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Brain network dynamics codify heterogeneity 
in seizure evolution
Nuttida Rungratsameetaweemana,1,2,3 Claudia Lainscsek,2,4 Sydney S. Cash,5  

Javier O. Garcia,1 Terrence J. Sejnowski2,4,6,* and Kanika Bansal1,7,*

* These authors contributed equally to this work.

Dynamic functional brain connectivity facilitates adaptive cognition and behaviour. Abnormal alterations within such connectivity 
could result in disrupted functions observed across various neurological conditions. As one of the most common neurological disor
ders, epilepsy is defined by the seemingly random occurrence of spontaneous seizures. A central but unresolved question concerns the 
mechanisms by which extraordinarily diverse propagation dynamics of seizures emerge. Here, we applied a graph-theoretical ap
proach to assess dynamic reconfigurations in the functional brain connectivity before, during and after seizures that display hetero
geneous propagation patterns despite sharing similar cortical onsets. We computed time-varying functional brain connectivity 
networks from human intracranial recordings of 67 seizures (across 14 patients) that had a focal origin—49 of these focal seizures 
remained focal and 18 underwent a bilateral spread (focal to bilateral tonic-clonic seizures). We utilized functional connectivity net
works estimated from interictal periods across patients as control. Our results characterize network features that quantify the under
lying functional dynamics associated with the observed heterogeneity of seizure propagation across these two types of focal seizures. 
Decoding these network features demonstrate that bilateral propagation of seizure activity is an outcome of the imbalance of global 
integration and segregation in the brain prior to seizure onset. We show that there exist intrinsic network signatures preceding seizure 
onset that are associated with the extent to which an impending seizure will propagate throughout the brain (i.e. staying within one 
hemisphere versus spreading transcallosally). Additionally, these features characterize an increase in segregation and a decrease in ex
citability within the brain network (i.e. high modularity and low spectral radius). Importantly, seizure-type-specific differences in these 
features emerge several minutes prior to seizure onset, suggesting the potential utility of such measures in intervention strategies. 
Finally, our results reveal network characteristics after the onset that are unique to the propagation mechanisms of two most common 
focal seizure subtypes, indicative of distinct reconfiguration processes that may assist termination of each seizure type. Together, our 
findings provide insights into the relationship between the temporal evolution of seizure activity and the underlying functional con
nectivity dynamics. These results offer exciting avenues where graph-theoretical measures could potentially guide personalized clinical 
interventions for epilepsy and other neurological disorders in which extensive heterogeneity is observed across subtypes as well as 
across and within individual patients.
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Network-based analysis of brain activity in epilepsy patients differentiates focal seizures 
that lead to drastically different propagation patterns

Introduction
As one of the most common neurological disorders with 
roughly 50 million cases world-wide, epilepsy is character
ized by its emerging spontaneous seizure activity.1,2

Critically, one-third of the patients do not respond to medica
tions and rely on alternative interventions (e.g. surgical and 
neuromodulatory).3-5 However, seizures are remarkably di
verse, and tailoring effective treatment strategies remain a 
substantial challenge at least partially due to the temporal 
spontaneity and lack of objective frameworks that could 
characterize the onset and propagation patterns of an im
pending seizure.6,7 Traditionally, the variability across sei
zures has been categorized based on the onset regions: focal 
seizures originate from a localized region within one hemi
sphere while generalized seizures begin simultaneously 

from both hemispheres. A variety of computational techni
ques from network science and dynamical systems have 
been employed to better localize the onset regions and thus 
improve the precision with which focal and generalized sei
zures can be identified.8-10 However, localizing onset regions 
does not fully capture the breadth of dynamics and inherent 
diversity associated with seizure subtypes. Adding to this 
complexity, once generated, a focal seizure can remain loca
lized within the same hemisphere (i.e. focal seizures that re
main focal) or propagate to the other hemisphere (i.e. focal 
to bilateral tonic-clonic seizures or focal seizures with bilat
eral spread).11-13 Notably, a single patient may experience 
both of these focal seizure subtypes (Fig. 1), where the sei
zures that spread bilaterally generally lead to more severe be
havioural and cognitive deficits that could require several 
minutes to hours for patients to recover. However, the 
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distinct propagation dynamics exhibited by different seizure 
types are largely ignored by traditional intervention ap
proaches and it remains unknown if the mechanisms under
lying the bilateral spread of focal seizure activity differ from 
those associated with focal seizures that remain localized. 
Critically, the field currently lacks an objective analytical 
framework that can be utilized to investigate, understand 
and predict the heterogeneity associated with propagation 
dynamics of seizure activity. Objective biomarkers that can 
identify whether or not an impending seizure will spread bi
laterally could allow clinicians to implement an appropriate 
intervention strategy, thereby minimizing the severity of ad
verse cognitive impacts.

For the past several years, epilepsy has more frequently been 
viewed as a manifestation of network reorganizations and not 
just hypersynchrony, and a graph-theoretical framework in 
which brain dynamics is visualized as temporally evolving 
graphs or networks composed of nodes and edges that re
present brain regions and their pairwise associations, 
respectively,14-16 has been useful in quantifying and under
standing these network reorganizations.17-19 Here, we demon
strate that the long-standing challenges associated with the 
heterogeneity observed across subtypes of epileptic seizures 
can also be addressed through the lens of graph theory. This 
approach relies on a complex systems view of the brain where 
a single brain region interacts with many others and collective
ly, these interactions give rise to a wide variety of functional 
connectivity patterns underlying our adaptive cognitive abil
ities and subsequent behaviour. Investigating the temporal 
evolution of such connectivity patterns, within a graph theor
etical framework, has provided better insight into the emer
gence of neural properties such as specialization and 
efficiency of information processing, learning and aging18,20-24

and has applications in clinical neuroscience for the potential 
to establish biomarkers of disease onset and progression.

Our study is built upon the idea that the manner in which 
functional brain connectivity networks reconfigure over 
time may carry information concerning the emergent seizure 
dynamics and cognitive behaviours that are unique to the 
underlying neurological processes. Consequently, we probed 
the time-varying changes within functional connectivity net
works derived from multiple hours of electrocorticogram 
(ECoG) recordings across 14 patients as they experienced fo
cal seizures that remain focal or focal to bilateral tonic-clonic 
seizures. With this analytical framework, we aimed to gain in
sight into how the unique heterogenous dynamic properties 
associated with different seizure types develop and unfold in 
the brain. Our results uncover key network features that char
acterize the different neural dynamics associated with each 
type of focal seizures. Further, our findings demonstrate that 
the emergence of different propagation patterns is an outcome 
of unique network-level changes and distinct mechanisms that 
regulate the extent of synchronization within the brain.

Materials and methods
Patient information and data 
acquisition
The seizures analysed in this study were recorded from 14 
patients with medication-refractory epilepsy (Table 1) who 
underwent a clinical monitoring procedure to locate their 
seizure onset zone. Clinical electrode implantation, position
ing, duration of recordings and medication schedules were 
based solely on clinical need as determined by an 

Figure 1 Emergence of distinct seizure propagation patterns in a single patient. (A) During a clinical monitoring procedure to identify 
a seizure onset zone of patients with medication-refractory (drug-resistant) epilepsy, intracranial recording electrodes are implanted. (B) 
Intracranial activity during two sample seizures recorded from a single patient, which exhibit distinct propagation dynamics. On the left, the seizure 
activity originates from a few electrodes and persists in the localized area within a single hemisphere (i.e. focal seizure that remains focal). On the 
right, the seizure activity originates from a few electrodes but diffuses bilaterally to involve electrodes in both hemispheres. This type of seizure is 
known as focal to bilateral tonic-clonic seizure or focal seizure with bilateral spread. Despite their similarly focal origin, these seizure types induce 
drastically differential clinical manifestations such that focal to bilateral tonic-clonic seizures are associated with more severe cognitive and 
behavioural deficits. We hypothesize that such heterogeneity in seizure dynamics emerges from distinct and measurable temporal alterations in 
the functional brain connectivity networks.
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independent team of clinicians. As indicated in Table 1, sei
zures analysed in this study were of two types: (i) focal 
seizures that remain focal and (ii) focal to bilateral tonic- 
clonic seizures (or focal seizures with bilateral spread). 
Patients were implanted with intracranial subdural grids, 
strips and depth electrodes for several days in a specialized 
hospital setting and continuous multichannel ECoG data 
were recorded at a sampling rate of 500 Hz.

Only seizures with an obvious ictal onset were selected for 
analysis. Experienced epileptologists, blind to this study, iden
tified the seizure onset regions, seizure types and onset time 
through inspection of the ECoG recordings, referral to the clin
ical report and clinical manifestations recorded on video. A to
tal of 67 seizures (49 focal seizures that remain focal and 18 
focal to bilateral tonic-clonic seizures) were analysed. We 
note that multiple seizures from the same patients were treated 
as independent (see similar methods in Martinet et al.4).

Ethics statement
All patients were enrolled after informed consent was ob
tained and approval was granted by local Institutional 
Review Boards at Massachusetts General Hospital according 
to National Institutes of Health guidelines.

Data preprocessing
For each of the seizures, we considered ECoG data of the 
duration of 15 min before and 10 min after the seizure onset. 

Each of these 25 min data segments contained only one seiz
ure. For comparison with relatively ‘seizure-free’ (interictal) 
activity, we extracted an equal number of interictal activity 
epochs with the same duration (i.e. 67 interictal epochs). 
Interictal epochs were selected from ECoG recordings at 
least an hour away from the onset and offset of any seizure. 
Specifically, for each of the 67 seizures (49 focal and 18 focal 
to bilateral tonic-clonic) from which we extracted a 25 min 
segment (from 15 min before to 10 min after the onset), we 
also epoched a 25 min segment of data that were at least 
60 min away from the seizure onset and offset. The data 
were band-pass filtered between 1 and 70 Hz, and notch fil
tered at 60 Hz to exclude potential powerline interference.

Prewhitening was then performed using a first-order auto
regressive model to account for slow dynamics and correct for 
autocorrelation in the time series signals.25-28 A common ref
erence was used for data analysis and the reference electrode 
in each case was located far from the area of recording making 
the introduction of spurious correlation or elimination of ac
tual correlation between cortical regions unlikely.29

Functional connectivity networks
To evaluate functional connectivity representations asso
ciated with the temporal evolution of seizures, we employed 
a time-evolving network analysis. Here, we constructed 
time-varying functional connectivity networks of focal sei
zures and interictal activity where the inter-electrode rela
tionships were represented by network edges and the 

Table 1 Patient profiles

Patient Sex
Age at onset/

Aetiology Seizure type (#)
Seizure onset

Electrode type (#) Resection areas Outcomesurgery zone

1 F 15/46 Dysplasia Focal to bilateral (5) Anterior Depths/grids (113) Right I
temporal Anterior temporal

2 F 42/55 n.a. Focal to bilateral (3) Temporal Depths (56) None I
3 F 17/45 n.a. Focal (1) Temporal Depths (40) None n.a.

Focal to bilateral (2)
4 M 8/23 n.a. Focal (10) Frontal Depths (80) None III
5 M 14/35 n.a. Focal (9); Temporal Depths (80) Right n.a

Focal to bilateral (2) Anterior temporal
6 F 12/32 n.a. Focal (15) Temporal Depths (112) Right II

Anterior temporal
7 F 7/23 n.a. Focal (6) Frontal Depths (80) Left frontal IV
8 F 10/27 n.a. Focal (1) Unknown Depths (80) Left frontal IV
9 F 8/19 MTS Focal (1) Anterior Grids (60) Left III

temporal Anterior temporal
10 F 14/31 n.a. Focal to bilateral (2) Temporal Depths (48) Right I

Anterior temporal
11 F 1/21 Stroke Focal (2) Temporal Depths (118) Left temporal IV
12 F 9/42 n.a. Focal (2) Frontal Depths (76) None II
13 M 39/47 n.a. Focal to bilateral (3) Posterior Depths (48) Right temporal I

Temporal
14 F 50/59 n.a. Focal (2) Posterior Depths (80) Left temporal I

Focal to bilateral (1) Temporal

Clinical characteristics of the patients. For each patient, we report sex, age at first reported seizures onset, as well as age at the monitoring phase and surgery. We also report the 
seizure aetiology, which was clinically determined through medical history, imaging and long-term invasive monitoring. Additionally, we indicate the number of observed seizures 
associated with the two different types of seizures which originated from one hemisphere: focal seizures that remained localized within the same hemisphere (focal seizure; focal) and 
focal seizures that propagate bilaterally to both hemispheres (focal to bilateral tonic-clonic seizure; focal to bilateral). Surgical outcome (outcome) was based on Engel score: seizure 
freedom to no improvement (I–V), and no follow-up (NF). M, male; F, female; MTS, mesial temporal sclerosis; n.a., not applicable.
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electrodes themselves were represented by nodes in the corre
sponding networks of seizures and interictal activity 
(Fig. 2A–D).

Specifically, we computed symmetric functional connect
ivity Aij between two regions of the brain i and j as an aver
aged correlation of the neural signals recorded by the 
intracranial electrode contacts of those regions. To extract 
(at least approximately) the stationary aspects of ECoG 
data, we divided each of the 25 min ECoG data segments 
into consecutive 1 s windows, where each window over
lapped the previous window by 0.5 s.30,31 The correlation 
was calculated within each of these 1 s segments. To account 
for noise, we applied a temporal smoothing to these correl
ation values by averaging consecutive 30 s windows such 

that a total of 98 correlation values representing the func
tional connectivity of 98 temporal windows were generated 
from each 25 min ECoG data segment. Note that different 
temporal smoothing parameters can be used without affect
ing the overall patterns of results, although a value too large 
may reduce the temporal precision of the observations 
(Supplementary Fig. 1).

All correlation values were bounded between −1 and +1. 
Negative correlation values were then set to zero following 
traditional modelling choices adopted in previous studies3,32

examining simulation of the epileptogenic effect. Temporal 
evolution of these correlations or connectivity matrices re
flects the time-varying dynamics of the functional brain net
works as recorded through the ECoG measurements.

0

1

...

ECoG data

E
le

ct
ro

de

ElectrodeTime

E
le

ct
ro

de

1
2

n

. . .

...

Connectivity matrixB

C

Elec
tro

de

Electrode
1 2 T

C
onnection strength

A

D Electrode
Connection strength

Time windows

Time windows

Figure 2 Schematic of graph-theoretical analysis of functional brain dynamics. (A) Locations of implanted intracranial electrodes of a 
sample patient. (B) We use electrocorticography (ECoG) time-series data from all intracranial electrodes from each patient recorded during a 
clinical monitoring procedure to locate the seizure onset zone. We estimate the instantaneous functional connectivity of the underlying brain 
network by computing pairwise correlations of ECoG data across electrodes in a sliding-window manner. The magnitudes of these correlations 
(restricted between 0 and 1) reflect the strength of connections between each pair of electrodes and are represented by a weighted adjacency or 
connectivity matrix (see Materials and methods). (C) To investigate time-varying changes in the functional brain connectivity during temporal 
evolution of each seizure type, we compute a series of connectivity matrices over time and use these as bases to construct functional connectivity 
networks. (D) A schematic of sample constructed networks, consisting of nodes (electrodes) and edges (connection strength). To quantify 
alterations within these complex networks over time, we evaluate changes of a series of graph-theoretical attributes which describe globally and 
locally defined properties of the constructed networks.
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Graph-theoretical network analysis
For each of the seizures (49 focal and 18 focal to bilateral 
tonic-clonic) and interictal activity (67 epochs), we con
structed a series of weighted, symmetric (undirected) con
nectivity matrices A representing functional correlations 
across all recording electrodes. From these network matrices, 
we computed a series of graph network measures (described 
below) as a function of seizure types to quantify changes in 
network dynamics associated with evolution of focal seizures 
with constrained (focal seizure that remain focal) and uncon
strained propagation mechanisms (focal to bilateral tonic- 
clonic seizures). We focused our analyses on complex 
network measures that are sensitive not only to the overall 
extent of connectivity within a network (i.e. density; see be
low), but also to the relative distribution of connectivity 
weights within the network which reconfigure to enable vari
ous neurophysiological processes. Investigating and quanti
fying these network reconfigurations as a function of 
seizure types allows for a better understanding of the under
lying processes that govern the bilateral spread of a focal 
seizure. We used various Brain Connectivity Toolbox func
tions implemented in MATLAB (R2020; MathWorks) for 
our computation of these network features unless noted 
otherwise.

Network density
Network density describes the extent of connectedness in a 
network. Seizures have been shown to alter the synchroniza
tion, and therefore, overall connectivity and density of the 
functional network. In a binary network, where the elements 
of connectivity matrix are either 1, for a link between the 
nodes, or 0, for absence of a link, the density is calculated 
as the ratio of actual and possible connections. A density 
of 1 describes a fully connected network and a density of 0 
describes no connectivity. In a weighted network, if many 
weak connections are binarized, the density of the network 
can become misleadingly high. Therefore, we calculated 
weighted network density as the ratio of total edge weights 
and number of possible edges. For a functional connectivity, 
matrix A representing an undirected network with N nodes, 
the total number of possible edges is N(N − 1)/2 and the total 
edge weight is the sum of the elements in the upper triangle of 
the connectivity matrix. Similar methods have previously 
been used to evaluate and successfully capture the degree 
of connectedness in a range of real-world brain networks 
across species (i.e. humans, macaques, cats and 
Caenorhabditis elegans).33

Networks with different density (and/or size) can have dif
ferent network features.34 Therefore, we compared network 
density across individual patients during interictal period to 
ensure that our findings are truly driven by the underlying 
changes in the functional connectivity as a function of 
seizure types and are free of spurious results due to different 
network sizes and densities across patients (Supplementary 
Fig. 2).

Clustering coefficient
Clustering coefficient (CC) is a measure of local cliquishness 
of a network and has been used to describe the segregation of 
information in brain networks. While a high CC has been 
reported to characterize the ictal phase for temporal lobe epi
lepsy patients,35 the role of CC in differentiating constrained 
and unconstrained seizure dynamics is not well understood. 
The CC is calculated as the ratio between the number of tri
angles present around a node and the maximum number of 
triangles that could possibly be formed around that 
node.36,37 For a given Node X and any other two Nodes Y 
and Z within the network, a triangle around X represents a 
scenario where X, Y and Z, all have a connectivity value of 
one with one another. We used the Brain Connectivity 
Toolbox function clustering_coef_wu for the calculation of 
CC.

Characteristic path length
Characteristic path length (PL) describes the averaged shortest 
PL between all pairs of nodes in a network and has been asso
ciated with the brain’s ability to integrate information. The 
shortest PL between a pair of network nodes represents the 
shortest route between them through a combination of net
work edges. We calculated characteristic PL using the Brain 
Connectivity Toolbox function charpath.38 Both CC and char
acteristic PL are used to assess if a network is more ‘regular’ 
(only nearest neighbour connections) or ‘random’ in its con
nectivity. Regular networks have high clustering and long 
PL, whereas random networks have low clustering and short 
PL. Typically, brain networks exhibit a small-world architec
ture which is characterized by a combination of dense local 
clustering of connections between neighbouring nodes (like 
regular networks) and a short PL between distant node pairs 
due to the existence of relatively few long-range connections 
(like random networks).14,15,18,39

Assortativity
Assortativity measures the propensity of nodes to connect to 
others with similar degree and is calculated as a correlation 
between the degrees of all the nodes.40 A positive assortativ
ity value indicates that nodes tend to link to other nodes with 
similar degree, whereas a negative value indicates connected 
nodes with dissimilar degree. Networks with high assortativ
ity tend to make a highly connected core of network hubs. 
Functional brain networks have been shown to display 
such an architecture with highly connected hub regions or 
core surrounded by low-connectivity peripheral nodes.41,42

Assortativity quantifies network robustness as a removal or 
failure of a single high-degree node would induce greater im
pact on communication efficiency of a network with low as
sortativity than on a network with high assortativity. We 
calculated assortativity using the Brain Connectivity 
Toolbox function assortativity_wei.38
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Modularity
Modularity describes the extent to which a graph can be di
vided into clearly separated communities (i.e. subgraphs or 
modules). Each module contains several interconnected 
nodes, and there are relatively few connections between 
nodes of different modules. In the context of brain networks, 
modularity has been used to describe and quantify efficient 
integration and segregation of information across distribu
ted sets of brain regions as a function of cognitive task de
mands.43,44 Mathematically, the modularity metric (Q) 
represents the number of edges falling within modules minus 
the expected number in an equivalent network with edges 
placed at random. It is estimated as follows:

Q =
1

2m

􏽘

ij

Aij − γ
kikj

2m

􏼒 􏼓

δ(ci, cj), 

where Aij represents the connectivity between Nodes i and j, 
ki represents the degree of the Node i, m represents the total 
number of edges in the network, γ represents a resolution 
parameter and δ(ci, cj) equals 1 if Nodes i and j are in the 
same community, and equals 0 otherwise.45 Here, to detect 
modules and obtain a value of modularity for functional 
brain networks, we used the spectral approach described 
by Newman and implemented it through Brain 
Connectivity Toolbox function modularity_und.45,46 The 
resolution parameter γ was chosen to be 1.

Spectral radius
Spectral radius is a global measure of network structure that 
is related to the spread of activity in a network.23,47,48

Computed as the largest eigenvalue of the connectivity ma
trix (A), spectral radius reflects the critical coupling strength 
required to synchronize the system.49 As such, spectral ra
dius represents the principal component of the system and 
contains information about structural characteristics as 
well as dynamical behaviour and stability of the underlying 
network.50-52 In the network based models of brain dynam
ics, spectral radius has been associated with the ease with 
which the system can be transitioned into an excited state.23

Synchronizability
Synchronizability relates to the viability of synchronized dy
namics within a network. Particularly in the context of epi
lepsy, relatively larger value of synchronizability has been 
associated with greater ease for neural populations to syn
chronize their dynamics.24 Synchronizability is sensitive 
not only to the overall connectivity or density of a network 
but also to the relative distribution of edge weights across 
network nodes.53 Here, we leveraged the measure of syn
chronizability to assess network reconfigurations that may 
happen around the onset of different seizure types. 
Synchronizability (S) is calculated as the ratio of the second 
smallest and the largest eigenvalue of the Laplacian matrix 

(L), which is computed as the difference between the diag
onal matrix of node strength (total degree) and the adjacency 
matrix such that L = D–A. Thus, synchronizability estimates 
the spread of the eigenvalues of the network Laplacian and is 
computed as S = λL

2/λ
L
max, where λL

2 and λL
max denote the se

cond smallest and the largest eigenvalue of L, respectively.

Statistical analysis
Given the diverse nature of seizure activity and the patient- 
specific procedures by which the placement and number of 
ECoG electrodes is determined, the recorded signals asso
ciated with individual seizures are inherently variable. It is 
well-documented that even within a single patient, different 
occurrences of seizure activity can vary in their durations, 
phases and latencies of spread.8,11,54 To account for such 
variability across individual seizures and to minimize statis
tical biases that could arise, for each network feature we used 
a bootstrapping procedure55 to generate estimates of the 
mean and 95% confidence intervals (CIs), and made compar
isons across seizure types in a time resolved manner. To per
form these comparisons, we employed a rigorous statistical 
analysis as described in the following.

First, for each network measure and for each time point, 
we resampled with replacement at the level of individual sei
zures 10 000 times. Through these bootstrapping iterations, 
we generated an empirical estimate of the variability asso
ciated with each network measure of each seizure type over 
time (e.g. a bootstrapped distribution of the CC associated 
with focal seizures that remain focal, a bootstrapped distribu
tion of the CC associated with focal to bilateral tonic-clonic 
seizures, and a bootstrapped distribution of the CC asso
ciated with interictal activity). Next, to compare a particular 
network feature between conditions (e.g. focal seizures that 
remain focal versus focal to bilateral tonic-clonic seizures), 
we calculated the difference at each time point between these 
bootstrapped data associated with each condition to obtain 
distributions of ‘differences’ with respective means and CIs 
specific to each time point for each comparison (e.g. differ
ence between the CC of focal seizures that remain focal and 
that of focal to bilateral tonic-clonic seizures; 
Supplementary Figs 4 and 5). These distributions of ‘differ
ences’ were used to assess the P-values and effect sizes, and 
to determine if a network feature significantly differentiates 
seizure types at a given time point.

To assess significance (though P-values), we evaluated the 
observed distribution of bootstrapped ‘differences’ against 
chance. To establish chance levels, we constructed null distri
butions non-parametrically for each complex network meas
ure and for each time point by shuffling the condition labels 
10 000 times, each time recomputing the difference between 
the seizure conditions on the shuffled data. Consequently, 
each null distribution centred at zero (e.g. the CC does not 
differ between focal seizures that stay focal and focal to bilat
eral tonic-clonic seizures; difference of zero). We compared 
the bootstrapped empirical and null distributions by con
ducting 2 one-tailed tests against zero [i.e. mean(difference 
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in CCs) < 0 and mean(difference in CCs) > 0] and then doub
ling the smaller P-value. As the CIs for each comparison at 
each time point was achieved based on 10 000 bootstrapping 
iterations, the resolution of P-values was constrained to a 
lower limit of P ≤ 0.0001. A P-value <0.05 was deemed 
significant.

For each comparison, we estimated effect sizes in two dif
ferent ways: (i) by calculating the mean of the bootstrapped 
‘difference’ distributions [e.g. mean (the CC of focal seizures 
that remain focal minus the CC of focal to bilateral tonic- 
clonic seizures); Supplementary Figs 4 and 5]; and (ii) by dir
ectly computing Cohen’s d56,57 for the bootstrapped distri
butions of each network feature (e.g. the CC of focal 
seizures that remain focal versus the CC of focal to bilateral 
tonic-clonic seizures). For each of the significantly different 
statistical comparisons the smallest Cohen’s d (Cohen’s dmin) 
is reported. For each network measure, this value indicates 
the effect size associated with the temporal window at which 
the difference between seizure types were statistically signifi
cant but smallest. For example, if the CC is lower in focal sei
zures that remain focal than in a focal to bilateral 
tonic-clonic seizures from time t1 to t2, the reported 
Cohen’s dmin signifies the smallest effect size within this [t1 

t2] period. The 95% CI associated with each Cohen’s dmin 

is also reported.
In addition, we used two-way repeated-measures analysis 

of variances with within-subject factors for seizure type 
(three levels: focal seizures that remain focal, focal to bilat
eral tonic-clonic seizures and interictal activity) and time 
window (five levels: Preictal I, Preictal II, Preictal III, ictal 
and postictal) to evaluate the influence of these factors on 
CC and characteristic PL (Fig. 3A and B). In the case of sig
nificant main effects, follow-up two-tailed t-tests were 
performed.

Data availability
All data that support the findings of this study are present in 
the main text and/or the Supplementary materials. These 
data are available on request from the corresponding author. 
The data are not publicly available as they contain informa
tion that could compromise privacy of the research 
participants.

Results
Increased clustering and shorter path 
length following bilateral spread of 
seizure activity
In the context of epilepsy, CC and characteristic PL are most 
commonly studied graph-theoretical features which are uti
lized to assess if and how seizure activity affects the small- 
world characteristics of the brain.17,35,58 Here, we did not 
observe any significant differences in the small-world charac
teristics of the functional connectivity networks associated 

with the constrained and unconstrained seizure propagation 
dynamics (Supplementary Fig. 3). We, therefore, independ
ently evaluated CC and PL to investigate if each measure 
differed between the constrained and unconstrained propa
gation mechanisms associated with focal seizures that re
main focal and focal seizures with bilateral spread, 
respectively. To accomplish this, we calculated the CC and 
the characteristic PL of each connectivity matrix (i.e. 98 ma
trices per each of the 25 min segments of seizure activity). 
First, to evaluate these results in the light of past studies, 
we computed averages of these values in a series of consecu
tive 5 min windows, separately for each seizure type. This re
sulted in three preictal, one ictal (during seizure) and one 
postictal windows (Fig. 3A and B). A similar analysis was ap
plied to interictal data to estimate baseline values to which 
the seizure-related network measures could be compared.38

Our results revealed that there were significant main ef
fects of seizure type and time window on CC and PL (Pmin 

< 0.0001). Specifically, we found that both focal seizures 
that remain focal and focal to bilateral tonic-clonic seizures 
displayed lower PL during ictal periods when compared 
with preictal activity (Fig. 3A and B). Post hoc analyses de
monstrated that the ictal activity associated with focal sei
zures that remain focal exhibited (i) higher CC when 
compared with postictal period (P = 0.01; Fig. 3A, left panel) 
and (ii) lower PL when compared with both preictal and 
postictal periods (preictal: P < 0.001, <0.01, <0.01; postic
tal: P < 0.001; Fig. 3B, left panel). Additionally, we observed 
similar changes for focal seizures with bilateral propagation 
where the ictal activity displayed (i) higher CC when com
pared with all the preictal periods (all P < 0.001; Fig. 3A, 
right panel) and (ii) shorter PL when compared with all the 
preictal periods (all P < 0.001; Fig. 3B, right panel). 
However, unlike the CC and PL associated with the postictal 
periods of focal seizures with constrained dynamics which 
returned to the preictal levels, the postictal PL of focal sei
zures with bilateral spread exhibited a continued decrease 
(Pmin < 0.0001, Fig. 3B, right panel). These results supported 
the more unconstrained diffusivity associated with focal to 
bilateral tonic-clonic seizures. These observed differences re
garding the manner in which the CC and PL changed in the 
networks of focal seizures with constrained and uncon
strained dynamics were our first evidence in support of the 
notion that there may exist network-level signatures that 
contained information about the distinct propagation me
chanisms of focal seizures.

Further, we directly compared the temporal profiles of CC 
and PL for focal seizures that remain localized and focal sei
zures with bilateral spread. To account for the unequal num
ber of seizure samples of each seizure type, we implemented a 
rigorous bootstrapping procedure and established 95% CIs 
based on which significant difference was assessed (see 
Materials and methods). As expected from Fig. 3A and B, 
we observed that the dynamics of CC and PL differed in a 
seizure-type-specific manner only after the onset of seizures. 
Specifically, CC of focal seizures with bilateral spread was 
higher than that of focal seizures that remain focal, from 

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/4/5/fcac234/6701873 by Salk Institute user on 01 N

ovem
ber 2022

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac234#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac234#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac234#supplementary-data


Network reconfigurations sculpt seizures                                                                       BRAIN COMMUNICATIONS 2022: Page 9 of 17 | 9

A

B

5-min time windows relative to seizure onset (min)

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.12

0.14

0.16

0.2

0.22

0.24

0.18

C
ha

ra
ct

er
is

tic
 p

at
h 

le
ng

th

4.2

4.4

4.8

5

5.2

4.6
***

**
**

***

-15 -10 -5 0 5 -15 -10 -5 0 5
5-min time windows relative to seizure onset (min)

***
***

***
***

*     P < 0.05
**   P < 0.01
*** P < 0.001

Focal seizures that remain focal Focal to bilateral tonic-clonic seizures

Focal
Focal to bilateral tonic-clonic

Focal minus focal to bilateral tonic-clonicFocal vs. focal to bilateral tonic-clonic

-15 -10 -5 100 5
Time relative to seizure onset (min)

-15 -10 -5 100 5
Time relative to seizure onset (min)

C

0.1

0.2

0.3

C
lu

st
er

in
g 

co
ef

fic
ie

nt
C

ha
ra

ct
er

is
tic

pa
th

 le
ng

th

4

5

6

0

0.2

-0.2

1

0

-1

D

Resampled P < 0.05

Focal
Interictal

Preictal Ictal Postictal

Preictal Ictal Postictal

*

***
***

***

Focal to bilateral tonic-clonic
Interictal

Preictal Ictal Postictal

Focal to bilateral tonic-clonic

Preictal Ictal Postictal

Figure 3 Clustering coefficient and characteristic path length track diffusivity of seizure activity. Focal to bilateral tonic-clonic 
seizures (n = 18) display simultaneous increase in the clustering coefficient (CC) and decrease in the characteristic path length (PL) than focal 
seizures that remain localized within one hemisphere (n = 49). (A) Averages of CC associated with each seizure type are plotted separately for 
preictal, ictal (during seizure) and postictal periods. CC of interictal (seizure-free) networks is also plotted as a baseline. (B) PL is plotted in the 
same manner. (C) CC of focal to bilateral tonic-clonic seizures is higher than that of focal seizures that remain focal, 2.25–10 min after seizure 
onset. (D) PL of focal to bilateral tonic-clonic seizures is lower than that of focal seizures that remain focal, 2–10 min after seizure onset. Statistical 
comparisons of network measures as a function of seizure types were computed through a bootstrapping procedure where the underlying data 
distribution of each network measure was resampled at the level of individual seizures to established 95% confidence intervals (CIs). For (A) and 
(B), significance of changes in the averages of CC and PL across time windows were evaluated by two-way analysis of variances (repeated 
measures) with a series of post hoc t-tests (two-tailed) for significant main effects. For (C) and (D), error bars indicate 95% CIs across individual 
seizures in each condition and solid bars show resampled P < 0.05.
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2.25 to 10 min after seizure onset [resampled P < 0.05, the 
smallest value of the Cohen’s d within this interval, or 
dmin = 1.06, 95% CImin (−0.15, −0.02); Fig. 3C]. Such differ
ences were accompanied by shorter PL associated with focal 
seizures with bilateral spread [resampled P < 0.05 for 2– 
10 min after seizure onset, Cohen’s dmin = 0.78, 95% CImin 

(0.07, 1.06); Fig. 3D]. Notably, these observed differences 
emerged only after the onset and extended well beyond ter
mination of seizures,17 suggesting that focal to bilateral 
tonic-clonic seizures differentially induced network reorgan
ization that persisted even after the seizure activity ended.

Additionally, after seizure onset, persistent differences in 
CC and PL were also observed between focal seizures with 
bilateral spread and interictal activity (Supplementary Fig. 
6, right panels). These persistent differences between post- 
onset activity and interictal periods were, however, not ob
served in the case of focal seizures that remain focal 
(Supplementary Fig. 6, left panels). An increase in CC illus
trates increased local cliquishness and a decrease in PL im
plies better connectivity across the underlying network 
nodes. Together, these findings suggest that the uncon
strained propagation dynamics of focal to bilateral tonic- 
clonic seizures are related to an increase in the overall net
work connectivity and consequently improved network 
communication shortly after seizure onset. Critically, these 
observed seizure-type-dependent network configurations 
emerged only after the onset, raising a question whether 
there also existed unique network alterations at other time 
points that may contribute to the distinct propagation me
chanisms and clinical manifestations associated with each 
seizure type.

Alterations in the local connectivity 
features after the onset reflect 
heterogeneous dynamics of focal 
seizures
Given the post-onset differences in the CC and the character
istic PL between focal seizures of different propagation me
chanisms, we hypothesized that seizure-type-dependent 
network changes should also be observed in other measures 
of node connectivity patterns such as the network density. A 
network with high density is well positioned to optimize in
tegration of information and increase the efficiency of net
work communication.38,39 We expected, therefore, that the 
networks after the onset of focal seizures with bilateral 
spread would show higher density when compared with 
those after the onset of focal seizures that remain focal. 
Supporting our hypothesis, the network density associated 
with focal to bilateral tonic-clonic seizures was found to be 
higher than that of focal seizures that remain focal for 
1.75–10 min after the onset [resampled P < 0.05, Cohen’s 
dmin = 0.73, 95% CImin (−0.10, 0); Fig. 4A]. Notably, the 
timing of the sustained differences in the density mirrored 
that of the CC and the characteristic PL, which also extended 

several minutes beyond seizure termination as each seizure 
typically lasted between 30 s and 3 min.59

To further investigate network alterations unique to par
ticular propagation mechanisms of focal seizures, we as
sessed the assortativity coefficient which measures the 
propensity of network nodes to connect to other nodes of 
similar degree.40,60 Our results revealed that the assortativity 
coefficient associated with focal to bilateral tonic-clonic sei
zures was lower than that of focal seizures that remain loca
lized for 7.50–9.25 min after seizure onset [resampled P < 
0.05, Cohen’s dmin = 0.84, 95% CImin (0.01, 0.06); 
Fig. 4B]. Additionally, similar patterns of results were ob
served between focal to bilateral tonic-clonic seizures and in
terictal activity such that the seizure networks displayed 
higher network density [resampled P < 0.05 for 1.75– 
10 min after seizures onset, Cohen’s dmin = 0.92, 95% 
CImin (0.01, 0.11); Supplementary Fig. 7A) and lower assor
tativity (resampled P < 0.05 for 6.50–7 and 7.50–9.75 min 
after seizures onset, Cohen’s dmin = 0.56, 95% CImin 

(−0.05, 0); Supplementary Fig. 7B]. However, these network 
properties did not differ between interictal activity and focal 
seizures that remain localized. Importantly, the observed 
seizure-type differences emerged after the onset of seizures 
and were driven by the negative assortativity coefficient 
that was associated with focal seizures with bilateral propa
gation. This negative assortativity represents a disassortative 
network in which high-degree nodes, or network hubs, are 
less likely to connect with other high-degree nodes in the 
network.60,61

Thus far, we demonstrated that consistent with the differ
ences in the CC and the characteristic PL after seizure onset, 
the density and the assortativity (i.e. the measures directly 
derived from local or nodal connectivity), also differed as a 
function of seizure propagation dynamics. These findings 
provided better understanding regarding the association be
tween heterogeneous propagation mechanisms of seizure ac
tivity and the local connectivity within the underlying 
functional networks. Next, we asked if networks of different 
seizure types underwent distinct reconfigurations prior to 
seizure onset that shaped the global properties of the net
works and ultimately determined the type of propagation dy
namics an impending seizure would display.

Alterations in subtle global network 
features preceding the onset 
differentiate propagation dynamics of 
focal seizures
Building upon the findings presented thus far, we next 
aimed to quantify the distinct network alterations which could 
differentiate the propagation patterns prior to seizure onset. 
To accomplish this, we assessed network attributes related 
to various aspects of information processing within a net
worked system, particularly, the brain connectivity network. 
Specifically, we focused on three network features: 
modularity,45,62-64 spectral radius and synchronizability.48,65
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Figure 4 Various features of functional connectivity networks display distinct temporal changes as a function of seizure 
propagation dynamics. Left panels illustrate a series of graph-theoretical measures computed from networks of focal seizures that remain 
localized (n = 49) and from networks of focal to bilateral tonic-clonic seizures (n = 18). The time-varying differences observed in each of these 
features as a function of seizure types are plotted in the corresponding right panels. (A) The density of focal to bilateral tonic-clonic seizures is 
higher than that of focal seizures that remain focal, 1.75–10 min after seizure onset. (B) The assortativity, a measure of network robustness, is 
lower for focal to bilateral tonic-clonic seizures relative to focal seizures that remain focal, 7.5–9.25 min after seizure onset. (C) The modularity, 
which captures efficient network integration and global segregation, is higher for focal to bilateral tonic-clonic seizures when compared with focal 
seizures that remain focal during temporal windows between 14.75–5.75 min before seizure onset and 0.75–1.50 min after the onset. (D) The 
spectral radius, which relates to the global spread of synchronization in a network, is also higher for focal to bilateral tonic-clonic seizures when 
compared with focal seizures that remain focal during temporal windows between 14.75–3.75 min before seizure onset and 0.75–1.50 min after 
the onset. (E) The synchronizability, which estimates the propensity of information to diffuse in a network, shows an increasing trend post-seizure 
onset for unconstrained seizure dynamics. However, no statistically significant differences were observed in synchronizability across seizure types. 
Statistical comparisons of network measures as a function of seizure types were computed through a bootstrapping procedure where the 
underlying data distribution of each network measure was resampled at the level of individual seizures to established 95% confidence intervals 
(CIs). Error bars indicate 95% CIs across individual seizures in each condition and solid bars show resampled P < 0.05.
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While modularity has recently been utilized in characterizing 
the efficiency associated with integration and segregation of in
formation across distributed brain areas, the properties of 
spectral radius and synchronizability remain relatively unex
plored in the context of brain networks. A couple of recent 
studies, however, have suggested the utility of synchronizabil
ity and spectral radius in describing dynamics of seizure activ
ity within the brain24 and the extent of excitability of brain 
networks, respectively.23 Because modularity, synchronizabil
ity and spectral radius have been associated with different 
neural processes and are sensitive to changes in the network 
connectivity, we hypothesized that these measures would be 
powerful markers for prediction of seizure dynamics prior to 
the onset. As described in the Materials and methods, each 
of these attributes relate to overall network architecture and 
their values may differ across networks with similar distribu
tion of node degrees. Consequently, we characterized modu
larity, synchronizability and spectral radius as subtle global 
network features and, in the following, investigated how 
they change over time as a function of seizure propagation 
dynamics.

Our results revealed that the information concerning the 
propagation patterns of focal seizures could be decoded 
from these global network attributes several minutes prior 
to seizure onset. Specifically, the modularity preceding the 
onset of focal seizures with bilateral spread was higher 
than that of focal seizures that remain localized [resampled 
P < 0.05 for 14.75–12.00, 11.00–10.75, 9.25–8.5, 8.25– 
8.00, 7.67–7.50 and 6.75–5.75 before seizure onset; 
Cohen’s dmin = 0.75, 95% CImin (−0.10, −0.01); Fig. 4C]. 
This pattern of results was also observed in the spectral ra
dius [resampled P < 0.05 for 14.75–14.50, 14.00–11.25, 
11.00–10.75, 9.75–9.50, 9.25–9.00, 7.75–7.50, 7.00–5.75, 
5.50–5.00 and 4.50–3.75 min before seizure onset; 
Cohen’s dmin = 0.66, 95% CImin (0.27, 8.14); Fig. 4D]. 
These seizure-type-dependent differences in the network 
modularity and spectral radius re-emerged shortly after seiz
ure onset (resampled P < 0.05 for 0.75–1.50 min after seiz
ure onset for both modularity and spectral radius). As for 
the synchronizability, we observed an increasing trend post- 
seizure onset associated with unconstrained seizure dynam
ics; however, our statistical analyses revealed no significant 
difference in synchronizability across seizure types (Fig. 4E).

Similar patterns of results were also observed between fo
cal seizures with bilateral spread and interictal activity such 
that preceding the onset, the seizure networks displayed 
higher modularity [resampled P < 0.05 for 14.75–14, 
13.75–13, 12.75–12, 10.25–10, 9.75–9.50, 8.50–8.25 and 
7.75–7.50 min before seizure onset; Cohen’s dmin = 0.71, 
95% CImin (0.01, 0.09); Supplementary Fig. 7C], and lower 
spectral radius [resampled P < 0.05 for 14.75–14.50, 14– 
12.25, 11–9.50, 7.75–7.50, 5.25–4.75 and 4.50–3.75 min 
before seizure onset; Cohen’s dmin = 0.2, 95% CImin 

(−7.63, −0.35); Supplementary Fig. 7D]. These results 
were accompanied by post-onset effects where focal to bilat
eral tonic-clonic seizures exhibited higher spectral radius (re
sampled P < 0.05 for 0.75–1.50, 2.50–3 and 5–5.50 min 

after seizure onset; Supplementary Fig. 7D), and higher syn
chronizability (resampled P < 0.05 for 6–6.25 and 7.25– 
12.50 min after seizure onset; Supplementary Fig. 7E). 
However, focal seizures that remain localized only differed 
from interictal activity in the measure of modularity and syn
chronizability such that the modularity of the focal seizures 
was lower shortly after seizure onset [resampled P < 0.05 
for 1–4.25 min after seizure onset; Cohen’s dmin = 0.41, 
95% CImin (−0.06, 0); Supplementary Fig. 7C] and the syn
chronizability of the focal seizures was higher shortly after 
the seizure onset [resampled P < 0.05 for 1.25–2.25 min 
after seizure onset; Cohen’s dmin = 0.59, 95% CImin (0.01, 
0.09); Supplementary Fig. 7E].

Complementary temporal 
reconfigurations within the functional 
connectivity networks sculpt seizure 
dynamics
Using a set of graph-theoretical features, we identified recon
figurations in the functional connectivity network that char
acterized the propagation dynamics of different seizure 
types. Our results revealed that such distinguishing features 
can be classified into two groups based on the distinct and 
complementary temporal windows at which the differences 
in these features emerged as a function of seizure types. 
The first group of network attributes includes the global fea
tures modularity and spectral radius, which primarily cap
tures differences between focal seizures with constrained 
and unconstrained dynamics prior to seizure onset (Fig. 5). 
In contrast, the second group of network properties captured 
differences across seizure types after the onset, reflecting the 
network reconfigurations induced by distinct propagation 
mechanisms. Such features include the density, assortativity, 
CC and characteristic PL (Fig. 5).

Notably, the first group of network features, i.e. modular
ity and spectral radius, can detect the possibility of an im
pending seizure to spread bilaterally and can be further 
investigated as potential biomarkers. To further highlight 
the utility and robustness of these features in assessing the 
likelihood of a focal seizure to spread bilaterally, we evalu
ated modularity and spectral radius at a single-seizure level 
in three seizures that shared similar onset regions in the left 
hemisphere and were recorded from a single patient (Figs 1
and 6). Specifically, seizure two bilaterally propagated after 
the onset, while Seizures 1 and 3 remained localized within 
the left hemisphere. We showed that Seizures 1 and 3 exhibit 
similar dynamics of modularity and spectral radius over 
time, and these temporal patterns differ from those of 
Seizure 2. For Seizure 2, we observe an early sharp increase 
in modularity and a decrease in spectral radius consistent 
with the findings across seizures (Fig. 5), further highlighting 
the robustness of our results (grey-shaded area). These pat
terns were followed by an abrupt decrease in modularity 
and a sharp increase in spectral radius (Fig. 6; yellow-shaded 
area) which could be seizure- and/or patient-specific features. 
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These results further suggested that network measures could 
potentially be used to characterize distinct neural dynamics 
across different types of focal seizures, even on a single- 
seizure basis.

Discussion
The goal of the present study was to investigate if the emer
gence of heterogeneity in seizure propagation is an outcome 
of mechanistically different disruptions and can be 
understood in terms of network-level changes within the 
brain before, during and after the onset. To accomplish 
this, we evaluated the temporal evolution of a series of 
graph-theoretical attributes which quantify various aspects 
of network organization and information processing within 
complex systems such as the brain. We demonstrated distinct 
network-level signatures that were associated with the extent 
of diffusion dynamics of an impending seizure as well as iso
lated architectural changes within the functional connectivity 
networks that emerged as the seizures terminated. These re
sults advance our understanding of how heterogeneous seiz
ure dynamics can arise from similar onset regions. 
Furthermore, our findings provide a rationale for a potential 
use of network features to help guide clinical diagnosis of fo
cal seizures with different propagation mechanisms (focal sei
zures that remain local versus focal to bilateral tonic-clonic 
seizures). Incorporation of such network measures with other 
biomarkers of neural state changes4,7,54 could also potential
ly lead to improvement of effective intervention strategies to 
constrain propagation of seizure activity.

Network alterations track temporal 
evolution of focal seizures
We demonstrate that dynamic reconfigurations within the func
tional connectivity networks during evolution of focal seizures 
give rise to the heterogeneity observed across seizures. While 

past work primarily evaluated network properties of epileptic 
brain by averaging the signals in large discrete time windows, 
we assess the continuous temporal evolution of network con
nectivity in combination with resampling statistical tests. This 
formulation enables us to characterize the temporal dynamics 
of network alterations that underlie the emerging dynamics of 
seizure activity in a rigorous manner. By examining globally de
fined network features, we observe distinct macroscopic signa
tures which could predict the extent of diffusivity of seizure 
propagation minutes prior to the onset. Our results indicate 
that processes leading to the emergence of distinct seizure 
propagation patterns are coded in the network activity minutes 
prior to the onset and can have mechanistically different under
pinnings. We argue that our approach provides an objective 
framework not only for better understanding the neural dynam
ics underlying evolution of seizures but also for determining 
whether and when a clinical intervention should be implemen
ted to manage and control a spread of an impending seizure.

Additionally, we further demonstrate that the heteroge
neous dynamics exhibited across seizure types can be charac
terized by post-onset changes in local features of the 
functional connectivity networks such as the CC, character
istic PL and network density. Specifically, our findings re
vealed a relationship between the CC, characteristic PL 
and a binary measure of diffusivity of seizure activity after 
the onset (i.e. whether the seizure activity would remain 
within the same hemisphere or spread transcollosally). 
These measures indicate higher network connectivity follow
ing the seizure onset which could be correlated with more se
vere cognitive impacts that the seizures with unconstrained 
propagation dynamics typically induce. Any such correl
ation, however, needs to be confirmed with future experi
mentation. Notably, immediately after the onset where we 
observed higher network connectivity, no significant changes 
in the assortativity were observed. These results indicate that 
there was no particular reconfiguration in how the network 
hubs connect either with one another or with non-hubs. 
These observed patterns, however, changed closer to seizure 

Spectral radius
Network density

Assortativity

Modularity

Time relative to seizure onset (min)
-15 -10 -5 100 5

Clust. coefficient
Path length

Figure 5 Summary of graph-theoretical attributes probed across seizure types. The network features investigated can be categorized 
into two groups based on the temporal windows at which differential changes in these features emerge as a function of seizure propagation 
patterns. The time windows where such differences are observed are plotted separately for each of the network measures (resampled P < 0.05). 
Global features, i.e. the modularity and spectral radius, primarily capture network alterations that occur prior to and shortly after seizure onset. In 
contrast, the density, assortativity, clustering coefficient and characteristic path length characterize post-onset network reconfigurations induced 
by different types of propagation dynamics.
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termination—the networks of focal seizures with uncon
strained dynamics showed negative assortativity indicative 
of a disassortative network, where highly connected nodes 
(hubs) are less connected to one another. Assortativity can 
be directly linked to the robustness of the network, in terms 
of its ability to remain connected.60 A failure of a hub node in 
an assortative network would leave other hub nodes con
nected to one another, minimizing the chance of the network 
as a whole to become disconnected. However, in case of a 
seizure that spreads bilaterally, emergence of a disassortative 
network likely reflects a mechanism to reduce this ‘robust
ness’ by restricting the connectivity among network hubs.

Bilateral propagation of focal seizures 
reflects over-compensation for an 
imbalance in global integration and 
excitability
Preceding the onset, we reported increased modularity along 
with decreased spectral radius in focal to bilateral tonic-clonic 
seizures. In the light of classical accounts on the mechanistic un
derpinnings of seizures, we argue that our findings could reflect 
the chemical or dynamic imbalance within the underlying net
works.6,66 Specifically, microscopic disproportion between exci
tation and inhibition or in the bistability of localized neural 
dynamics could lead to an emergence of a neural state with sig
nificantly low integration (or high segregation captured by 
high modularity39) and low excitability (captured by low spectral 
radius).23 To regain a more balanced state, it is likely that me
chanisms enhancing the connectivity between segregated 

networks are recruited, leading to an over-compensation which 
manifests as more unconstrained seizure dynamics. Future stud
ies utilizing large-scale non-invasive neuroimaging methods 
could seek validation and/or refinement to this hypothesis. 
Notably, we found that such signatures, i.e. increased modularity 
as well as decreased spectral radius, disappeared just before the 
onset, re-emerged shortly after and again disappeared (Fig. 4). 
It is, therefore, possible that these network features reflect the 
manifestations of the regulatory mechanisms that govern emer
gence and termination of seizures. In addition, the modularity 
of focal seizures that remain focal decreased shortly after the on
set when compared with interictal activity (Supplementary Fig. 
7C), further highlighting the link between this network feature 
and control mechanisms associated with seizure termination.

While we did not observe a significant difference of syn
chronizability between focal seizures with constrained and 
unconstrained dynamics, Khambhati et al.24 showed signifi
cantly high synchronizability for unconstrained dynamics 
within the gamma oscillations. Further, investigation of net
work reconfiguration within specific oscillatory bands can 
be helpful in drawing associations between network reconfi
gurations and cognitive implications of a specific seizure type.

Time-dependent assessment of 
network attributes can guide 
development of personalized seizure 
treatment
The heterogeneity of epilepsy is a key confound to disease 
understanding and development of effective treatments. 
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Figure 6 Distinct patterns of network properties across seizure types at a single-seizure level. Modularity A and spectral radius B 
extracted from networks associated with three seizures that share similar onset regions recorded from a sample patient. Seizures 1 and 3 are 
categorized by an epileptologist as focal seizures that remain focal (sample recordings of Seizure 1 is illustrated in Fig. 1B, left), whereas Seizure 2 is 
categorized as a focal to bilateral tonic-clonic seizure (sample recordings of Seizure 2 is also illustrated in Fig. 1B, right). Seizures 1 and 3 exhibit 
similar patterns of modularity and spectral radius overtime, and these temporal dynamics differ from those of Seizure 2. The grey-shaded region 
highlights the robust signatures associated with the bilateral spread of a focal seizure (i.e. increase in modularity and decrease in spectral radius) 
and is followed by network changes which are likely seizure and/or patient specific.
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Here, we demonstrate graph-theoretical features as novel 
potential candidates of biomarkers that link differential 
reconfigurations of the functional connectivity networks to 
the heterogeneity in the emerging seizure dynamics. 
Specifically, our investigations of the global network dynam
ics suggest that interventions aiming to contain the spread of 
seizure activity may wish to situate the brain in a topological 
state where the modularity is lowered, while the spectral 
radius is increased. In addition, we also show that the infor
mation regarding the propagation patterns of seizures can be 
decoded through the seizure-type-dependent changes in the 
network properties several minutes before seizure 
onset allowing sufficient time for an intervention to be imple
mented. Furthermore, the seizure-type-dependent signatures 
observed post-onset can be used to validate the efficiency of a 
particular treatment approach in preventing evolution of 
seizures and may help determine the extent of cognitive 
and behavioural deficits induced by the residue seizure activ
ity in a scenario where the intervention did not completely 
eliminate the seizures. Future studies that wish to character
ize cognitive and behavioural changes induced by neuro
logical disorders may also benefit from evaluating these 
network properties in relation to performance of patients 
on various test battery.18,67 Such analyses could uncover dis
tinct underlying pathophysiological processes that give rise 
to diverse cognitive and behavioural impairments across dis
ease subtypes and across individuals, thereby improving un
derstanding of the disease heterogeneity.68-71 Finally, our 
single-seizure analyses suggest that network measures could 
potentially be used to characterize distinct neural dynamics 
across different types of seizures, even on a single-seizure ba
sis. Such findings provide foundation for future investigation 
and development of effective personalized seizure treatment.

Future directions
Given that the electrode placement was determined on a 
patient-to-patient basis by a neurologist for the purpose of 
identification of seizure onset zones, the data extracted 
from these electrodes inevitably provide an incomplete pic
ture of the brain network due to the resulting partial cover
age. In addition, the reported lack of differences between 
focal seizures that remain focal and interictal activity could 
be partially due to such spatial sampling of the recorded sig
nals. To address this possibility, future studies may benefit 
from non-invasive recordings where whole-brain dynamics 
can be simultaneously evaluated.

Further, our analyses treated multiple seizures and interic
tal activity segments from the same patients as independent, 
and primarily disregarded individual variability in seizure 
heterogeneity at the patient level. This analytical choice 
was made based on traditional methods (e.g. see Martinet 
et al.4), and careful statistical comparisons were implemen
ted to identify the seizure-type-dependent alteration patterns 
in the functional connectivity networks of seizures. To fur
ther extend our findings and improve the specificity of the in
terpretations, future studies may incorporate patient-level 

factor in their analytical frameworks. While we reported dis
tinctive network features to distinguish constrained and un
constrained seizure dynamics, it is likely that some of the 
subtle differences remained undetected given our temporal 
resolution and strict statistical approach. By combining our 
analytical framework with a finer temporal resolution, fu
ture studies can look for unique network features associated 
with different phases of seizure propagation as a function of 
seizure types.

We illustrated the potential utility of complex network 
features in distinguishing seizures with constrained and un
constrained dynamics prior to the onset at a single-seizure le
vel. However, in this sample patient, we also found patterns 
of network reconfigurations that were not observed at the 
population level. Using the analytical framework we pre
sented, future studies can further validate the seizure- and 
patient-specific applications of network features in clinical 
settings.

Conclusions
In summary, by using a graph-theoretical approach, we de
termined the extent to which distinct emerging dynamics of 
seizure networks were accounted for by temporal reconfi
gurations of the underlying functional connectivity. 
Collectively, our results illustrated a series of network me
trics that can potentially be utilized as quantitative biomar
kers to distinguish between focal seizures of distinct 
dynamics based on their propagation patterns as well as 
the differential extent of cognitive and behavioural effects 
accompanying the seizures. These results suggested that the 
networks of focal seizures with unconstrained dynamics 
undergo early network alterations, triggering processes 
which facilitate the bilateral diffusion of seizure activity. 
The propagation-type-dependent alterations in these metrics 
were observed again shortly after the onset, suggesting that 
these measures could also induce regulatory mechanisms ne
cessary for the termination of seizures. Together, our find
ings provide objective means to gain better insight into the 
mechanisms by which seizure dynamics are regulated 
within the brain and provide exciting avenues where 
graph-theoretical measures could be used to guide persona
lized clinical interventions.
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