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Abstract—Traditional approaches for neurological rehabili-
tation of patients affected with movement disorders, such as
Parkinson’s disease (PD), dystonia, and essential tremor (ET)
consist mainly of oral medication, physical therapy, and
botulinum toxin injections. Recently, the more invasive
method of deep brain stimulation (DBS) showed significant
improvement of the physical symptoms associated with these
disorders. In the past several years, the adoption of feedback
control theory helped DBS protocols to take into account the
progressive and dynamic nature of these neurological move-
ment disorders that had largely been ignored so far. As a
result, a more efficient and effective management of PD
cardinal symptoms has emerged. In this paper, we review
closed-loop systems for rehabilitation of movement disor-
ders, focusing on PD, for which several invasive and
noninvasive methods have been developed during the last
decade, reducing the complications and side effects associ-
ated with traditional rehabilitation approaches and paving
the way for tailored individual therapeutics. We then present
a novel, transformative, noninvasive closed-loop framework
based on force neurofeedback and discuss several future
developments of closed-loop systems that might bring us
closer to individualized solutions for neurological rehabilita-
tion of movement disorders.

Keywords—Brain–machine–body interface, Closed-loop sys-

tems, Movement disorders, Noninvasive, Rehabilitation.

INTRODUCTION

Movement disorders such as Parkinson’s disease
(PD) and dystonia are broadly considered as basal
ganglia (BG) disorders. However, this reductionist
localization fails to capture the span of the patho-
physiology of these disorders as well as the physical,
mental, and societal impact of disease at the individual
level. The complex interactions and the multitude of
neuroanatomical pathways involved require a system-
level characterization and understanding of the neu-
ronal networks underlying the expression, spread, and
dynamics of the mechanisms taking place in these
neurological disorders. This is emphasized by the
widespread plastic changes that occur in distributed
neuronal networks at different spatiotemporal scales as
the nervous system adapts to disease. Furthermore,
there is inherent individual variability in the symptoms
and responses to treatments exhibited by patients. This
variability may depend on individual genetic and epi-
genetic differences, on differences in disease progres-
sion, and in the capacity of the adaptive processes to
cope with it. Therefore, therapeutic approaches tai-
lored to a given patient, addressing the patient’s spe-
cific condition and the disease’s degree of severity may
prove superior to generic diagnosis and treatment.

Current treatments for movement disorders,
including medications, botulinum toxin injections,
physical rehabilitation, and deep brain stimulation
(DBS), are targeted to specific symptoms, or a com-
bination thereof.95,149,160 Despite such advances, these
treatments present significant limitations, including
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undesirable effects, limited efficiency, and lack of
specificity, and fail to address the dynamic nature of
movement disorders such as PD and dystonia. Dopa-
mine replacement medications are used worldwide to
alleviate the motor symptoms of PD. However, other
motor (e.g., freezing of gait) and non-motor (e.g.,
depression, dementia, hallucinations) symptoms are
dopamine-resistant, as is well documented.123 Long-
exposure to dopamine replacement therapy121 may
induce several serious debilitating side effects that of-
ten outweigh the therapeutic benefits, such as wors-
ening of limb proprioception,108 the development of a
dopamine dysregulation syndrome and motor fluctu-
ations, just to name a few. In some patients, motor
fluctuations can be treated with DBS. However, its
invasive nature, the additional risks and complications
associated with the surgery, and in device implanta-
tion, as well as the overall cost of this therapeutic
alternative and its restrictive eligibility criteria renders
its adoption by a majority of patients highly unlikely.

In dystonia, the current treatments for abnormal
and involuntary muscle movements consist of combi-
nations of physical rehabilitation therapy, medica-
tions, botulinum toxin, and DBS. All of these methods
have limited efficacy.117 In essential tremor (ET), typ-
ical treatments consist of oral medications, including
beta-blockers, benzodiazepines, and mysoline, or pri-
midone. Such therapy can improve tremor in approx-
imately 50% of the patients, although this fraction
diminishes as the disease progresses to more severe
stages.96 Due to their undesired and potentially se-
verely debilitating side effects, invasive surgical options
for movement disorders, such as lesion therapy and
DBS, are generally considered a last resort when tra-
ditional therapies fall short in improving the patient’s
quality of life.

Thus, new noninvasive therapeutic approaches are
clearly needed for the neurological rehabilitation of
patients suffering from movement disorders. An ideal
therapeutic approach would be one tailored to the
individual by being based on the pathophysiology of
the specific patient’s conditions underlying disease and
associated patterns of brain and body activity. Such a
therapy should be adaptive and selective so as to track
the changing states of the patient and disease. Indeed,
in many brain disorders, symptoms fluctuate dynami-
cally, depending on factors such as cognitive and mo-
tor load, and concurrent drug therapy. It is thus crucial
to have feedback loops provide real-time adjustment of
the therapeutic parameters. A timely, precise regula-
tion might potentially improve the therapeutic effects
while limiting unwanted and adverse side effects.

In this paper, we review closed-loop systems for
rehabilitative purposes with a focus on noninvasive
brain–machine–body interfaces towards neurofeed-

back remediation of movement disorders, in particular
for PD (Fig. 1). We start with an overview of activity-
dependent neuroplasticity in brain–machine interface
(BMI) paradigms in ‘‘Brain–Machine Interfaces and
Neuroplasticity’’ Section. In ‘‘Closed-Loop Systems in
Rehabilitation’’ Section, we review invasive and non-
invasive closed-loop systems for rehabilitation of
movement disorders. In ‘‘Extended Neurofeedback
Paradigm for Rehabilitation in PD’’ Section, we pres-
ent a new noninvasive framework for rehabilitation in
PD, combining simultaneous imaging of the brain and
body dynamics with model-free and model-based

FIGURE 1. A system framework towards neurofeedback
noninvasive rehabilitation of movement disorders by means
of closed-loop brain–machine–body interfaces. Signals from
the central (CNS) and peripheral (PNS) nervous system are
recorded and monitored by the mobile brain/body imaging
(MoBI),98 and motion capture (MoCap) systems, respectively.
Electroencephalography (EEG), electromyography (EMG),
kinetics and eye-tracking signals provide inputs to the MIMO
(multiple-input and multiple-output) module. The MIMO mod-
ule outputs force feedback to external devices (haptic robots,
cyber glove or exoskeleton) that is sensed by the brain via the
PNS. The force is generated by adaptive control of the MIMO
module’s parameters (h). The fitness function Q from the
METRIC module is computed from the EEG, EMG and force
signals, and outputs PD markers to the MIMO module. Oblique
gray arrows indicate adaptive processes. Dashed lines indi-
cate optional elements. Once tested and validated in the
neurofeedback framework by comparing the forward model-
ing (see text for details) of its outputs with those monitored by
MoBI and MoCap, the thalamocortical/BG model can be used
as a model-based module providing additional inputs to the
METRIC module helping constructing a better fitness function
Q. Red and blue lines indicate information from the PNS and
the CNS, respectively.
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approaches for closed-loop paradigms. We then dis-
cuss the future developments of closed-loop systems
for rehabilitation purposes in ‘‘Future Developments’’
Section and conclude in ‘‘Conclusion’’ Section.

BRAIN–MACHINE INTERFACES AND

NEUROPLASTICITY

BMI technology can be used for neurological
rehabilitation in two fundamentally different ways.31

The earliest use of BMIs was to bypass neuromuscular
signaling pathways, providing a means for paralyzed
patients to interact with their environment in a way
that does not depend on muscle control.80 This strat-
egy has been, and still is, the focus of a great body of
research, allowing patients suffering from various
neuromuscular conditions to interact and communi-
cate with their environment via artificial actuators,
including a computer cursor,15 a neuroprosthetic
limb,67 and virtual39 or real devices, such as a robotic
arm,22 or electric wheelchairs.91 The use of BMIs for
communication is often referred to as assistive. In the
past several years, several researchers have proposed
another strategy that consists of using BMIs for
rehabilitation purposes by inducing activity-dependent
plasticity of the central nervous system (CNS) to re-
store motor function, as has been reviewed else-
where.17,31,157 Activity-dependent CNS plasticity can
occur at different spatiotemporal scales and represents
the foundation for motor re-learning in rehabilitation.
This is not limited to the healthy nervous systems,113

but is also relevant in disorders such as PD.116

The use of BMIs to investigate learning and adap-
tation is beyond the scope of this review and has been
reviewed recently.109 We present here only a brief
overview of studies demonstrating how learning to
control a BMI induces plastic changes in various part
of the CNS. Many studies have shown that single
cortical neurons change their tuning properties fol-
lowing learning of neuroprosthetic control.18,52,147 The
magnitude of these changes mimicked the subjects’
performance to control the BMI and became more
stable as the performance plateaued.52 By analyzing
the activity of neurons in the motor cortex that were
not used for BMI control, other authors found large-
scale changes in neuron firing properties and contri-
bution to the task.53 In particular, a difference was
observed in these neurons’ modulation depth. The
neurons that were not used for BMI control showed a
reduction of the modulation depth in comparison to
the neurons used for BMI control. This effect was only
apparent in the late learning stages. Several other
studies using BMI paradigms in monkeys later dem-
onstrated that neuroplasticity actually extends to

larger cortical networks associated with motor con-
trol18,53,70,71 and is not restricted to the motor cortex.
For example, monkeys trained to reach and grasp
virtual objects by controlling a robot arm through a
closed-loop BMI showed functional reorganization in
the dorsal premotor cortex, supplementary motor area,
and primary somatosensory cortex, as well as in the
primary motor cortex.18 However, it is interesting to
note that plasticity during BMI learning and control is
not restricted to the cortex, and also occurs in sub-
cortical structures involved in natural motor control
that are directly relevant for PD, such as the BG. In-
deed, it has been recently shown that corticostriatal
circuits in rodents undergo plasticity during abstract
task learning that do not directly involve physical
movements.75 In this study, rats were trained to con-
trol the pitch of an auditory cursor by modulating the
activity of the primary cortex in the absence of body
movements. By simultaneously recording the activity
of neurons in the primary motor cortex and dorsal
striatum—two regions involved in motor learn-
ing—with microelectrode arrays, the authors were able
to show that striatal neurons modulated their activity
during learning and that more striatal neurons were
recruited as learning progressed. A comparison of the
activity of motor and striatal neurons revealed that
learning was accompanied by dynamical changes of the
functional interaction between these two neural pop-
ulations, consistent with the formation of a BMI-spe-
cific network.74 Moreover, deletion of striatal N-
methyl-D-aspartate (NMDA) receptors impaired both
learning and corticostriatal plasticity, providing direct
evidence that cortico-basal networks are required not
only for learning physical skills, but also for learning
abstract skills, like motor planning or neuroprosthetic
control. Overall, these studies suggest that BMI para-
digms can provide new therapeutic methods by
encouraging and guiding CNS plasticity to restore
motor function.

CLOSED-LOOP SYSTEMS IN REHABILITATION

In closed-loop systems, feedback controls and reg-
ulates the output of a dynamical system, allowing it to
adapt to perturbations of its inputs.4 This adaptive
power opens new research avenues for personalized
therapies in neurological rehabilitation by tracking
fluctuations in a patient’s neurological and disease
states.

Invasive Rehabilitation Systems

For PD, closed-loop systems have dramatically
improved the efficiency of DBS protocols.47,88,127
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Classical open-loop DBS employs a surgically im-
planted electrode and battery-powered pulse generator
that deliver a constant high-frequency (~130–185 Hz)
pulse train to specific subcortical structures, including
the subthalamic nucleus (STN), the internal segment of
the globus pallidus (GPi) or the ventral intermediate
(Vim) nucleus of the thalamus. DBS can successfully
alleviate many symptoms of motor disorders and has
been approved by the Food and Drug Administration
(FDA) to treat ET, PD and dystonia. Nonetheless, the
mechanism of action of DBS is not fully understood,
resulting in possibly suboptimal selection of DBS
waveforms (frequency, pulse width, and intensity)
based on clinical expertise and heuristics. Furthermore,
it can take up to 6 months to find optimal stimulation
settings giving best results.

Early closed-loop modeling studies47,48,132 of DBS
suggested the superiority of closed-loop systems rela-
tive to open-loop systems and indicated that stochastic
DBS waveforms could be effective alternatives to the
traditional constant high-frequency protocols.47,48

Stochastic waveforms offer the advantages of limiting
the side effects induced by constant, periodic, high-
frequency DBS inputs,3 such as gait and speech dis-
turbances, dyskinesia and hemiballism, as well as
improving the battery life of DBS stimulators and
perhaps yielding improved therapeutic outcomes. Re-
cently, closed-loop systems for DBS to treat PD have
been successfully implemented in monkeys127 and
humans.88 Using the MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine) primate model of PD,
Rosin et al.,127 delivered a single pulse or short pulse
train (7 pulses at 130 Hz) through a pair of electrodes
implanted in GPi at a predetermined and fixed delay of
80 ms, following the occurrence of a single action
potential recorded either in GPi or in the primary
motor cortex (M1). By sensing the ongoing activity in
M1, their closed-loop DBS protocol delivering short
pulse trains was superior in alleviating parkinsonian
symptoms than a single-pulse closed-loop protocol, as
well as a standard open-loop protocol (continuous
130 Hz). Moreover, their closed-loop DBS reduced
oscillatory activity in GPi and M1 to a greater extent
than the standard open-loop DBS.

To minimize the neurosurgical intervention in
humans, Little et al.,88 developed an adaptive DBS in
which a quadripolar macroelectrode in the STN was
used for recording and stimulation. Specifically, the
beta activity in the local field potential (LFP) served as
a feedback signal to control when the stimulation was
delivered. LFPs were filtered, rectified and smoothed
using a moving average filter to produce an online
scalar value of the beta amplitude that triggered the
stimulation via thresholding defined by the user. The
stimulation delay was 30–40 ms. Adaptive DBS was

30% more effective than the standard continuous DBS
despite delivering less than half of the current, and
improved all three cardinal symptoms of PD, i.e., tre-
mor, bradykinesia and rigidity. Interestingly, pre-
liminary results from the same authors suggest that it
might be possible to differentially control tremor and
bradykinesia by using the same control signal.86 LFPs
are used as a control signals for closed-loop DBS for
several practical reasons (see review120): LFPs are
easily and stably recorded from the implanted elec-
trode, they correlate with the patient’s clinical motor
and non-motor states, and they are modulated by
DBS.

However, control signals for DBS do not necessarily
need to originate from the brain; other bodily signals
can also be used. In particular, electromyographic
(EMG) activity has been used for feedforward and
feedback control of DBS for patients with ET.162 In
this study, EMG activity of the deltoid muscle was
recorded with surface electrodes and the tremor-fre-
quency power was used to switch on or off DBS fol-
lowing crosses of on-trigger and off-trigger thresholds,
respectively. Using the essential tremor rating scale
(ETRS), the authors reported a complete suppression
of bilateral intentional tremor and an almost complete
recovering of hand function after bilateral stimulation
of the bilateral thalamic Vim/Vop nuclei in closed-loop
mode.

Taken together, the encouraging results of these
studies demonstrate the power of adaptive closed-loop
systems to control the time-varying fluctuations of
pathological oscillatory network activity in movement
disorders such as PD and ET.

It is worth mentioning an innovative approach for
closed-loop DBS systems, despite the fact that it has
not yet been used to treat movement disorders. Indeed,
some authors have taken a step further and included
the physician/clinician in their automated neuromod-
ulation system by using an agent-environment
model145 borrowed from artificial intelligence. Afshar
et al.,1 developed an investigational platform for
closed-loop DBS comprising an implanted sensing and
stimulating device for recording and stimulation brain
activity, a learning (classifier) and a control-policy
algorithm, and telemetry to communicate with the
physician/clinician. According to their methodology,
the nervous system represents the environment while
everything else is part of the agent. The agent consists
of inertial (three-axis accelerometer) and bioelectrical
sensors, the classification and control-policy algo-
rithms, the stimulating part of their implanted device
as well as the physician/clinician who plays the role of
a critic. By including another human in the loop, they
made their system twofold adaptive. On one hand, the
classifier estimates the neural state of the patient from
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the sensed neural activity while the control-policy
algorithm maps this state estimate to an optimal
stimulation protocol and thus can adapt to dynamic
fluctuations. On the other hand, the physician/clinician
can evaluate the performance of the classification and
control-policy algorithms from the data collected via
telemetry and can independently adjust parameters of
each algorithm. This allows the clinician to monitor
and adjust the performance of the DBS more fre-
quently than in standard medical care models. Al-
though this promising extended closed-loop system has
been implanted and tested on an animal (ovine) model
of epilepsy1,141 for more than 15 months as proof of
concept, further work is necessary to evaluate the
potential benefits for patients suffering from move-
ment disorders.

Noninvasive Rehabilitation Systems

Closed-loop systems have also been used success-
fully in noninvasive rehabilitation methods using either
augmented-reality devices or transcranical current
stimulation of the motor cortex.

Augmented-Reality Approach

Some authors have extended the notion of BMI to
that of body–machine interface,20,107 in which signals
from the peripheral, rather than from the central ner-
vous system, are used to control and communicate
with external devices. By relying on movements and
adding new channels for communication and control,
body–machine interfaces provide several advantages
relative to BMIs. First, noninvasive interfaces may not
present risks of surgical complications. Second, the
rate of information transmission of body motion sys-
tems are currently an order of magnitude higher (5
bits/s)46 than that of EEG signal-based BMI systems
(0.05–0.5 bits/s).151,159 Third, body–machine interfaces
acknowledge the importance of the body in movement
disorders and that the body can benefit from remaining
active in many important ways. A larger range of
clinical applications are now emerging that extend the
brain- and body–machine interfaces and neural pros-
theses paradigms to brain–machine–body interfaces,69

interfacing across the central and peripheral nervous
systems for remediation of neurological disorders.

However, it remains to be determined how people
with movement disorders, such as PD, dystonia, and
ET will benefit from these interfaces, as this is a rela-
tively new field of research and they have mainly been
tested so far for the rehabilitation of patients with
spinal cord injury.19,20 For PD, apart from the study
by Yamamoto et al.162 which used EMG signal
to control DBS in ET (see ‘‘Invasive Rehabilitation

Systems’’ Section), the only noninvasive approach
successfully tested was for gait rehabilitation. Baram
et al.,7 analyzed and developed8 an augmented-reality
device for gait improvement for moderately affected
PD patients (mean clinical severity according to Hoehn
and Yahr staging was stage 3.04 ± 0.84). Their device
is composed of a head-mounted three-axis rotational
accelerometer, a body-mounted three-axis transla-
tional accelerometer, and a see-through head-mounted
visual display, all connected to a wearable computer.
This device can operate in two modes. In the open-
loop mode, the visual display superimposes virtual tiles
on the real floor. These move perpetually towards the
observer at constant speed, irrespective of the patient’s
body movements. In the closed-loop mode, the pa-
tient’s movements, monitored with rotational and
translational accelerometers, are used to adapt the vi-
sual display so that the virtual tiles appear fixed in
space, as a real floor. An adaptive noise canceler filter
was used to learn and eliminate the patient’s tremor
dynamics from the accelerometers’ signals. Fourteen
PD patients were tested on the device in both open-
and closed-loop modes. In closed-loop mode, perfor-
mance improved for all but one patient with an aver-
age increase of about 30% in speed and stride
length—about twice that for open-loop mode.

Using an advanced version of their device mounted
on top of normal glasses, the same group reported
similar improvements in walking abilities for patients
with multiple sclerosis.9 In another study,44 the same
group complemented the visual feedback (optical flow)
with auditory feedback by providing a click after each
step. This helped to produce and sustain a balanced
rhythmic gait. PD patients were tested during an initial
visit and after a 2-week at-home use of the device. The
test took place at least 12 h after the last dose of anti-
parkinsonian medication (since patients were recruited
on the basis of their off-medication-related gait
impairment) and consisted of five conditions: without
wearing the device, wearing the deactivated device,
receiving visual feedback only, with visual-auditory
feedback turned on, and again without wearing the
device. The benefits of the at-home therapy were more
clearly observed after the 2-week period: nearly 70% of
the patients showed at least 20% improvement in gait
velocity, stride length, or both. Two major limitations
of this work were that it only addressed the freezing of
gait of patients during ‘‘off-time’’ and that the long-
term benefits of this therapeutical approach were
uncertain. In a follow-up study addressing these limi-
tations, Espay et al.,45 evaluated the longer-term ben-
efits of their closed-loop apparatus for PD patients
showing freezing of gait mainly during ‘‘on-time’’ after
4 weeks of at-home training. However, due to the
severity of the disease and advanced disability of this
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population of the patients, only two of the 16 origi-
nally recruited patients completed the study and the
authors only reported brief results from a single re-
sponder, a 62 year old woman with 15 years disease
duration, who showed a significant gait improvement
up to 16 weeks post-training. After that period, the
training benefits started to decrease. Interestingly, the
initial benefits were renewed for this patient with fur-
ther training. Although this augmented-reality appa-
ratus shows encouraging results for patients at an early
stage of PD, this latter study highlights the difficulty of
at-home rehabilitation for patients at an advanced
stage of PD in which severe motor and cognitive dis-
abilities may limit their opportunities to complete the
training sessions required for rehabilitation. The main
limitation of these augmented-reality studies is the lack
of device use monitoring. The patients were verbally
instructed to use the device for at least 30 min, twice a
day, but no attempt was made to monitor the fre-
quency and duration of individual device use. This
stresses the need for recording systems for at-home use
of rehabilitation devices so as to account for outcome
variability and improve individualized therapeutic
solutions. Telemetric solutions for collecting informa-
tion about device usage and/or to include the physi-
cian/clinician in the loop, as proposed for some DBS
systems,1 appear to be solutions worth trying to inte-
grate in future noninvasive rehabilitation methods.

Several other different physical therapies have been
tested for improving balance and gait control in PD
patients, such as bicycling,140 dance158 and tai chi.82 To
date, none of these therapies have used feedback con-
trol. Thus, research on body–machine interface might
also shed light on new body-related biomarkers that
could be used as feedback signals for closed-loop
rehabilitation strategies based on physical therapy
oriented towards improving balance and gait in PD
patients.

Noninvasive Stimulation Techniques

Repetitive transcranial magnetic stimulation (rTMS),
transcranial direct current stimulation (tDCS) and
transcranial alternating current stimulation (tACS) are
three noninvasive stimulation techniques that have the
potential to either induce neuroplasticity or to suppress
maladaptive changes in targeted cortical networks.
These stimulation methods have been successfully
applied to treat various neurological disorders, includ-
ing movement disorders,49,161 such as PD, dystonia, and
ET. For example, meta-analyses of the use of rTMS in
PD indicate a significant improvement of motor symp-
toms with high-frequency rTMS in M1.41,50 However,
to the best of our knowledge, only tACS has been used
in a closed-loop system for rehabilitation of movement

disorders. Recently, Brittain et al.,16 reported encour-
aging results for resting tremor suppression. The au-
thors first stimulated the motor cortex of PD patients at
tremor frequency, but did not couple that rhythm with
the ongoing tremor. Instead, the rhythms drifted in and
out of phase alignment with each other. The periods of
phase cancellation allowed them to identify the stimu-
lation phase that caused the greatest reduction in tremor
amplitude. In a second series of experiments, Brittain
et al. tracked the phase of the peripheral tremor using
accelerometers and fed that signal into a high-perfor-
mance digital interface that operated as a real-time
computer that delivered the stimulation current (con-
stant stimulation for 30 s; peak-to-peak stimulation
current, 2 mA) over the motor cortex. This closed-loop
setting reduced the tremor amplitude by 50% on aver-
age for all five PD patients tested. Notably, stimulation
at tremor frequency was more efficient than at its first
harmonic rhythm.

As for DBS, the neurophysiological mechanisms of
action of rTMS, tDCS and tACS are not fully
understood and could greatly benefit from modeling
studies investigating feedback control in order to test
alternative waveform protocols and guide further
experimental research.

EXTENDED NEUROFEEDBACK PARADIGM

FOR REHABILITATION IN PD

The previous sections have emphasized the wide-
spread interest of closed-loop BMIs for rehabilitation
purposes. However, several critical issues related to
their acceptance and usability need to be addressed
before the adoption of BMI technology in clinical and
personal settings. In particular, the translation
of automated closed-loop systems for neurological
rehabilitation of movement disorders necessitates
further development in the following areas of
research1,40: (a) improved understanding of the dis-
tributed brain dynamics underlying healthy and path-
ophysiological conditions; (b) the development of
more sophisticated noninvasive neural sensors in terms
of spatiotemporal resolution and usability/comfort for
patients17; (c) development of adaptive algorithms that
can cope with the dynamic nature of progressive neu-
rological disorders1,47; (d) implementation of model-
based control1,133 for assimilating observable data,
reconstructing unobservable variables and performing
short-term prediction of the system state; and (e)
design and construction of low power systems for
preserving battery life and minimizing clinical inter-
ventions for battery replacement.

In this section, we present a transformative frame-
work of a noninvasive closed-loop brain–machine–body
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interface (Fig. 1) addressing these issues. It is based on
the dual adaptation of neural circuits and learning
algorithms,38,97,131 and integrates advances in neurosci-
ence and engineering approaches to assess, predict and
respond to distributed brain dynamics in PD.

A main motivation of modern neuroscience, as
exemplified by the BRAIN initiative (http://www.
nih.gov/science/brain/), is to link the activity of neu-
rons to specific behaviors. In order to bridge the large
dynamic range of spatial and temporal scales spanned
by the underlying sensory-motor and cognitive pro-
cesses active during motor control and adaptation,
these issues are approached from three complementary
perspectives. First, a top-down perspective driven by
cognitive neuroscience and psychophysiology. Second,
a bottom-up perspective driven by computational
neuroscience and models of network dynamics. Fi-
nally, both top-down and bottom-up perspective
approaches are merged at an intermediate spatiotem-
poral level and are implemented in neuromorphic
hardware. These different perspectives are then com-
bined to develop a noninvasive brain–machine–body
interface framework for rehabilitation of PD patients
and, eventually, other movement disorders. We antic-
ipate that the characterization of the distributed cor-
tical brain dynamics with EEG during motor tasks
(top-down) and the associated pattern of spiking
activity in the basal ganglia–thalamocortical circuits
(bottom-up) will bring us closer to an understanding of
movement disorders such as PD.

Future neurorehabilitative systems for motor disor-
ders: Recent technological advances including dry
wireless noncontact sensors and neuromorphic hard-
ware will likely provide the necessary tools for im-
proved at-home rehabilitative devices. The next
generations of dry wireless non-contact sensors for
recording and stimulation of the brain activity will
provide wearable systems that will allow transposing
existing noninvasive clinical systems for personal at-
home use. Furthermore, neuromorphic hardware of-
fers the promise of small, embedded, low power de-
vices in which on-board algorithms can be easily
implemented.

The general brain–machine–body interface frame-
work is intended to be versatile and to accommodate
diverse biosignals and control strategies for robotic
therapy devices. It is composed of two adaptive inter-
faces, in which both the user (patient) and the inter-
face/algorithms can adapt to each other. This
represents a dual learning system, in which both the
patient and the interface learn, although at different
time scales. The brain–machine–body interface can be
model-free (Fig. 1; upper loop) or model-based (Fig. 1;
lower loop) and allows assessment of the relative

merits of these two approaches for a wide range of
motor tasks and various types of augmented feedback.

In brief, the brain–machine–body interface frame-
work takes inspiration from BMI-induced neuroplas-
ticity (‘‘Brain–Machine Interfaces and Neuroplasticity’’
Section), adaptive control theory,5 robotic therapy
(‘‘Control Strategies for Robotic Therapy’’ Section),
and closed-loop adaptive systems. It includes brain and
body signals monitored continuously and in real-time
by the mobile brain/body imaging (MoBI) modality,
such as EEG, EMG, motion capture and eye tracking
(‘‘Signaling for Brain–Machine–Body Interfaces’’ Sec-
tion). These signals serve as inputs to an adaptive
model implemented in hardware and embedded into
diverse actuators used for sensory and proprioceptive
feedback, such as haptic robots, cyber gloves or exo-
skeletons. The adaptive model (‘‘Adaptive Control’’
Section) controls the actuator’s force and the sensory
feedback closes the sensory-motor loop (‘‘Sensory
Feedback’’ Section). It is expected, after sufficient
training, that the sensory feedback will trigger synaptic
changes in the cortico–striato–thalamic circuits that
will then modify positively the outcomes of the path-
ophysiological condition of PD patients, as proposed
by other authors.22,31,91 Ultimately, the neuroplastic
changes induced by practice with the brain–machine–
body interface are expected to provide long-term
benefits post-training. We submit that occasional rep-
etitions of the training cycle will help sustaining plastic
changes as it has been observed for other noninvasive
rehabilitation methods45 (see ‘‘Noninvasive Rehabili-
tation Systems’’ Section).

In this framework, the multiple spatiotemporal-
scale neuromorphic model can be used as an external
module to further investigate and test these synaptic
changes at different levels. It is also possible to use a
model-based approach by training a multiple-input
and multiple-output (MIMO) module in which co-
adaption of the MIMO controller and the patient’s
brain is produced by reinforcement learning145 based
on a model of the interaction between the patient’s
brain and body signals and the external world as rep-
resented by the assisted motor task (e.g., reaching,
grasping). This model-based approach (‘‘From Spikes
to Behavior’’ Section) takes inspiration from the cou-
pling of the BMI user—the PD patient—with an
intelligent controller via reinforcement learn-
ing34,38,97,131 and goal selection129 so as to take into
account the richness of the dynamic interactions
between the user and their external world.

In the following sections, we begin with an overview
of control strategies for robotic therapy devices and
then discuss the main components of the two adaptive
closed-loop systems shown in Fig. 1. We also present
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preliminary results using EMG for tremor suppression
in PD patients using force feedback.

Control Strategies for Robotic Therapy

The use of robotics for rehabilitation therapy126 in
real and virtual68 environments has been increasing
drastically over the last two decades.77,99 In parallel,
control strategies specifying how these robotic devices
interact with patients have also evolved. These strate-
gies are broadly divided into two categories making
motor tasks either easier or more difficult (or chal-
lenging) for patients and are referred to as assistive or
challenge-based, respectively. The assistive strategies
are the most developed and are intended to automatize
the traditional physical and occupational therapies
used in clinical rehabilitation for both lower and upper
extremity training. The rationale of these strategies is
multiple: (i) moving the limb that volitional control
can not achieve provides novel somatosensory per-
ception that helps promoting neural plasticity128; (ii)
effort is thought to be crucial for inducing motor
plasticity93; (iii) assistance during motor task allows
patients to progress faster42; (iv) repetition of a pattern
of sensory inputs will strengthen it and improve motor
performance when unassisted125; and (v) active assis-
tance may improve patients’ motivation during reha-
bilitation.28

The underlying principle of assistive strategies is to
create a restoring force via mechanical impedance
when patients deviate from a defined trajectory for a
given motor tasks such as reaching, grasping and
walking. A deadband—an area near the desired tra-
jectory in which no assistance is provided—is often
introduced to take into account human movement
variability.73 EMG has also been used to drive assis-
tance for motor rehabilitation of stroke patients. In
this case, assistance is provided when the processed
EMG signals crosses a threshold,78 or as a force pro-
portional to the EMG signal.142

Challenge-based strategies on the other hand, such
as resistive training and error-amplification, offer
complementary insights to assistive ones.99 Resistive
training provides resistance to the patient’s limb and is
used extensively by physiotherapists in traditional
clinical rehabilitation. With robotic devices, resistance
typically takes the form of a constant or proportional
force applied to the patient’s limb during motor exe-
cution. Error-amplification is often employed based on
the observation that kinematic errors during move-
ment execution are an essential signal-driving motor
adaptation.42

The effectiveness of these different control strategies
for robotic therapy is typically assessed against the
patient’s baseline motor performance for a given mo-

tor task. In general, robotic assistance significantly
decreases motor impairments following neurological
injuries, such as stroke and spinal cord injury (see
reviews79,99,148). For PD, Bai et al.,6 verified the feasi-
bility of a compensation method for hand movement
of visual target tracking by adding assistance force in a
simulation study. Two preliminary studies reported
encouraging results for improving gait for robot-as-
sisted treadmill training using the commercially avail-
able Lokomat orthosis.90,154 To date, it is unknown
which control strategy is the most effective for which
rehabilitation tasks, mainly because of the cost and
time-consuming clinical trials needed to test each rig-
orously. However, challenge-based strategies for PD
seem to be a promising avenue for future research on
gait rehabilitation in PD as suggested by the positive
outcomes of traditional progressive resistance exercises
on walking85 and the reduction of body weight-support
across training sessions in one pilot study of robotic
locomotor training.90

Signaling for Brain–Machine–Body Interfaces

Use of human–machine interactions for motor
rehabilitation or enhancement is impeded by the lim-
ited knowledge of sensory-motor learning and control
dynamics that occur when humans are physically and
mentally coupled to machines. A quantitative theory of
human movement control is thus essential –its devel-
opment would both advance our understanding of
cognitive motor neuroscience and help in designing
and developing new machines that interact with
humans. Despite recent findings suggesting that many
motor skills can be decomposed into sequenced com-
binations of goal-directed and habitual control,124,163

and that the balance between these two modes of ac-
tion control is disrupted in PD,150 the precise role and
switching mechanisms of these two modes remains
largely unknown. System-level frameworks of dual
modes of action control account for various psycho-
physical observations in healthy subjects and several
PD symptoms (see review124). However, these
approaches also emphasize the importance and neces-
sity of establishing the intrinsic sensory-motor and
cognitive mechanisms underlying motor control during
real-world tasks in healthy and pathophysiological
conditions.14,21,66,124 This is indeed a prerequisite for
the design of novel, non-intrusive, and efficient neu-
roprosthetic tools for rehabilitation purposes. Yet,
classical paradigms to investigate human motor
behavior rely on simple tasks and often neglect to
appreciate the system-level interplay between percep-
tual and cognitive factors.

Whereas traditional imaging modalities typically al-
low for and record only minimal participant behavior
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performing single, stereotyped tasks, the high-time res-
olution and noninvasive nature of EEG make it the
ideal candidate for recording brain activity on the time
scale of natural motor behavior.65 Moreover, EEG
sensors are light enough to allow near complete freedom
of movement in contrast to most other imaging
modalities. The recently developedMoBI modalities60,98

deal with the main limitations of current brain imaging
techniques. The MoBI concept allows correlation of
neural and musculoskeletal activities during motor tasks
by simultaneously recording EEG while monitoring 3D
movements kinematics of the limbs, body, head, and
eyes, either in real environments59 or in 3-D multimodal
immersive virtual environments138,139 (Fig. 2). The
modular structure of the MoBI software environment
facilitates the development of new applications (Fig. 3)
and includes several tools allowing real-time inference
on brain signals such as those measured by
EEG.36,37,64,76 Among other things, this enables identi-
fication and localization of the neural sources from
brain EEG, muscles EMG and eye movements during
real world tasks.

High-density scalp EEG recording of PD patients,
while modulating STN activity with DBS, demon-
strated that potentially relevant biomarkers for thera-
peutic effectiveness can be recorded non-invasively.146

In this study, altering the output of the STN using
DBS helped normalize both the ability to inhibit an
action and beta power around the time of the response

inhibition recorded with EEG over the right frontal
cortex. Thus, cortical EEG in PD patients may serve as
one effective marker of the degree of abnormal basal
ganglia–cortical circuit function in PD.

Motion capture of body movements is equally
important to better characterize sensory-motor control
in healthy and pathophysiological conditions and
provides complementary information to EEG signals.
For example, the contribution of basal ganglia–thala-
mocortical circuits to sensory-motor control in PD can
be investigated indirectly by comparing the motor
control abilities of patients with or without dopamine
medication, and healthy individuals. Using a reach-to-
grasp task, Lukos et al.,94 quantified eye-hand coor-
dination and online visuomotor control in PD patients
by monitoring hand kinematics and eye movements
during the reaching and grasping of a virtual rectan-
gular object with haptic feedback (Fig. 4). PD patients
off medication poorly coordinated arm and hand
movements, and showed marked trajectory anomalies
in their online responses to perturbations of the object
to be grasped, with increased hesitations and move-
ment segmentation. Moreover, PD patients tracked
their hands with their gaze during the reach, and overly
depended on visual guidance, indicating an impaired
feedforward control. Dopamine medication increased
the speed of movement but did not improve the ability
to correct their movements online or improve arm-
hand coordination. This suggested that basal ganglia–

FIGURE 2. (a) MoBI setup for a participant on a treadmill and performing a visual oddball response task during standing, slow
walking and fast walking. (b) Grand-average event-related potentials (ERPs) during standing, slow and fast walking. The ERP time
course is represented in red for the target and blue for the non-target. Scalp maps show the grand-average ERP scalp distributions
at 100, 150 and 400 ms after onsets of target (upper row) and non-target (lower row) stimuli. White dots indicate the location of
electrode Pz. Note the scalp map similarities across conditions. Adapted from Gramann et al.59
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cortical loops play a critical role in eye-hand coordi-
nation and adaptive online responses for reach-to-
grasp movements, and that restoration of tonic levels
of dopamine in the basal ganglia may not be suited to
correct this impairment in PD patients.

The development of new wireless, dry, and non-
contact EEG biosensors23,25–27 (see review24) allows
one to use the MoBI methodology outside the labo-
ratory and the analysis of complex motor tasks
involved in real world environments. This would pro-
vide valuable data on the elements of sensory-motor
processing possibly most impaired in parkinsonism,153

and those elements that may most crucially depend
upon BG function and cannot be compensated for by
other brain systems. Wireless biosensors are also
invaluable for future wearable devices and at-home
rehabilitation. Progress has been made for analyzing
and visualizing EEG data in real-time for BMI sys-
tems.89 The feasibility of real-time estimation and 3D
visualization of source dynamics and connectivity of
human brain dynamics105 has recently been demon-
strated using wearable high-density (32–64 channels)
dry, wireless EEG systems. Specifically, custom wear-
able hardware and signal processing allowed the real-
time data extraction, preprocessing, artifact rejection,
source reconstruction, multivariate dynamical system
analysis (including spectral Granger causality) and 3D
visualization of distributed brain dynamics in healthy
subjects (Fig. 5). The wireless EEG system is reliable

and robust during the whole recording session. The cap
placement is assisted by a live impedance check mech-
anism that works in parallel with data acquisition. Ini-
tial placements usually take 5–6 min with 90–100% of
the array making successful contact (depending on head
shape and hair type). During an experiment, few, if any,
electrodes become disconnected since the headset is
individually adjustable and secured.

Thus, combining ongoing development of the MoBI
modality with the development of a new generation of
wireless sensors and improved real-time data process-
ing algorithms is expected to expand the range of
possible realistic sensorimotor tasks and lead to a
better characterization of the brain and body dynamics
underlying sensory-motor control.

Adaptive Control

Closed-loop BMI systems for noninvasive neuro-
logical rehabilitation should ideally provide better-
tailored therapeutics for patients. Gaining further
information about the ongoing patient’s states via
cognitive and motor monitoring would be beneficial in
several ways. From a design perspective, an adaptive
model learning to fit a given patient’s states would be
more efficient than heuristic adjustments and could
account for individual variability. Moreover, an
adaptive model will constantly adjust to a given patient
and the fluctuations of his/her pathophysiological

FIGURE 3. (a) Participants are wearing a motion capture suit with infrared (IR) emitters and a high-density EEG cap (128 chan-
nels), allowing to monitor simultaneously the body kinematics and brain dynamics, respectively, during a hand mirroring task (one
participant was instructed to follow the hand’s movement of another participant). The position of the IR emitters is captured at
480 Hz by 12 cameras in the room. (b) Identification and localization of functionally distinct sources by independent component
analysis (ICA) during a 3D object orienting task. The participant was cued to look forward, point to, or walk to and point to one of
several objects present in the room. ICA allowed to separate the EEG data into a number of temporally and functionally inde-
pendent sources from the brain and body that may then be localized (middle). Top left, an independent component (IC) source
localized to in or near left precentral gyrus (BA 6) shows a decrease of high-beta band activity following cues to point to objects on
the left or right. Bottom left, another right middle frontal (BA 6) IC source exhibits mean theta- and beta-band increases followed by
mu- and beta-band decreases during and after visual orienting to the left or right. Top right, an IC source accounting for activity in a
left neck muscle produces a burst of broadband EMG activity during left pointing movements and while maintaining a right
pointing stance. Bottom right, a right neck muscle IC source exhibits an EMG increase during right head turns and during
maintenance of left-looking head position. Data collected with a 256-channel EEG system. BA, Brodmann Area. Panel (b) modified
from Makeig et al.98
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condition. The proposed brain–machine–body inter-
face includes model-free5 (Fig. 1; upper loop) and
model-based (Fig. 1; lower loop) adaptive interfaces.

In BMI systems, patterns of ongoing brain activity
are typically translated into control commands after
several stages of signal processing. After amplification,
artifact removal, and signal preprocessing, the EEG
signal is transformed into features best matching the
underlying neurological mechanisms employed by
the user. In motor rehabilitation, this corresponds to

(a)

(b)

FIGURE 4. Eye-hand coordination and corrective response
control in PD during a reach-to-grasp task. (a) Experimental
setup using eye-tracking hardware, haptic robots, EEG and a
virtual reality environment. Participants reached to and
grasped a rectangular object displayed on the screen with the
thumb and index finger of their right hand fixed into thimble
gimbals affixed to the left and right robot, respectively. Par-
ticipants had haptic as well as visual feedback of the dock so
that they felt their hands resting on a solid surface. The ob-
ject’s orientation was perturbed on 33% of the trials by
rotating it 90 degrees in the frontal plane, thereby making the
object appear horizontal. The perturbation occurred at a ran-
domly jittered distance of 20–40% between the starting dock
and the front of the object. The goal of the task remained the
same regardless of the object orientation: to grasp along the
left and right sides of the object. Therefore, participants had
to adjust their grasp dynamically to a larger precision grip
during perturbation trials. (b) Top view of reach to grasping
movements in one representative PD patient on and off
medications (PD ON vs. PD OFF) and his/her age-matched
control. For the blocked vision conditions, visual feedback of
finger position was removed during the first ~2/3 of the reach,
as depicted by a dark gray line. The average peak aperture
(PA) and peak tangential velocity (PV) are marked along the
thumb and index finger for each of the representative subjects
during the unperturbed full vision condition. EEG data not
shown. Adapted from Lukos et al.94

FIGURE 5. 3D visualization of brain activity in real-time with
a wireless EEG headset. (a) Real-time data processing pipe-
line using a Cognionics 64-channel system with flexible active
dry electrodes, and the open source EEGLAB38 extensions
SIFT97 and BCILAB.5 (b) Temporal snapshot of online recon-
structed source networks with Partial Direct Coherence (PDC
estimator) displayed with the BrainMovie3D visualizer for
simulated data. Node size indicates outflow (net influence of a
source on all other sources). Cortical surface are colored
according to their AAL atlas label (90 regions). Adapted from
Mullen et al.105

Closed-Loop Brain–Machine–Body Interfaces 1583



the various cognitive and sensory-motor mechanisms
used during relearning a given motor task (e.g.,
pointing, reaching, grasping, walking). Relevant fea-
tures for BMIs using sensorimotor activity include
event-related potentials (ERPs), power spectral density
features (e.g., fluctuations in EEG power in a given
frequency band), parametric modeling of the EEG
data with autoregressive or adaptive autoregressive
models, and time–frequency representations.10 Others
have used the raw EEG time series12 or a combination
of different feature extraction methods.84,106 For
example, Li et al.,84 used ERPs and the EEG power in
the theta and alpha bands in the posterior parietal
cortex for decoding movement intention during a
saccade-or-reach task. The authors used independent
component analysis (ICA) as an unsupervised spatial
filtering technique to remove artifacts arising from eye
and muscle movements. This allowed them to estimate
the location of source activities related to the intended
movement direction by source localization of the two
lateralized posterior parietal cortex components ex-
tracted by ICA.

Following the feature extraction stage, patterns of
brain activity were then translated into control signals
using decoding algorithms. Various popular linear
methods such as linear discriminant analysis (LDA),
support vector machine (SVM), Kalman filters and
nonlinear models, such as neural networks, have been
used successfully in numerous BMI applications (see
review92).

Recent work has shown that the performance of
BMI control can significantly be improved by adapting
the decoding algorithm or decoder.32,55,83,97,111,131 In
these systems, adaptation takes place in the neural
systems and at the algorithmic level, and is referred to
as co-adaptive BMI or closed-loop decoder adaptation
(CLDA). The goal is to produce a more accurate
mapping between the ongoing pattern of brain activity
and the user intended movements. In invasive BMI in
monkeys, different error signals have been used to
adapt the decoding algorithms to include error signals
from the nucleus accumbens,97 by adopting of Bayes-
ian classification methods83 or use of behavioral met-
rics related to task goal.55 Critical issues in the design
of a CLDA algorithm concern the rate at which the
algorithm is updated and the way the decoder is ini-
tialized, as both can influence its performance. This is
particularly relevant for patients with movement dis-
orders, as natural movements are often used to ini-
tialize such decoders. For movement disorder patients,
less efficient decoder initialization methods must be
used, resulting in lower initial performance. Orsborn
et al.,111 proposed a CLDA algorithm that updates
parameters independently of decoder initialization,
thereby improving performance at optimal110 and

intermediate time-scales (1–2 min.) relative to online136

and batch56 (10–15 min.) updates. Their algorithm al-
lows a rapid and robust improvement of BMI perfor-
mance and suggests that intermediate time-scale
updates may be ideal for patients with movement dis-
orders.

Another possible level of adaptation uses kinematic
or kinetic information at the effector level99 by using
kinematic or kinetic information. By tuning control
parameters based on online measurement of the pa-
tient’s performance, this allows for adaptation to tune
assistance from trial to trial as well as over the course
of rehabilitation,78 during which performance is ex-
pected to improve. These adaptive strategies are usu-
ally implemented according to:

Piþ1 ¼ fPi � gei; ð1Þ

where Pi is the control parameter that is adapted (e.g.,
the gain of the robot assistance force, the robot stiff-
ness, the movement timing or the desired velocity), i is
the ith movement, and ei is the performance error or
metric, such as a measure of the patient’s ability to
reach a target. The constants f and g are defined as the
forgetting and gain factors respectively. The forgetting
factor f is meant to continuously engage and challenge
patients. Without a forgetting factor (i.e., when f = 1),
the control parameter is held constant when perfor-
mance error is zero. However, with a forgetting factor
in the range 0< f< 1, the adaptive algorithm reduces
the control parameter for small performance errors
and thus continuously challenges the patient. Other
similar adaptive laws43 have been proposed of the
form:

Giþ1 ¼ fGi þ gei; ð2Þ

where G is the value of the robot impedance. Still
others have used an optimization framework to adapt
control parameters.99

Neuronal and behavioral markers can drive adap-
tation in the brain–machine–body interface framework
and serve as error signals. Changes in oscillatory
activity in the sensorimotor cortex, especially in the
beta frequency band, can be used as biomarkers for
PD patients.87,118 Changes of oscillatory activity dur-
ing movement execution can easily be identified by
independent components analysis (ICA) (Fig. 3). At
the behavioral level, task-related markers will be used.
For example, during a reach-to-grasp task, the peak
tangential velocity is reduced in PD patients129 (Fig. 4)
and could be used as error signal at the effector level.
An alternative to unitary biomarkers would be to use a
learning algorithm to extract nonlinear multidimen-
sional personalized features from the patient’s EEG as
available for BMI in the BCILAB software37,76 (an
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extension of the EEGLAB software environment37).
Finally, incorporating cognitive monitoring based on
current BMI technology—an approach known as
passive BMIs164—could potentially add a comple-
mentary and informative channel useful for con-
structing biomarkers. Passive BMI carries implicit
information about the user state such as level of
motivation or attention, which might be useful, for
example, for tracking selective attention deficits in PD
patients.165

Sensory Feedback

In rehabilitation, one typically provides extrinsic (or
augmented) feedback in addition to intrinsic feed-
back—e.g. in the form of sensory-perceptual infor-
mation available from various sensory modalities such
as vision, audition and proprioception. The effective-
ness of augmented sensory feedback strategies for
motor learning in healthy subjects and motor relearn-
ing in rehabilitation, such as augmenting propriocep-
tive signals from the hemiparetic arm after stroke, have
recently been systematically and exhaustively
reviewed,104,137 including categorization of different
aspects and types of feedback. Aspects of feedback
include its nature, timing and frequency. Feedback
nature refers to information about the movement itself,
which can either provide knowledge about movement
performance or about movement outcome. Movement
timing refers to the time when the feedback is deliv-
ered, either (concurrent) during or (terminal) after the
execution of movements. The frequency can be sum-
mary (every nth trial) or fading (reduced feedback
frequency over time). The type of feedback concerns
the modality to which it is delivered (visual, auditory,
haptic and multimodal). Because most studies of mo-
tor learning and relearning use various aspects and
types (or combinations) of augmented feedback and do
not systematically compare their individual contribu-
tions, it is difficult to have a clear picture of their
singular effectiveness. However, several trends are
emerging. First, there is a general consensus appearing
on the added value of augmented feedback for reha-
bilitation104,137,162 Second, concurrent visual, auditory
and haptic (touch and force) feedback seems more
effective for complex tasks than for single tasks, but
should be switched to fading feedback as learning (or
relearning) progresses. The switch is explained by the
guidance hypothesis,130,134 which states that invariably
providing feedback during learning leads to a depen-
dency on the feedback and encourages the learner to
ignore their own intrinsic feedback signals. Third,
adaptive feedback based on the subject’s skill level
appears promising to potentially involve and motivate
the learner by adequately challenging the user, which is

important for successful motor learning61 and
relearning.162 Finally, multimodal feedback can en-
hance motor learning and relearning. This conclusion
is supported by several observations including the
resultant reduction of memory and cognitive load,112

the optimization of neural activation and representa-
tions,137 the fact that multimodal rather than unimodal
stimuli are present in daily life, and the differential
capabilities of the human senses—e.g. spatial infor-
mation is better perceived using vision whereas tem-
poral information is better perceived using hearing.
Within the context of BMI control, multimodal feed-
back has been shown to significantly improve perfor-
mance.143,144 For example, monkeys trained to move
an exoskeletal robot during a random target pursuit
task reached targets faster and with better trajectories
when visual and kinesthetic feedback were congruent
compared with incongruent feedback conditions.143

The haptic sense is the only one that allows one to
interact with the environment while simultaneously
perceiving these interactions.102 This unique ability is
called the bidirectional property of the haptic sense and
provides the basis for further enhancing motor learn-
ing and relearning through haptic interactions.62 Thus,
rehabilitation in movement disorders might greatly
benefit from augmented haptic feedback. Preliminary
experiments have been carried out using a noninvasive
closed-loop system (model-free; upper closed-loop in
Fig. 1) with EEG, EMG, movement kinetics and force
feedback modalities to test the feasibility of compen-
sating tremor in PD patients using velocity-dependent
force feedback.58 Force feedback was implemented
using two haptic robots with three degrees of freedom
attached to the thumb and index fingers of one pa-
tient’s hand. Four different force feedback conditions
were tested: (i) a no-force control mode (haptic robots
compensated for their own weight), (ii) a ‘‘low vis-
cosity’’ mode (counterforce to movement proportional
to the velocity), (iii) a ‘‘high viscosity’’ mode (greater
counterforce’s scaling coefficient) and (iv) a random
noise mode (force with a constant magnitude but
random direction). In these experiments, 60-channel
EEG, EMG of the fingers and arm, and kinematics of
the arm, shoulder and chest were also recorded
simultaneously. Analysis of the EMG-EEG coherence
revealed that a reduction of tremor amplitude was
observed only in the ‘‘high viscosity’’ mode. These re-
sults suggest that, similarly to brain signals, kinematic
signals can also be used as feedback channels in closed-
loop paradigms for PD patients.

It is likely that different combinations of feedback
modalities may work better for different motor
relearning tasks. Rehabilitation of the upper limbs
might benefit from visual and haptic feedback, whereas
gait rehabilitation might better benefit from auditory
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and haptic feedback. Augmented haptic feedback can
easily be integrated into the brain–machine–body
interface framework using haptic or exoskeletal robots.
In future work, we plan to test which optimal multi-
modal feedback combination leads to optimal motor
relearning during rehabilitation of upper and lower
extremity movements in PD patients.

FUTURE DEVELOPMENTS

From Spikes to Behavior

Using a bottom-up perspective, detailed large-scale
spiking neuron network models of the BG based clo-
sely on known anatomy and physiology could also be
implemented on neuromorphic hardware. Similarly to
the cortical organization of mammalian brains, these
models should be hierarchical, modular, and map
sensory and motor plan states to motor output. The
design of several modules will take inspiration of
computational models of action gating29 and action
selection.11 Data from healthy and PD patients, on and
off dopaminergic medication, will also provide con-
straints to the design of these BG models that will be
used to test and verify hypotheses of action selection
and sensory-motor learning and control. This
approach is motivated by the recent efforts in PD
research to integrate model-based control in closed-
loop systems1,86,103 (for a review, see Schiff133). Bio-
logically based computational models of brain activity
can improve our understanding of distributed brain
networks in healthy and disease conditions, and should
be considered as a complementary tool of experimental
approaches for monitoring and regulating the time-
varying fluctuations of network activity.

Networks of spiking neurons lead to efficient
implementation in neuromorphic hardware.13,63,101

Moreover, biological realism in the modeling and a
choice of neuromorphic architecture ensures that these
models lead to architectures that utilize current and
future massively parallel neuromorphic chip technol-
ogies57,135,155 that can be deployed in real-world
applications30,81,100 with a very low power consump-
tion.35,156 Moreover, neuromorphic architectures pro-
vide a natural medium to bridge spiking activity in BG
models with the synchronous LFP-like activity
recorded by surface EEG. The estimation of the LFP
dynamics from spiking activity can be achieved by
combining constraints from simultaneous recording of
cortical oscillation and basal ganglia activity54 with
methods from signal estimation theory,119 such as the
Wiener–Kolmogorov filter. In the Macaque monkey
primary visual cortex, this linear filter was successfully
used to estimate the LFP time course from the spiking

activity of a few neurons.122 Neural mass models are
another promising approach to bridge the different
spatiotemporal scales of neural activity,33 i.e., from
spiking activity to cortical fields. Thus, these larger-
scale network implementations in neuromorphic
hardware make it feasible soon to reach spatial and
temporal scales of interest to the top-down perspective,
where both top-down and bottom-up perspectives
meet.

Closed-Loop Systems for Other Movement Disorders

Among the myriad neurologic disorders, dystonia
may be one of the best suited for investigating closed-
loop therapeutic interventions for at least two com-
pelling reasons: (1) it exhibits exquisite task-specificity;
and (2) the most common brain structure targeted in
DBS intervention for dystonia, the globus pallidus
interna (GPi), is one of the primary output nuclei of
the basal ganglia and therefore in a direct position to
modulate somatotopically-specific action selection.
After PD and ET, dystonia is the third most common
movement disorder. The clinical definition of dystonia
has evolved over the past few decades and a recent
consensus definition has only recently emerged.2 Dys-
tonia is characterized by sustained or intermittent
muscle contractions causing abnormal, often repeti-
tive, movements and postures. The movements are
typically patterned and often initiated or worsened by
voluntary action. For many dystonia patients, the
abnormal motor function is present only during spe-
cific tasks. In fact, in one expert’s view,51 this feature is
specific to dystonia. This ‘‘task-specificity’’ is clearly
evident in the so-called ‘‘focal task-specific’’ dystonias,
including for example writer’s cramp and musician’s
dystonia. For many musician dystonia patients, the
symptoms are present only while playing their instru-
ment and sometimes only when playing specific pas-
sages of specific musical pieces.152 This makes the
measurement of abnormal motor control particularly
challenging.114 Although this task-specificity is most
vivid in these kinds of dystonia, a wider class of dy-
stonias exhibit a more broadly defined ‘‘state depen-
dence,’’ in which ‘‘state’’ is defined to encompass not
only the motor program used in a specific task but also
the current sensory and motor goal state. For example,
a simple light touch of the chin may be sufficient for
mitigating the abnormal neck muscle activity impli-
cated in cervical dystonia. While not a ‘‘task,’’ this
change in ‘‘state’’ suggests that a state-dependent
intervention can be useful.

For most of the focal dystonias, the main line
treatments of anticholinergics and botulinum toxin
injections are not, of course, state- or task-specific. One
might envision, then, a real-time, on-line, closed-loop
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therapy (such as DBS or the noninvasive rTMS, tDCS
and tACS) that would modulate the appropriate brain
networks only during specific states. The question then
becomes how best to monitor states. While it may be
opportunistic to think that it could be acquired by
recording leads in a single-shaft DBS system, the brain
structures best suited for modulation by the stimulat-
ing DBS leads may not also incorporate the best
information about ‘‘state.’’ One might posit, however,
that premotor and/or posterior parietal cortical areas
contain more easily measurable ‘‘state’’ information
that could then be used to modulate circuits including
the GPi that mediate state-dependent action selection.
Here again, dystonia may provide an ideal clinical
scenario in which to develop closed-loop therapeutic
approaches. The STN, the most common choice of
DBS target for PD, has widespread projections pri-
marily within the basal ganglia. In contrast, the GPi,
the most common DBS target for dystonia, is a
prominent output stage of the BG and therefore has
more direct influence on subsequent action selection
and the resultant motor outputs. Ultimately, in light of
theories about the ‘‘use-dependent’’ factors in its
pathogenesis,115 the investigation of closed-loop ther-
apies for dystonia may also provide novel clues about
the pathophysiology of this perplexing disorder.

CONCLUSION

Closed-loop paradigms for BMIs represent a
promising avenue of research for the invasive and
noninvasive neurological rehabilitation of movement
disorders. They allow monitoring and tightly regulat-
ing the brain dynamics and/or body movements of
patients suffering from these disorders, in particular
PD. Their adaptive power has improved traditional
DBS protocols in monkeys and humans and showed
encouraging progress towards an augmented-reality
device helping to restore gait. Adaptive closed-loop
paradigms have the flexibility required to cope with the
progressive and/or dynamic nature of movement dis-
orders such as PD, dystonia and ET, and provide a
transformative way toward individually tailored reha-
bilitative therapeutics. Recent results of testing BMIs
for people with tetraplegia72 indicate that closed-loop
systems are not limited to the rehabilitation of PD
patients.

So far, most of the closed-loop BMIs act mainly on
brain signals and largely ignore the body, which is
however central to movement disorders. Moreover, as
current invasive solutions for neurological rehabilitation
are limited to a minority of patients suffering from
movement disorders, there is an urgent need for further
research for alternative solutions, particularly regarding

noninvasive BMI approaches. With these limitations in
mind, an integrated framework was presented. In this
conception, a brain–machine–body interface (BMBI)
senses signals from the brain and body and acts on the
body to exploit the adaptive plastic sensory-motor
loops, thereby assisting restoration of motor functions
in patients with PD. This framework is versatile and
flexible and could be applied to other imaging or stim-
ulation modalities. For example, one could envision
replacing the force feedback with a noninvasive tech-
nique for stimulating motor cortex using rTMS, tDCS
or tACS. Finally, it is likely that incorporating the
physician/clinician in the loop in rehabilitative solutions
will add more flexibility to many therapeutic systems,
especially those targeting at-home use, by allowing a
continuous adaptation and optimal adjustments of the
parameters and therapeutic strategies in place to cope
with the progression and fluctuations of movement
disorders, and to further approach individualized ther-
apies. The continuous monitoring of progress (or lack
thereof) for a given therapy, and consequent adapta-
tion, appears to be a prerequisite for dealing with the
inherent variability of patients and the different degrees
of severity of neurological disorders affecting body
movements.

With the increase of the aging population, and
consequently of the incidence of movement disorders,
there is a societal demand for improving the quality of
life of patients with movement disorders, as well as an
economical need to reduce the overall costs related to
health care. With the development of cheap, mobile,
wireless BMI solutions in the near future, we can ex-
pect innovative and adaptive solutions for personalized
neurological rehabilitation that take into account the
individual variability of patients as well as the vari-
ability of movement disorders’ symptoms and disease’s
degree of severity.
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