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ABSTRACT 

We present methods to separate blindly mixed signals recorded 
in a room. The learning algorithm is based on the informa- 
tion maximization in a single layer neural network. We fo- 
cus on the implementation of the learning algorithm and on 
issues that arise when separating speakers in room record- 
ings. We used an infomax approach in a feedforward neu- 
ral network implemented in the frequency domain using the 
polynomial filter matrix algebra technique. Fast convergence 
speed was achieved by using a time-delayed decorrelation 
method as a preprocessing step. Under minimum-phasemix- 
ing conditions this preprocessing step was sufficient for the 
separation of signals. These methods successfully separated 
a recorded voice with music in the background (cocktail party 
problem). Finally, we discuss problems that arise in real world 
recordings and their potential solutions. 

1. INTRODUCTION 

In a cocktail party, the problem is to focus one’s listening at- 
tention on a single talker among a din of conversations and 
background noise and extract one voice. We model this as 
a linear mixing and filtering of independent sound sources. 
Assuming that the original signals are independent we can 
apply an Independent Component Analysis (ICA) algorithim 
to blindly recover the unknown sources. Bell and Sejnowski 
[2] have shown that information maximization can be used 
to separate many independent sources. Torkkola [ 151 extended 
this approach to a feedback system with only cross filters. 
A full filter feedback system is presented in [ 111 and [4]. 
Since feedback systems are limited to minimum-phase mix- 
ing systems, the general assumption of non-minimum-phase 
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systems can be overcome: by using a feedforward unmixing 
system [lo, 12, &SI.  The infomax algorithm has been used 
to separate voices recorded in real environments [ 10, 11 61. 

A simple time-delayed decorrelation (TDD) algorithm 
[ 141 has been shown to be highly effective under the minimum- 
phase constraint. The TIID algorithm can in some circum- 
stances achieve the same separation quality much faster which 
is important for online implementations. The convergence 
of the infomax algorithm can be improved by using the TDD 
algorithm as a preprocessing step. In this paper, we show 
that this method increases the convergence speed and may 
allow for online use of the algorithm. Regarding applica- 
tions, the recognition rate in an automatic speech recogni- 
tion system can be increased by using these methods as a 
preprocessing step [ 12,6]. 

2. PROBLEM STATIEmNT AND ASSUMPTIONS 

Assume that there is an M dimensional zero-mean vector 
s ( t )  suchthatthecomponentsofs(t) = [s~(t),..-,s~(t)]~ 
are mutually independent. The M signals are transmitted 
through a medium so that an array of N sensors picks up a 
set of signals x ( t )  = [ZI ( t )  . . . Z N ( t ) l T ,  each of which has 
been mixed, delayed and1 filtered as follows: 

N P-1 

j=1 k=O 

Dij are entries in a matrix of delays and there is an P-point 
filter, aij, between the the j t h  source and the ith sensor. The 

the sensory outputs x( t> .  The infomax approach depends 
on the following assumptions: (1) The number of sensors is 

problem is to recover the original signals, s(t> given only 
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eater or equal to the number of sources N 2 M. ( 2 )  The 
sources s ( t )  are at each time instant mutually independent 
and each source is white, ie: there are no dependencies be- 
tween time points. Assumption 1 is needed to make A ( z )  a 
full rank matrix of filters which holds for most physical sit- 
uations. Assumption 2 is the basis of ICA. However, this 
is not me for natural signals. The algorithm will whiten: 
it will remove dependencies across time which already ex- 
isted in the original source signals, st.  There are two ways 
to overcome this problem: (1) to omit the direct filters and 
hence recover a filtered version of the original signal [ 151 or 
(2) to restore the characteristic autocorrelations (amplitude 
spectra) of the sources by post-processing [9]. 

3. FEEDFORWARD ARCHITECTURE 

The feedforward architecture can be described as: 

N P-1 

where the filters, wij, reproduce, at the ui, the original un- 
corrupted source signals, si. This was the architecture im- 
plicitly assumed in [2]. Although a feedback architecture re- 
quires less parameters, it is unstable for non-minimum-phase 
of A(z). The advantage of the feedforward system is that it 
can approximate a more general inverse system. For exam- 
ple, a non-minimum phase system will occur when a micro- 
phone picks up an echo that is stronger than the direct sig- 
nal. Then the increase in negative phase is directly related t6 
the amount of temporal delay of a narrowband component 
at that frequency. Hence, the minimum phase lag property 
or the minimum group delay property of a non-minimum- 
phase system is not guaranteed. Since we cannot obtain prior 
knowledge about the mixing properties in room recordings 
we have to assume a non-minimum phase system which may 
have a non-causal filter system inverse. Strictly non-causal 
filters (dependency on an infinite number of past time-samples) 
cannot be implemented. However, any non-minimum or true 
phasesystemcan beexpressedas W ( z )  = W,in(z)W~p(z) 
where Wmin (2) is a minimum phase system and WAP ( Z) is 
an all-pass system. W,i,(z) has all its poles and zeros in- 
side the unit circle and W ~ p ( z )  represents a time delay with 
a unit frequency magnitude response. Therefore, WAP (2) 
preserves the amplitude frequency spectrum and imposes a 
time delay on W ( z )  by reflecting the zeros outside the unit 
circle to their conjugate reciprocal location inside the unit 
circle. By time-delaying the inverting system up to P/2 taps, 
P being the size of the inverting filter, we introduce a P/2- 
order WAP ( z )  which can realize non-causal systems. 

j=1 k=O 

~ 
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4. LEA AQG 

Learning in this feediforward architecture is performed by max- 
imizing thejoint entropy, W ( y ( t ) ) ,  ofthe random vectory(i) = 
g ( u ( t ) ) ,  where g is a bounded monotonic nonlinear function 
(e.g. a sigmoid function). The relation and theory between 
ECA and infomax is further explained in [2, 131. The general 
learning rule is: 

where I is the identity matrix and p(u) = 2. This is the 
learning rule in [2]  using the natural gradient extension by 
[I, 31. We may keep the form of the equation in eq.3 for 
the full filter system by moving into the frequency domain 
representation where the elements of the matrices are filters. 
Then the multiplication operation replaces the convolution 
property. Lambert [ 101 showed that FIR polynomial matrix 
algebra can be used as an efficient tool to elegantly solve 
problems for the multichannel source separation. The goal 
of using the HR polynomial matrix algebra is to extend the 
algebra of scalar matrices to the algebra of matrices of fil- 
ters (time-domain) or polynomials (frequency domain). The 
methods for computing functions of an FIR filter, such as 
an inverse, involve the formation of a circulant data matrix. 
Due to this nature we move to the frequency domain repre- 
sentation where eigencolumns of the circulant matrix are the 
discrete Fourier basis functions of the FFT of corresponding 
length. The filters now become polynomials of the Laurent 
series extension (z-transform) and the convolution and de- 
convolution of filters is reduced to multiplication and divi- 
sion of polynomials. The prepending of post-pending of ze- 
ros is needed to produce a good estimate of the double-sided 
Laurent series expansion to allow for non-causal expansions 
of non-minimum phase roots. The circular reordering in the 
time domain shifts the zeroth lag to the center of the filter 
(FFTSHIFT). Lambert [ 101 presents a complete proof and 
justification of FIR polynomials. The learning algorithm for 
the two sources and two sensors problem can be reformu- 
lated from eq.3 as follows: 

A W ( z ) =  (4) 

wIl(.) w21 ( z )  
W12(.) Wz2(z) 

where and denote vectors (of the length of the FFT op- 
eration) of ones and zeros respectively. Note that the neu- 
ral processor ~i = still operates in the time do- 
main and the FFT is the output and * denotes the 
complex conjugate form. Eq.4 is of the form of the least 



mean squared (LMS) adaptive filters. A fast implementa- 
tion of the LMS adaptive filters in the frequency domain can 
be achieved by employing the overlap and save block LMS 
technique, i.e. two blocks are processed simultaneously and 
X k  is shifted by one block after each iteration. 

x ( Z )  = FFT[S(k-l)n ” ‘Zkn-1Xkn  “.xkn+n-l]. ( 5 )  

For a block size of 1824 FFT-points the method is 16 times 
faster than the conventional LMS method [7]. 

5. TIME-DELAYED DECORRELATION AS A 
PREPROCESSING STEP 

Iteratively updating the weights for the filter is crucial when 
considering online learning where source signals are non sta- 
tionary. However, the convergence speed may be increased 
by using a fairly computationally inexpensive time-delayed 
decorrelation algorithm as a preprocessing step [14]. The 
main point of TDD is to diagonalize the covariance matrix 
CO = (x(t)x(t)T) for 7 = 0 (no time-delay) and a:t the 
same time diagonalize the covariance matrix for a giver1 de- 
lay C ,  = ( x ( t ) x ( t - ~ ) ~ ) .  This leads to an eigenvalueprob- 
lem as described in [ 141: 

where A is the &agonal matrix with elements that arc the 
eigenvalues of the corresponding covariance matrix. The TDD 
algorithm can be extended to a matrix of filters [6]. The 
main extension consists of transforming the signals xi  (t I into 
the frequency domain X i ( z )  and hence creating a spectro- 
gram. A correlation matrix can be computed as in eq .6  for 
each frequency bin. The inverse of A(z) multiplied with the 
spectrogram results in the frequency domain decorrelated sig- 
nals which can be reconstructed using an IFFT and overlap 
and zero-padding technique. The unmixing filters in the time- 
domain are obtained by IFFT of A(z). There are two opti- 
mizing steps improving the separation performance: (a) set- 
ting the direct filters to identity and therefore avoiding the 
whitening problem (b) optimizing a decorrelation-based cost 
function [6] (c) optimizing T as a function of decorrelation 
cost function. Point (c) is crucial to achieve good separa- 
tion results and therefore requires a secondary optimization 
step. The main advantage of the TDD algorithm is the com- 
putational efficiency in computing the cross-filters since no 
adaptation is necessary. An online-version of this algorithm 
could be implemented in a block mode in which successive 
blocks of data points (e.g. 128,256) are processed. 

6. EXPERIMENTAL RESULTS 

In Figure 1 we show an example of a recording in a room ob- 
tained by Yellinl and Weinstein (1996). Here, a music sig- 

we are grateful to ~ r .  Yellin for making the data available. 
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nal and a voice signal that was played by an audio system 
and the signals were recorded with two microphones located 
close to the sources (60 cm). Figure 1 (a) and (b) show the 
recorded signals. Two cross filters with 128 taps each were 
computed using the TIID algorithm. The unmixed signals 
were obtained after 10 seconds on a Sparc 10 workstation us- 
ing MATLAB. Figure 11 (c) shows the recovered speech sig- 
nal and Figure 1 (d) shows the music signal using the TDD 
algorithm by Molgedey and Schuster [ 141. For the same record- 
ing we used the learning rule in eq.4 and obtained slightly 
better separating results shown in Figure 1 (e) and (f) with 
the same set of parameters but slow convergence speed (about 
5 min with annealing the learning rate). The infomax results 
are very similar to the results obtained by Yellin and We- 
instein (1996) using a fourth-order cumulant-based method. 
Unfortunately, the signal to noise ratio is not measurable due 
to the unavailability of the original speech and music signals. 
The use of the TDD algorithm as a preprocessing step for 

(a) Microphone A1 

(b) Microphone A2 

(c) Recovered speech signal using TDD 

(d) Raovared music signal using TDD 

I 

(a) Recovered speach signal using i n f m  

(f) Recovered musk signal using infomax 

Figure 1: Room recordings from Yellin and Weinstein 
(1996): (a) microphone 1, (b) microphone 2. The separated 
signals using the TDD algorithm are shown for speech and 
music in (c) and (d). Slightly better results were obtained 
with eq.4 as shown in (e) and (f). 

infomax approximately doubled the convergence speed. In 
many experiments such as the recordings in 161 and [ 121 the 
TDD algorithm by itself gave results similar in quality to in- 
fomax. However, in experiments performed in a large con- 



ference room with microphones located 3 m from the sources, 
the decorrelation algorithm performed poorly in separating 
the signals. 

7. DISCUSSION 

We have presented separation results of room recordings us- 
ing the TDD algorithm and the infomax ICA algorithm. While 
in general infomax achieved better separation results than 
the TDD algorithm, the convergence speed was slow. The 
TDD algorithm, however, may allow for online implemen- 
tations for real-time applications such as speech recognition 
and may be used as a preprocessing step for infomax to speed 
up convergence. Additional improvements can be made in 
optimizing the TDD algorithm and its combination with in- 
fomax. The infomax algorithm has several limitations that 
have not yet been resolved: (1) The number of sensors must 
be greater or equal the number of sources. (2) A noisy ICA 
model formulation for recorded signals has not been addressed. 
(3) For many experiments, we observed that the algorithm 
failed to clearly separate non-stationary signals such as record- 
ings from people with slight movements while they talk. In 
contrast, humans can track non-stationary sources and ex- 
tract signals from a high number of sources with only two 
sensors. Another source of improvement may be found in 
the use of cochlear filter banks to compute an frequency spec- 
m m ,  which may be less sensitive to non-stationary sources. 
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