complicated patterns of
behavior, nervous systems have evolved prodi-
gious abilities to process information. Evolution
has made use of the rich molecular repertoire,
versatility, and adaptability of cells. Neurons
can receive and deliver signals at up to 105

synapses and can combine and process synaptic
inputs, both linearly and nonlinearly, to imple-
ment a rich repertoire of operations that process
information (1). Neurons can also establish and
change their connections and vary their signal-
ing properties according to a variety of rules.
Because many of these changes are driven by
spatial and temporal patterns of neural signals,
neuronal networks can adapt to circumstances,
self-assemble, autocalibrate, and store informa-
tion by changing their properties according
to experience.

The simple design rules improve efficien-
cy by reducing (and in some cases minimiz-
ing) the resources required to implement a
given task. It should come as no surprise that
brains have evolved to operate efficiently.
Economy and efficiency are guiding princi-
ples in physiology that explain, for example,
the way in which the lungs, the circulation,
and the mitochondria are matched and co-
regulated to supply energy to muscles (2). To
identify and explain efficient design, it is
necessary to derive and apply the structural
and physicochemical relationships that con-
nect resource use to performance. We con-
sider first a number of studies of the geomet-
rical constraints on packing and wiring that
show that the brain is organized to reduce

wiring costs. We then examine a constraint that
impinges on all aspects of neural function but
has only recently become apparent—energy
consumption. Next we look at energy-efficient
neural codes that reduce signal traffic by ex-
ploiting the relationships that govern the repre-
sentational capacity of neurons. We end with a
brief discussion on how synaptic plasticity may
reconfigure the cortical network on a wide
range of time scales.

Geometrical and Biophysical
Constraints on Wiring
Reducing the size of an organ, such as the
brain, while maintaining adequate function is
usually beneficial. A smaller brain requires
fewer materials and less energy for construc-
tion and maintenance, lighter skeletal ele-
ments and muscles for support, and less
energy for carriage. The size of a nervous
system can be reduced by reducing the num-
ber of neurons required for adequate function,
by reducing the average size of neurons, or by
laying out neurons so as to reduce the lengths
of their connections. The design principles
governing economical layout have received
the most attention.

Just like the wires connecting components
in electronic chips, the connections between
neurons occupy a substantial fraction of the
total volume, and the wires (axons and den-
drites) are expensive to operate because they
dissipate energy during signaling. Nature has an
important advantage over electronic circuits be-
cause components are connected by wires in
three-dimensional (3D) space, whereas even the
most advanced VLSI (very large scale integra-
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tion) microprocessor chips use a small number
of layers of planar wiring. [A recently produced
chip with 174 million transistors has seven
layers (3).] Does 3D wiring explain why the
volume fraction of wiring in the brain (40 to
60%; see below) is lower than in chips (up to
90%)? In chips, the components are arranged to
reduce the total length of wiring. This same
design principle has been established in the
nematode worm Caenorhabditis elegans,
which has 302 neurons arranged in 11 clusters
called ganglia. An exhaustive search of alterna-
tive ganglion placements shows that the layout
of ganglia minimizes wire length (4).

Cortical projections in the early sensory pro-
cessing areas are topographically organized.
This is a hallmark of the six-layer neocortex, in
contrast to the more diffuse projections in older
three-layer structures such as the olfactory cor-
tex and the hippocampus. In the primary visual
cortex, for example, neighboring regions of the
visual field are represented by neighboring neu-
rons in the cortex. Connectivity is much higher
between neurons separated by less than 1 mm
than between neurons farther apart (see below),
reflecting the need for rap-
id, local processing within
a cortical column—an
arrangement that mini-
mizes wire length. Be-
cause cortical neurons
have elaborately branched
dendritic trees (which
serve as input regions) and
axonal trees (which
project the output to other
neurons), it is also possi-
ble to predict the optimal
geometric patterns of con-
nectivity (5–7), including
the optimal ratios of ax-
onal to dendritic arbor
volumes (8). These con-
clusions were anticipated
nearly 100 years ago by
the great neuroanatomist
Ramon y Cajal: “After the
many shapes assumed by
neurons, we are now in a
position to ask whether
this diversity . . . has been
left to chance and is insig-
nificant, or whether it is
tightly regulated and pro-
vides an advantage to the
organism. . . . We realized
that all of the various con-
formations of the neuron
and its various compo-
nents are simply morpho-
logical adaptations gov-
erned by laws of conser-
vation for time, space, and
material” [(9), p. 116].

The conservation of time is nicely illus-
trated in the gray matter of the cerebral
cortex. Gray matter contains the synapses,
dendrites, cell bodies, and local axons of
neurons, and these structures form the neural
circuits that process information. About 60%
of the gray matter is composed of axons and
dendrites, reflecting a high degree of local
connectivity analogous to a local area net-
work. An ingenious analysis of resource al-
location suggests that this wiring fraction of
60% minimizes local delays (10). This frac-
tion strikes the optimum balance between two
opposing tendencies: transmission speed and
component density. Unlike the wires in chips,
reducing the diameter of neural wires reduces
the speed at which signals travel, prolonging
delays. But it also reduces axon volume, and
this allows neurons to be packed closer to-
gether, thus shortening delays.

Global Organization of the
Communication Network
Long-range connections between cortical areas
constitute the white matter and occupy 44% of

the cortical volume in humans. The thickness of
gray matter, just a few millimeters, is nearly
constant in species that range in brain volume
over five orders of magnitude. The volume of
the white matter scales approximately as the 4/3
power of the volume of the gray matter, which
can be explained by the need to maintain a fixed
bandwidth of long-distance communication ca-
pacity per unit area of the cortex (11) (Fig. 1).
The layout of cortical areas minimizes the total
lengths of the axons needed to join them (12).
The prominent folds of the human cortex allow
the large cortical area to be packed in the skull
but also allow cortical areas around the convo-
lutions to minimize wire length; the location of
the folds may even arise from elastic forces in
the white matter during development (13).

The global connectivity in the cortex is very
sparse, and this too reduces the volume occu-
pied by long-range connections: The probabil-
ity of any two cortical neurons having a direct
connection is around one in a hundred for neu-
rons in a vertical column 1 mm in diameter, but
only one in a million for distant neurons. The
distribution of wire lengths on chips follows an

 

 

Fig. 1. Cortical white and gray matter volumes of 59 mammalian species are related by a power law that spans five to
six orders of magnitude. The line is the least squares fit, with a slope around 1.23 � 0.01 (mean � SD) and correlation
of 0.998. The number of white matter fibers is proportional to the gray matter volume; their average length is the cubic
root of that volume. If the fiber cross section is constant, then the white matter volume should scale approximately as
the 4/3 power of the gray matter volume. An additional factor arises from the cortical thickness, which scales as the 0.10
power of the gray matter volume. [Adapted from (11)]
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inverse power law, so that shorter wires also
dominate (14). If we created a matrix with 1010

rows and columns to represent the connections
between every pair of cortical neurons, it would
have a relatively dense set of entries around the
diagonal but would have only sparse entries
outside the diagonal, connecting blocks of neu-
rons corresponding to cortical areas.

The sparse long-range connectivity of the
cortex may offer some of the advantages of
small-world connectivity (15). Thus, only a
small fraction of the computation that occurs
locally can be reported to other areas, through a
small fraction of the cells that connect distant
cortical areas; but this may be enough to
achieve activity that is coordinated in distant
parts the brain, as reflected in the synchronous
firing of action potentials in these areas, sup-
ported by massive feedback projections be-
tween cortical areas and reciprocal interactions
with the thalamus (16, 17).

Despite the sparseness of the cortical
connection matrix, the potential bandwidth
of all of the neurons in the human cortex is
around a terabit per second (assuming a
maximum rate of 100 bits/s over each axon
in the white matter), comparable to the total
world backbone capacity of the Internet in
2002 (18). However, this capacity is never
achieved in practice because only a fraction
of cortical neurons have a high rate of
firing at any given time (see below). Re-
cent work suggests that another physical
constraint—the provision of energy—limits
the brain’s ability to harness its poten-
tial bandwidth.

Energy Usage Constrains Neural
Communication
As the processor speeds of computers increase,
the energy dissipation increases, so that cooling
technology becomes critically important. Ener-
gy consumption also constrains neural process-
ing. Nervous systems consume metabolic ener-
gy continuously at relatively high rates per
gram, comparable to those of heart muscle (19).
Consequently, powering a brain is a major drain
on an animal’s energy budget, typically 2 to
10% of resting energy consumption. In humans
this proportion is 20% for adults and 60% for
infants (20), which suggests that the brain’s
energy demands limit its size (21).

Energy supply limits signal traffic in the
brain (Fig. 2). Deep anesthesia blocks neural
signaling and halves the brain’s energy con-
sumption, which suggests that about 50% of the
brain’s energy is used to drive signals along
axons and across synapses. The remainder sup-
ports the maintenance of resting potentials and
the vegetative function of neurons and glia.
Cortical gray matter uses a higher proportion of
total energy consumption for signaling, more
than 75% (Fig. 2), because it is so richly inter-
connected with axons and synapses (21). From
the amounts of energy used when neurons sig-

nal, one can calculate the volume of signal
traffic that can be supported by the brain’s
metabolic rate. For cerebral cortex, the permis-
sible traffic is �5 action potentials per neuron
per second in rat (Fig. 2) (22) and �1 per
second in human (23). Given that the brain
responds quickly, the permissible level of traf-
fic is remarkably low, and this metabolic limit
must influence the way in which information is
processed. Recent work suggests that brains
have countered this severe metabolic constraint
by adopting energy-efficient designs. These de-
signs involve the miniaturization of compo-
nents, the elimination of superfluous signals,
and the representation of information with en-
ergy-efficient codes.

Miniaturization, Energy, and Noise
The observation that 1 mm3 of mouse cortex
contains 105 neurons, 108 synapses, and 4 km
of axon (24) suggests that, as in chip design,
the brain reduces energy consumption by re-
ducing the size and active area of compo-
nents. Even though axon diameter is only 0.3
�m (on average), sending action potentials
along these “wires” consumes more than one-
third of the energy supplied to cortical gray
matter (22). Thus, as with computer chips, an
efficient layout (discussed above) and a high
component density are essential for energy
efficiency—but, as is also true for chips,
miniaturization raises problems about noise.

When a neuron’s membrane area is re-
duced, the number of molecular pores (ion

channels) carrying electrical current falls,
leading to a decline in the signal-to-noise
ratio (SNR) (25–27). The noise produced by
ion channels, and by other molecular signal-
ing mechanisms such as synaptic vesicles, is
potentially damaging to performance. How-
ever, the effects of noise are often difficult to
determine because they depend on interac-
tions between signaling molecules in signal-
ing systems. These interactions can be highly
nonlinear (e.g., the voltage-dependent interac-
tions between sodium and potassium ion chan-
nels that produce action potentials) and can in-
volve complicated spatial effects (e.g., the dif-
fusion of chemical messengers between neurons
and the transmission of electrical signals within

neurons). A new genera-
tion of stochastic simula-
tors is being developed to
handle these complexities
and determine the role
played by molecular noise
and diffusion in neural
signaling (26, 28, 29).
With respect to miniatur-
ization, stochastic simula-
tions (25) show that chan-
nel noise places a realistic
ceiling on the wiring den-
sity of the brain by setting
a lower limit of about 0.1
�m on axon diameter.

The buildup of noise
from stage to stage may
be a fundamental limita-
tion on the logical depth
to which brains can com-
pute (30). The analysis of
the relationships among
signal, noise, and band-
width and their depen-
dence on energy con-
sumption will play a cen-
tral role in understanding
the design of neural cir-
cuits. The cortex has
many of the hallmarks of
an energy-efficient hybrid

device (28). In hybrid electronic devices, com-
pact analog modules operate on signals to pro-
cess information, and the results are converted
to digital data for transmission through the net-
work and then reconverted to analog data for
further processing. These hybrids offer the abil-
ity of analog devices to perform basic arith-
metic functions such as division directly and
economically, combined with the ability of dig-
ital devices to resist noise. In the energy-effi-
cient silicon cochlea, for example, the optimal
mix of analog and digital data (that is, the size
and number of operations performed in analog
modules) is determined by a resource analysis
that quantifies trade-offs among energy con-
sumption, bandwidth for information transmis-
sion, and precision in analog and digital com-

Fig. 2. Power consumption limits neural signaling rate in the gray
matter of rat cerebral cortex. Baseline consumption is set by the
energy required to maintain the resting potentials of neurons and
associated supportive tissue (r.p.) and to satisfy their vegetative needs
(nonsignaling). Signaling consumption rises linearly with the average
signaling rate (the rate at which neurons transmit action potentials).
The measured rates of power consumption in rat gray matter vary
across cortical areas and limit average signaling rates to 3 to 5.5 Hz.
Values are from (19), converted from rates of hydrolysis of adenosine
triphosphate (ATP) to W/kg using a free energy of hydrolysis for a
molecule of ATP under cellular conditions of 10�19 J.

N E T W O R K S I N B I O L O G Y

26 SEPTEMBER 2003 VOL 301 SCIENCE www.sciencemag.org1872

S
P
E
C
IA
L
S
E
C
T
IO
N



ponents. The obvious similarities between hy-
brid devices and neurons strongly suggest that
hybrid processing makes a substantial contribu-
tion to the energy efficiency of the brain (31).
However, the extent to which the brain is con-
figured as an energy-efficient hybrid device
must be established by a detailed resource anal-
ysis that is based on biophysical relationships
among energy consumption, precision, and
bandwidth in neurons.

Some research strongly suggests that
noise makes it uneconomical to transfer in-
formation down single neurons at high rates
(29, 31). Given that a neuron is a noise-
limited device of restricted bandwidth, the
information rate is improved with the SNR,
which increases as the square root of the
number of ion channels, making improve-
ments expensive (25). Thus, doubling the
SNR means quadrupling the number of chan-
nels, the current flow, and hence the energy
cost. Given this relationship between noise
and energy cost, an energy-efficient nervous
system will divide information among a larg-
er number of relatively noisy neurons of low-
er information capacity, as observed in the
splitting of retinal signals into ON and OFF
pathways (32). Perhaps the unreliability of
individual neurons is telling us that the brain
has evolved to be energy efficient (31).

Saving on Traffic
Energy efficiency is improved when one reduc-
es the number of signals in the network without
losing information. In the nervous system, this
amounts to an economy of impulses (33) that
has the additional advantage of increasing sa-
lience by laying out information concisely.
Economy is achieved by eliminating redundan-
cy. This important design principle is well es-
tablished in sensory processing (34). Redun-
dancy reduction is a goal of algorithms that
compress files to reduce network traffic.

In the brain, efficiency is improved by dis-
tributing signals appropriately in time and
space. Individual neurons adopt distributions of
firing rate (35, 36) that maximize the ratio
between information coded and energy expend-
ed. Networks of neurons achieve efficiency by
distributing signals sparsely in space and time.
Although it was already recognized that sparse
coding improves energy efficiency (37), it was
Levy and Baxter’s detailed analysis of this
problem (38) that initiated theoretical studies of
energy-efficient coding in nervous systems.
They compared the representational capacity of
signals distributed across a population of neu-
rons with the costs involved. Sparse coding
schemes, in which a small proportion of cells
signal at any one time, use little energy for
signaling but have a high representational ca-
pacity, because there are many different ways
in which a small number of signals can be
distributed among a large number of neurons.
However, a large population of neurons could

be expensive to maintain, and if these neurons
rarely signal, they are redundant. The optimum
proportion of active cells depends on the ratio
between the cost of maintaining a neuron at rest
and the extra cost of sending a signal. When
signals are relatively expensive, it is best to
distribute a few of them among a large number
of cells. When cells are expensive, it is more
efficient to use few of them and to get all of
them signaling. Estimates of the ratio between
the energy demands of signaling and mainte-
nance suggest that, for maximum efficiency,
between 1% and 16% of neurons should be
active at any one time (22, 23, 38). However, it
is difficult to compare these predictions with
experimental data; a major problem confronting
systems neuroscience is the development of
techniques for deciphering sparse codes.

There is an intriguing possibility that the
energy efficiency of the brain is improved by
regulating signal traffic at the level of the indi-
vidual synaptic connections between neurons. A
typical cortical neuron receives on the order of
10,000 synapses, but the probability that a syn-
apse fails to release neurotransmitter in response
to an incoming signal is remarkably high, be-
tween 0.5 and 0.9. Synaptic failures halve the
energy consumption of gray matter (22), but
because there are so many synapses, the failures
do not necessarily lose information (39, 40). The
minimum number of synapses required for ad-
equate function is not known. Does the energy-
efficient cortical neuron, like the wise Internet
user, select signals from sites that are most
informative? This question draws energy effi-
ciency into one of the most active and important
areas of neuroscience: synaptic plasticity.

Reconfiguring the Network
Long-distance communication in the brain oc-
curs through all-or-none action potentials,
which are transmitted down axons and convert-
ed to analog chemical and electrical signals at
synapses. The initiation of action potentials in
the cortex can occur with millisecond precision
(41) but, as we have just discussed, the com-
munication at cortical synapses is probabilistic.
On a short time scale of milliseconds to sec-
onds, presynaptic mechanisms briefly increase
or decrease the probability of transmission at
cortical synapses over a wide range, depending
on the previous patterns of activity (42). On
longer time scales, persistent correlated fir-
ing between the presynaptic and postsynap-
tic neurons can produce long-term depres-
sion or potentiation of the synaptic effica-
cy, depending on the relative timing of the
spikes in the two neurons (43).

A new view of the cortical network is emerg-
ing from these discoveries. Rather than being a
vast, fixed network whose connection strengths
change slowly, the effective cortical connectivity
is highly dynamic, changing on fast as well as
slow time scales. This allows the cortex to be
rapidly reconfigured to meet changing computa-

tional and communications needs (44). Unfortu-
nately, we do not yet have techniques for eaves-
dropping on a large enough number of neurons to
determine how global reconfiguration is achieved.
Local field potentials (LFPs), extracellular electric
fields that reflect the summed activity from local
synaptic currents and other ion channels on neu-
rons and glial cells, may provide hints of how the
flow of information in cortical circuits is regulated
(16). Oscillations in the 20- to 80-Hz range occur
in the LFPs, and the coherence between spikes
and these oscillations has been found to be influ-
enced by attention and working memory (45, 46).

Conclusions
The more we learn about the structure and
function of brains, the more we come to appre-
ciate the great precision of their construction
and the high efficiency of their operations. Neu-
rons, circuits, and neural codes are designed to
conserve space, materials, time, and energy.
These designs are exhibited in the geometry of
the branches of dendritic trees, in the precise
determination of wiring fractions, in the laying
out of maps in the brain, in the processing of
signals, and in neural codes. It is less obvious,
but highly likely, that the unreliability of single
neurons is also a mark of efficiency, because
noise in molecular signaling mechanisms plac-
es a high price on precision. To an extent yet to
be determined, the noise and variability ob-
served among neurons is compensated by plas-
ticity—the ability of neurons to modify their
signaling properties. Neural plasticity also has
the potential to direct the brain’s scarce resourc-
es to where they will be of greatest benefit.
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R E V I E W

A Bacterial Cell-Cycle Regulatory Network
Operating in Time and Space

Harley H. McAdams* and Lucy Shapiro

Transcriptional regulatory circuits provide only a fraction of the signaling pathways
and regulatory mechanisms that control the bacterial cell cycle. The CtrA regulatory
network, important in control of the Caulobacter cell cycle, illustrates the critical role
of nontranscriptional pathways and temporally and spatially localized regulatory
proteins. The system architecture of Caulobacter cell-cycle control involves top-
down control of modular functions by a small number of master regulatory proteins
with cross-module signaling coordinating the overall process. Modeling the cell cycle
probably requires a top-down modeling approach and a hybrid control system
modeling paradigm to treat its combined discrete and continuous characteristics.

In the past few years, microarrays and other
high-throughput experimental methods have
supported cellwide or “global” assays of gene
expression activity in cells. We can realisti-
cally expect these methods to yield virtually
complete descriptions of transcriptional wir-
ing diagrams of some yeast and bacterial
species, perhaps within the next decade.
However, the transcriptional regulatory cir-
cuitry provides only a fraction of the signal-
ing pathways and regulatory mechanisms that
control the cell. Rates of gene expression are
modulated through posttranscriptional mech-
anisms that affect mRNA half-lives and
translation initiation and progression, as well
as DNA structural or chemical state modifi-
cations that affect transcription initiation
rates. Phosphotransfer cascades provide fast
point-to-point signaling and conditional sig-
naling mechanisms to integrate internal and
external status signals, activate regulatory
molecules, and coordinate the progress of
diverse asynchronous pathways. As if this
were not complex enough, we are now find-
ing that the interior of bacterial cells is highly
spatially structured, with the cellular position

of many regulatory proteins as tightly con-
trolled at each time in the cell cycle as are
their concentrations.

Architecture of Bacterial Cell-Cycle
Control System
A few top-level master regulatory proteins orga-
nize and coordinate multiple processive modular
functions that do much of the work to execute
the cell cycle (1, 2). Herein, “modules” refers to
groups of proteins that work together to execute
a function (3). Bacterial genes for module pro-
teins are frequently organized in one or several
operons. Proteins in a module generally interact
strongly with each other, either by forming mul-
tiprotein machines that accomplish complex
functions (e.g., gene transcription, mRNA trans-
lation, and chromosome replication) or by creat-
ing signaling or reaction pathways. Production
of the proteins constituting these modules is
tightly controlled so that they are expressed just
at the time needed and in the order required for
assembly (1, 4, 5) and destroyed when they are
not needed. Stoichiometry and, frequently, the
place of expression in the cell also are often
controlled (5). Once launched, modules act au-
tonomously (e.g., modular metabolic pathways)
or processively (e.g., the replisome, RNA poly-
merase, and the construction of structures such
as flagella and pili) to complete their job. Be-
cause of inherent stochastic differences in the
time required to execute any reaction cascade

(6), intermodule regulatory linkages are required
for synchronization when maintenance of rela-
tive timing is important.

Top-level master regulators work together to
switch modular functions on and off in orderly
succession (1) as needed to progress through the
cell cycle. Many of the genes controlled by
master regulator proteins are themselves regula-
tory molecules, so that coordinated activation of
a complex mix of activities can be achieved. For
example, in the yeast Saccharomyces cerevisiae,
12 cell-cycle regulatory proteins control a subset
of regulators forming an interconnected loop of
activators that contribute to cell-cycle progres-
sion (7). Other master regulator proteins control
complex cell responses such as the Escherichia
coli general stress response (8) and the activa-
tion of the Bacillus subtilis sporulation pathway
(9). The advantages of a regulatory circuit ar-
chitecture involving hierarchical top-down con-
trol of modular functions by master regulators
may relate to simplification of control signal
communication pathways, as well as to facilita-
tion of both short-term (i.e., immediate within
the resources of the current cell design) and
long-term [i.e., evolutionary evolvability (10)]
adaptation to changes in environmental condi-
tions. Disadvantages include the creation of le-
thal failure points when regulation of large num-
bers of critical functions depends on a limited
number of master regulatory proteins. Failures
can also occur because of stochastic risk of
failure in any given pathway (6). This risk is
alleviated in cells by redundant control of criti-
cal regulatory proteins, as we see in the case of
CtrA in Caulobacter.

Caulobacter crescentus is a productive model
system for the study of bacterial cell-cycle regu-
lation and the mechanisms of asymmetric cell
division. Caulobacter always divides asymmetri-
cally, producing daughter cells with differing po-
lar structures, different cell fates, and asymmetric
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