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Abstract

The computational power of massively parallel networks of simple processing elements resides
in the communication bandwidth provided by the hardware connections between elements. These
connections can allow a significant fraction of the knowledge of the system to be applied to an

instance of a problem in a very short time. One kind of computation for which massively parallel

networks appear to be well suited is large constraint satisfaction searches, but to use the
connections efficiently two conditions must be met: First, a search technique that is suitable for
parallel networks must be found. Second, there must be some way of choosing internal
representations which allow the pre-existing hardware connections to be used efficiently for

encoding the constraints in the domain being searched. We describe a general parallel search -

method, based on statistical mechanics, and we show how it leads to a general learning rule for
modifying the connection strengths so as to incorporate knowledge about a task domain in an
efficient way. We describe some simple examples in which the learning algorithm creates internal
representations that are demonstrably the most efficient way of using the pre-existing connectivity
structure, _ :
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1 Introduction

Evidence about the architecture of the brain and the potential of the new VLSI tech;mlogy have led to a
resurgence of interest in “connectionist” systems (Hinton & Andchon, 1981: Feldman & Ballard, 1982) that '
store their long ferm knowledge as the strengths of the connections between simple neuron-like processing
elements. These networks are clearly suited to tasks like vision.that can be performed efficiently in parallcl
netWorl_(s which have physical connections in just the places where processes need to communicate. For
problems like surface interpoiatibn from sparse depth data (Grimson, 1981; Terzopoulos, 1984) where the
necessary decision units and communication paths can be determined in advance, it is rc}at_ively casy to see
how to make good use of massive parallelism. The more difficult problem is to discover parallel organizations
that do not require so much problem-dependent information to be built into the architecture of the network.
Ideally, such a system would adapt a given structure of processors and communication paths to whatever

problem it was faced with.,

This paper presents a type of parallel constraint satisfaction network which we call a “Boltzmann Machine”
that is capable of learning the underlying constraints that characterize a domain simply by being shown
examples from the domain. The network modifies the strengths of its connections so as fto construct an
internal generative model that produces examples with the same probability distribution as the examples it is
shown. Then, when shown any particular example, the network can “interpret” it by finding values of the
variables in the internal model that would generate the example. When shown a partial éxample, the network
can complete it by finding intcmai variable values that generate the partial example and using them to
generate the remainder. At present, we have an interesting mathematical result that guarantees that a certain
learning procedurc will build internal representations which atlow the connection strengths to ‘capture the
underlying constraints that are implicit in a large ensemble of examples taken from a domain. We also have
simulations that show that the theory works for some simple cases, but the current version of the learning

algorithm is very slow.

The search for general principles that allow parallel networks to learn the stnicture of their environment has
~ often begun with the assumption that networks are randomly wired. This seems to us to be just as wrong as
the view that all knowledge 1s innate. If there are connectivity structures that are good for particular tasks that
. the network will have to perform, it is much more efficient to build these in at the start. However, not ail

tasks can be foreseen, and even for ones that can, fine-tuning may still be helpful.

Another common belief is that a general connectionist learning rule would make sequential “rule-based”
models unnecessary. We believe that this view stems from a misunderstanding of the need for multiple levels

of description of large systems, which can be usefully viewed as either parallel or serial depending on the
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grain of the analysis. Most of the ey issues and questions that have becn studied in the context of sequential
models do not magically disappear in connectionist models. It is still necessary to perform searches for good
solutions to problems or good interprctations of perceptual input, and to crcate complex internal
representations. Ultimately it will be neccssaryrto bridge the gap between hardwarc-oriented connectionist
descriptions and the more abstract éymbol manipulation models that have proved to be an exiremely

powerful and pervasive way of describing human information processing (Newell & Simon, 1972).

2 The Boltzmann Machine

The Boltzmann Meichine is a parallel computational organization that is well suited to constraint satisfaction
tasks involving large numbers of “weak™ constraints. Constraint-satisfaction searches (c.g. Waltz, 1975;
. Winston, 1984) normally use “strong” constraints that must be satisfied by any solution. In problem domains
such as games and puzzles, for example, the goal criteria often have this character, so strong constraints are
the rule.! In some problem domains, such as finding the most plausible interbretation of an image, many of
the cﬁteﬁa are not all-or-none, and frequently even the best possible solution violates some constraints
(Hinton, 1977). A variation that is more appropriate for such domains uses weak constraints that incur a cost
when violated. The guality of a solution is then determined by the total cost of all the constraints that ‘it
violates. In a perceptual interpretation task, for example, this total cost should reflect the implausibility of the

interpretation.

The machine is composed of primitive co.mputirig clements called units that are connected to each other by
bidirectional lz‘nkk. A unit is always in one of two shtcs, on or off, and it adopts these states as a probabilistic
function of the states of its neighboring units and the weighfs on its links to them. The weights can take on
real values of either sign. A unit being on or off is taken to mean that the system currently accepts or rejects
some elemental hypothesis about the the domain. The weight on a link represents a weak pairwise constraint
betweer two hypotheses. A positive weight indicates that the two hypotheses tend to support one another; if
one is currently accepted, accepting the other should be more likely. Conversely, -a negative weight suggests,
other things being equal, that the two hypotheses should not both be accepted. Link wecights afe symmelric,
having the same strength in both directions (Hinton & Sejnowski, 1983).2

1Eh.:l; see (Berliner & Ackley, 1982) for argument (hat, even in such domains, strong constraints must be used only where absolutely
necessary for legal play, and in particular must not propagate into the determination of good play.

2chuiring the weights to be symmetric may seem to restrict the constraints that can be represented. Although a constraint on boolean
variables 4 and B such as “ A== B with a penalty of 2 points for viclation™ is obviously symmetric in 4 and B, "4=JF witha penalty of 2
points for violation™ appears to be fundamentally asymimetric. Nevertheless, this constraint ¢an be represented by the combination of a
constraint on A alone and a symmetric pairwise constraint as follows: “Lose 2 points if 4 is true” and “Win 2 points ifboth 4 and I are
true.”




Hinfon, Sejnowski, & Ackley . ' 3

Tﬁe resulting structure-is related to a system described by Hopfield (1982), and as in his system, each global
state of the network can be assigned a single number called the “encrgy” of that state. With the right
assumptions, the individual units can be made to act so as to minimize the global energy. 1f some of tile units
" are externally forced or “clamped” into particular states to represent a particular input, the system will then
find the minimum energy configuration that is compatible with that input. The energy of a configuration can
be interpreted as the extent to which that combination of hypotheses violates the constraints implicit in the
problem domain, so in minimizing energy the system evolves towards “interpretations” of that input that

increasingly satisfy the constraints of the problem domain.

The energy of a global configuration is defined as

Ez—ZWﬁSiS}+ Zgi‘fi X ) (1)
. H

i<j.
where wy is the strength of connection between units 7 and j, 5;is 1 if unit i is on and 0 otherwise, and §;is a

threshold.

~ 2.1 Minimizing energy
A simpk: algorithm for finding a combination of truth values that is a local minimum is to switch each
hypothesis into whichever of its two states yields the lower total energy given the current states of the other
hypotheses. If hardware units make their decisions asynchronously, and if transmission times are negligible,
then the system: always settles into a local energy minimum (Hopfield, 1982). Because the connections are
symmetric, the difference between the energy of the whole system with the & hypothesis rejected and its
energy with the £ hypothesis accepted can be determined locally by the k™ unit, and this “encrgy gap” is

just
AL =Y wys; —8 - | : 2)
. i -

Therefore, the rule for minimizing the energy contributed by a unit is to adopt the on state if its total input

from the other units and from outside the system exceeds its threshold. This is the familiar rule for binary

threshold units.

The threshold terms can be ¢liminated from Egs. (1) and (2) by making the following observation: the effect
of 8; on the global energy or on the energy gap of an individuai unit is identical to the effect of a link with
strength ~@; between unit i and a special unit that is by definition always held in the on state. This “true
unit” need have no physical reality, but it simplifies the computations by allowing the threshold of a unit to be
treated in the same manner as the links. The value —§; is called the bias of unit i, If a permanently active

“true unit” is assumed to be paft of every network, then Egs. (1) and (2) can be written as:
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E= _“ZW& S;S_‘i (3)
i _ | _
AE,= Z W;iS; . ' {4)
i o

2.2 Using noise to escape from local minima '

The simple, deterministic algorithm suffers from the standard weakness of gradient descent methods: It gets
stuck in Jocal minima that are not globally optimal. This is not a problem in Hopfields system because the
local energy minima of his network are used to store “items”: If the system is started near some local

minimum, the desired behavior is to fall into that minimum, not to find the global minimum. For constraint

 satisFaction tasks, however, the system must try to escape from local minima in order to find the configuration

that is the global minimum given the current input.

A simple way to get out of local minima is to occasionally allow jumps to configurations of higher energy. An
algorithm with this property was introduced by Metropolis et. al. (1953) to study average properties of
thermodynamic systems (Binder, 1978) and has recently been applied to problems of constraint satisfaction
(Kirkpatrick, Gelatt, &. Vecchi, 1983). We adopt a form of the Metropolis algorithm that is suitable for
parallel computation: If the energy gap between the on and off states of the k™ unit is AEj then regardless of

the previous state set sy =1 with probabiiity

1
P e STy X

where Tis a parameter that acts like temperature (see Figure 1).

x1.0
Q

2 3 6 8 1o
AEk

Figure1: Eq.(5)atT=10 (so‘lid), T=4.0 (dashed), ahd T=0.25 (dotted).
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“The decision rule in Eq. (5) is the same as that for a particle which has two energy states. A system of such
particles in contact with a heat bath at a given temperature will eventually reach thermat equilibrium and the
probability of finding the system in- amy global state will then obey a Boltzmann distribution. Similarly, a
network of units obeying this decision rule will eventually reach “thermal equilibrium” and the relative
probability of two global states will follow the Boltzmann distribution:

Lo _ ~EqEgyT | ©)
P,B 7 : ’
where P, is the probability of being in the o global state, and E,, is the energy of that state.

The Boltzmann distribution has some beautiful mathematical properties and it is intimately related to
information theory. In particular, the difference in the log probabilities of two global states is just their
energy difference (at a temperature of 1). The simplicity of this relationship and the fact that the equilibrium

distribution is independent of the path followed in reaching equilibrium are what make Boltzmann machines

interesting.

At low temperatures there is a strong bias in favor of states with low energy, but the time required to reach
equiiibrium may be long. At higher temperatures the bias is not so favorable but equilibrium is reached
faster. A_ good way to beat this trade-off is to start at a high temperature and gradually reduce it. This
corresponds to annealing a physical system (Kirkpatrick et. al. 1983).” At high temperatures, the network will
ignore small energy differences and will approach equilibrium rapidly. In doing so it will perform a search of
the coarsé overall structure of the space of global states, and will find a good minimum at that coarse level. As
the temperature is lowered, it will begin to respond to smaller encrgy differences and will find one of the
better minima within the coarse-scale minimum it discovered at high temperatuze. Kirkpatrick et. al. have
shown that this way of searching the coarse structure before the fine is very effective for combinatorial
problems like graph partitioning, and we believe it will also prove useful when trying to satisfy mﬁlt.iple weak
constraints, even though it will clearly fail in cases where the best solution corresponds to a minimum that is

deep, narrow and isolated.

3 A learning algorithm

Perhaps the most interesting aspect of the Boltzmann Machine formulation is that it leads to a domain-
independent learning algorithm that modifies the connection strengths between units in such a way that the
whole network develops an internal model which captures the underlying structure of its environment. There
has been a long history of failure in the search for such algorithms (Newell, 1982), and many people '
(particularly in Artificial Intelligence) now believe that no such algorithms exist. The major technical

stumbling block which prevented the generalization of simple learning algorithms to more complex networks
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was this; To be capable of interesting computations, a network must contain non-linear elements that are not
- directly constrained by the input, and when such a network does the wrong thing it appears to be impossible
to decide which of the many connection strengths is at fault. This “credit—aSSignment” problem was what led
.to the demise of Perceptrons (Rosenblatt, 1961; Minsky & Papert, 1968). The perceptron convergence
theorem guarantees that the weights of a single layer of decision units can be trained, but it couid not be
generalized to networks of such units when the task did not dircctly specify how to use all the units in the

network.

This version of the cfedit-assignment problem can be solved within the Boltzmann Machine formulation. By
using the right stochastic decision rule, and by running the nctwork until it reaches “thermal equilibrium” at
some finite temperature, we achieve a mathematically simple relationship between the probability of a global
" state and its energy. For a metwork that is running freely without any input from the environment, this
relationship is given by Eq. (6). Because the eﬁergy is 21 linear function of the weights (Eq. 1) this leads to a

remarkably simple relationship between the log probabilities of global states and the individual connection

strengths:

9 InP
[l SV R [+ 271 Y .
aw; 7~ lsfsp—pf] | )
where st is the state of the #* unit in the ah global state (so sf"sj‘?Il is 1 only if units { and j are both on in state
a), and pj; is just the probability of finding the two units / and j on at the same time when the system is at

equilibrium.

Given Eq. (7) it is possible to manipulate the log probabilitics of global states. If the environment directly

specifies the rcqutred probabilities 2, for each global state a, there is a stralghtforward way of converging on
a set of weights that achieve those probabilities, provided any such set exists (Sec Hinton & Sejnowski, 1983a
for details). However, this is not a particularly interesting kind of learning because the system has to be given
the required probabilities of complete global states. This means that the central question of what internal
representation should be used has already been decided by the environment. The interesting problem arises
when the environment implicitly contains high-order constraints and the network must choose internal

representations that allow these constraints to be expressed efficienty.

3.1 Modeling the underlying structure of an environment _

The units of a Boltzmann Machine partition into two functional Zgroups,ra non-empty set of visible units and a
possibly empty set of hidden units. The visible units are the interface between the network and the
environment; during training all the visible units are clamped into specific states by the environment; when

testing for completion ability any subset of the visible units may be clamped. The hidden units, if any, are
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never clamped by thé environment and can be used to “explain” underlying constraints in the ensemble of
input vectors that cannot be represented by pairwise constraints among the visible units. A hidden unit would
be needed, for cxample, if the environment demanded that the states of three visible units should have even
parity — a regularity that cannot be enforced by pairwise interactions alone. Using hidden units to represent
more complex hypotheses about the states of the visible units, such higher-order constraiats among the visible

units can be reduced to first and second-order constraints among the whole set of units.

We assume that each of the environmental input vectors persists for long enough to allow the nctwork to
approach thermal equilibrium, and we ignore any structure that may exist in the sequence of environmental
vectors. The structure of an environment can then be specified by giving the probability distribution over all
2" states of the v visible units. The network will be said to have a perfect model of the environment if it
achieves exactly the same probability distribution over these 2" states when it is running freely at thermal

equilibrium with all units unclamped so there is no environmentat input.

Unless the number of hidden units is exponentially large compared to the number of visible units, it will be
impossible to achieve a perfect model because even if the network is totally connected the (v h—1)(v+ h)/2
weights and (v+ k) biases among the v visible and % hidden units will be insufficient to model the 2"
probabilities of the states of the visible units specified by the environment. However, if there are regularities
in the environment, and if the network uses its hidden units ‘to capture these regularities, it may achieve a

good match to the environmental probabilities.

An information-theoretic measure of the discrepancy between the network’s internal model and the

environment is

G= ; AV, 1n%%— - @®

where P(¥,) is the probability of the o™ state of the visible units when their states are determined by the
environment, and P'(V,) is the corresponding probability when the network is running freely with no
environmentat input. The & metric, sometimes called the asymmetric divergence or information gain
(Kullback 1959; Reny1 1962), is a measure of the distance from the dlstnbutlon given by the P/(V,) to the
- distribution given by the A(V,). Gis zero if and only 1f the dxsmbutmns are identical; otherwise it is positive.

The term P'(V,) depends on the weights, and so G can be altered by changing them, To perform gradient
descent in G it is necessary to know the partial derivative of G with respect to each individual weight. In most
cross-coupled non-linear networks it is very hard to derwe this quantity, but because of the simple

relationships that hold at thermal equlhbnum, the partiat derivative of G is straightforward to derive for our
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networks The probablhues of global states are determined by their energzes (Eq. 6) and the energies are

dctermmcd by the weights (Eg. 1). Using these equations the partial derivative of G (see the appendix) is:

8G

1
e L. | ®

where pj; is the average probability of two units both being in the on state when the environment is clamping
the states of the v1sxb1e units, and pf, as in Eq. (7), is the corresponding probability when the environmentat
input is not present and the network is running freely. (Both these probabilities must be measured at -
equilibrium). Note the similarity between this equation and Eq. (7), which shows how changing a weight

affects the log probability of a single state.

"To minimize G, it is therefore sufficient to observe p; and pj; when the network is at thermal equilibrium, and

to change each weight by an amount proportional to the difference between these two probabilities: -

Aw;=e(py—pj) | - - Q0
where ¢ scales the size of each weight change.

A surprising feature of this rule is that it uses only Idcally available infonﬁation. The change in a weight
_depends only on the behavior of the tw.o units it connects, even though the change optimizes a global
measure, and the best value for each weight depends on the values of all the other weights. If there are no
htdden units, it can be shown that G-space is concave (when viewed from above) so that simple gradient
descent will not get trapped at poor local minima. With hidden units, however, there can be local minima
that correspond to different ways of using the hidden units to represent the higher-order constraints that are
implicit in the probability distribution of environmental vectors. Some techniques for handling these nore

complex G-spaces are discussed in the next section.

Once -G has been minimized the network will have captured as well as possible the regularities in the
environment, and these regularities will be enforced whén performing completion. An alternative view is that
the network, in minimizing G, is finding the set of weights that is most likely to have generated the set of
environmental vectors. It can be shown that maximizing this likelihood is mathematically equivalent to

minimizing G (Peter Brown, personal communication).
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3.2 Controtling the learning

There are a number of free parameters and possible variations in the fearning algorithm presented above. As
well as the size of &, which dctermines the size of each step taken for gradient descent, the lengths of time over
which p; and p;-'j are cstimated have a significant impact on the learning process. The values employed for the

simulations presented here were selected primarily on the basis of empirical observations.

A practical system which estimates py and pf; will necessarily have some noise in the estimates, leading to
occasional “uphill steps” in the value of G. Since hidden unitsin a network can create local minima in G, this
is not necessarily a lability. The effect of the noise in the estimates can be reduced, if desired, by using a
small value for & or by collecting statistiéé for a longer time, and so it is relatively easy to implement an

anncaling search for the minimum of G.

The objective fuhction G is a metric that specifies how well two probability distributions match. Problems
arise if an environment specifies that only a small subset of the possible patterns over the visible units ever
occur. By default, the unmentioned patterns must occur with probability zero, and the only way a Boltzmann
Machine running at a non-zero.temperature can guarantee that certain configurations nevér occur is to give

those configurations infinitely high energy, which requires infinitely large weights,

One way to avoid this implicit deménd for infinite weights is to occasionally provide “noisy” input vectors.
This can be done by filtering the “correct™ input vectors through a process that has a small probability of
;eversing each of the bits. These noisy vectors are then clamped on the visible units. If the noise is small, the
correct vectors will dominate the statistics, but every vector will have some chance of occurring and so infinite
energies will not be needed. This “noisy clamping” technique was used for all the examples presented here.
It works quite well, but we are not entirely satisfied with it and have been investigating other mcthods of

preventing the weights from growing too large when only a few of the possible input vectors ever occur.

The simulations presented in the next section employed a modification of the obvious steepest descent
method implied by Eq. (10). Instead of changing wy by an amount proportional (o p; — p,:', it is simply
incremented by a fixed “weight-step” if p,J >pj and decremented by the same amount if py< pj. The
advantage of this method over steepest descent is that it can cope with wide variations in the first and second
" derivatives of G. It can make signiﬁcant progress on dimensions where (G changes gently without taking very
large divergent steps on dimensions where G falls rapidly and then rises rapidly again. There is no suitable

value for the ¢ in Eq. (10) in such cases. Any value large enough to allow progress along the gently sloping
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floor of a ravine will cause divergent oscillations up and down the steep sides of the ravine.3 -

4 The encoder problem

The-“encoder problem” (suggested to us by Sanjaya Addanki) is a simple abstraction of the recurring task of
communicating information among various components of a parallel network. We have used this problem to
test out the learning algorithm because it is clear what the optimal solution is like and it is non-trivial to
discover it. Two groups of visible units, designated ¥, and ¥, represent two systems that wish to
communicate their states. Each group has v units. In the simple formulation we consider here, each group
has only one unit on at a time, so there are only v different states of each group. ¥, and ¥, arc not connected
directly but both are connected to a groui) of h hidden units H, with #<v so H may act as a limited capacity
. bottleneck through which information about the states of ¥ and ¥, must be squeezed. Since all simulations
began with all weights set to zero, finding a solution to such a problem requires that the two visible groups

come to agree upon the meanings of a set of codes without any a priori conventions for communication

through H.

To permit perfect communication between the visible groups, it must be the case that hz lqglv.. We
investigated minimal cases in which #= log, v, and cases when h was somewhat larger than log,v. In all
cases, the environment for the nctwork consisted of v equiprobable vectors of length 2v which specified that
one unit in V; and the corresponding uﬂit in ¥, should be on together with all other units off, Each visible
group is completely connected internally and each is completely connected to A, but the units in A are not

connected to each other.

Because of the severe speed limitation of simulation on a sequential machine, and becausce the learning
requires many anncalings, we have primarily experimented with small versions of the encoder problem. For
example, Figure 2 shows a good solution to a “4-2-4” encoder problem in which v=4 and h=2. The
interconnections between the visible groups and H have developed a binary coding — each visible unit causes
a different pattern of on and off states in the units of #, and corresponding units in ¥, and ¥, support
identicat patterns in F. Note how the bias of the second unit of ¥ and V, is positive to compensate for the

fact that the code which represents that unit has all the H units turned off.

3The problem of finding a suitable vatue for & disappears if ‘one performs a fine search for the lowest value of G along the current
direction of stecpest descent, but line searches are inapplicable in this case. Only the local gradient is available. There are bounds on the
sccond derivative that can be used to pick conservative values of £ (Mark Derthick, personal communication), and methods of this kind
are currentty under investigation. )
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Figure 2: A solution to an encoder problem. The link weights are displayed using a recursive
notation. Each unit is represented by a shaded I-shaped box; from top to bottom the rows of
boxes represent groups ¥, H, and ¥,. Within each box, the black or white rectangles show the
strengths of that unit’s connections to the other units. The size of a rectangle indicates the
magnitude of the weight; white rectangles represent positive weights and black rectangles
represent negative weights, Within the box representing a unit, the relative position of a rectangle
indicates which other unit is involved in the connection. For example, the large white rectangle
in the third unit along in the top row represents a positive connection to the first unit in the
second row. All connections between units appear twice in the diagram, once in the box for each
of the two units being connected. For example, the connection described above also appears in
the first box of the second row of units, but it occupies a different relative position within this
box. To give an idea of the scale of the weights, this connection has a weight of 26. In the
position that would correspond (o a unit connecting to itself (the second position in the top row
of the second unit in the top row, for example), the bias is displayed. '

4.1 The 4-2-4 encoder

The experiments on networks with v = 4 and h = 2 were performed using the following learning cycle:

L. Estimation of py: Each environmental vector in turn was clamped over the visible units. For each
environmental vector, the network was allowed to reach equilibrium twice. Statistics about how
often pairs of units were both on together were gathered at equilibrium. To prevent the weights
from growing too large we used the “noisy” clamping technique described in Section 3.2. Each on
bit of a clamped vector was set to off with a probability of 0.15 and each offbit was set to on with a
probability of 0.05. '

2. Estimation of pjj: The network was completely unclamped and allowed to reach equilibrium at a
temperature of 10, Statistics about co-occurrences were then gathered for as many annealings as .
were used to estimate py.
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3. Updating the weights: All weights in the network were incremented or decremented by a fixed
weight-step of 2, with the sign of the increment being determined by the sign of p; — pj;.

Whena séttling to equilibrium was required, all the unclamped units were randomized with equal probability
on or off (corresponding to raising the temperature to infinity), and then the network was allowed to run for
the following times at the following temperatures: [2@20, 2@15, 2@12, 4@1{)}.4 After this anncaling
schedule it was assumed that the network had reached equilibrium, and statistics were collected at a

temperature of 10 for 10 units of time,

We observed three main phases in the search for the global minimum of .G, and found that the occurrencé of
these phases was relatively insensitive to the precisc parameters used. The first phase begins with all the
. weights set to zero, and is characterized by the development of negative weights throughout most of the
network, implementing two winner-take-all networks that model the simplest aspect of the environmental
structure — only one unit in each visible group is normally active at a time. In a 4-2-4 encoder, for example,
the number of possible patterns over the visible units is il By implementing a winner-take-all network
among each group of four this can be reduced to 4 x 4 low energy patterns. Only the final reduction from A
to 22 low energy patterns requires the hidden units fo be used for communicating between the two visible

groups. Figure 3a shows a 4-2-4 encoder network-after 4 learning cycles.

Although the hidden ﬁnits are exploited for inhibition in the first phase, the lateral inhibition task can be
handled by the connections within the visible groups alone. In the second phase, the hidden units begin to
develop positive weights to some of the units in the visible groups, and they tend to maintain symmetry
between the sign and approximate magnitude of a connection to a unit in ¥, and the corresponding unit in V5.
The second phase finishes when every hidden unit has significant connection weights to cach unit in ¥, and
analogous weights to each unit in ¥, and most of the different codes are being used, but there are some codes

that are used more than once and some not at all. Figure 3b shows the same network after 60 learning cycles.

_ Occasionally all the codés are being used at the end of the second phase in which case the problem is solved.
Usually, however, there is a third and longest phase during which the learning algorithni sorts out the -
remaining conflicts and finds a global minimum. There are two basic mechanisms involved in the sorting out
process. ‘Consider the conflict between the 1% and 4% units in Figure 3b, which are both employing the code
{—,+>. When the system is running without environmental input, the two units will be on together quite
frequently. Consequently, p/, will be higher than p 4 because the environmental input tends to prevent the

two units from. being on together, Hence the learning algorithm keeps decreasing the weight of the

4One unit of time is defined as the time required for each unit to be given, on average, one chance to change its state. This means that
if there are # unclamped units, a time period of 1 involves n random probes in which some unit is given a chance to change its state. -




Hinton, Sejnowski, & Ackley . _ , 3

| connection between the first and fourth units in each group, and they come to inhibit each other strongly'.
(This effect explains the variations in inhibitory weights in Figure 2. Visible units with similar codes are the
ones that inhibit each other strongly.) Visible units thus compete for “territory” in the space of possible
" codes, and this repulsion effect causes codes to migrate away from similar neighbors. In addition to the °
.repulsion effect, we observed another process that tends to eventuaily bﬁng the unused codes adjacent (in
terms of hamming distance) to codes that are involved in a conflict. The mechanics of this process are

somewhat subtle and we do not take the time to expand on them here.

(B) _
~Figure 3: Two phasesin the development of the perfect binary encoding shown in Figure 2. The
weights are shown (A) after 4 learning trials and (B) after 60 learning trials.
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The third phase finishes when all the codes are being used, and the weights then tend to increase so that the
solution locks in and remains stable against the fluctuations caused by random variations in the cooccurrence

statistics. (Figure 2 is the same network shown in Figure 3, after 120 learning cycles.)

In 250 different tests of the 4-2-4 encoder, it always found one of the global minima, and once there it

remained there. The median time required to discover four different codes was 110 learning cycles. The

longest time was 1810 learning cycles.

' 4.2 The 4-3-4 encoder

Figure 4: A 4-3-4 encoder that has developed optimally spaced codes.

A variation on the binary encoder problem is to give A more units than are absolufely necessary for encoding
the patterns in ¥, and ¥;. A simple example is the 4-3-4 encoder which was run with the same parameters as
the 4-2-4 encoder. In this case the learning algorithm quickly finds four different codes. Then it always goes
on to modify the codes so that they aré optimally 'spaced out and no pair differ by only a single bit, as shown
in Figure 4. The median time to find four well-spaced codes was 270 learning cycles and the maximum time

in 200 trials was 1090.

" 4.3 The 8-3-8 encoder _

. With v=8 and h=3 it took many more learning cycles to find all 8 three-bit codes. We did 20 simulations,
running each for 4000 learning cycles using the same parameters as for the 4-2-4 case (but with a probability
of 0.02 of reversing each off unit during noisy clamping). The algorithm found all 8 codes in 16 out of 20
simulations and found 7 codes in the rest. The median time to find 7 codes was 210 learning cycles and the

median time to find all § was 1570 cycles. 7
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The difficulty of finding all 8 codes is not surprising since the fraction of the weight space that counts as a
solution is much smaller than in the 4-2-4 casc. Sets of weights that use 7 of the 8 different codes are found
fairly rapidly and they constitute focal minima which are far more numerous than the global minima and have
almost as good a value of G. In this type of G-space, the learning algorithm must be carcfully tuned to achieve
a global minimum, and even then it is very slow. We believe that the G-spaces for which the algorithm is
well-suited arc ones where there are a great many possible solutions and it is not césentia] to get the very best
one. For large networks to learn in a reasonable time, it may be necessary to have enough units and weights
and a liberal enough specification of the task so that no single unit or weight is essential. The nexﬁ example

illustrates the advantages of having some épa_re capacity.

4.4 The 40-10-40 encoder

A somewhat larger example is the 40-10-40 encoder. The 10 units in H is almost twice the theoretical
minimum, but A still acts as a limited bandwidth bottleneck. The learning algorithm works well on this
problem, Figure 5 displays the resulting network. ¥igure 6 shows its performance when given a pattern in ¥
and requiréd to settle to the corresponding pattern in ¥,. Each learning cycle involved annealing once with
each of the 40 environmental vectors clamped, and the same number of times without clamping. The codes
that the network selected to represent the patterns in ¥, and ¥, were all separated by a hamming distance of at
least 2, which is very unlikely to happen i:-y chance. As a test, we compared the weights of the connections
between visible and hidden units. Each visible unit has 10 weights connecting it to the hidden units, and to
avoid errors, the 10 dlmcnsmnal weight vectors for two different visible units should not be too similar. The
cosine of the angle between two vectors was used as a measure of similarity, and no two codes had a similarity
greater than 0.73, whereas many pairs had similarities of 0.8 or higher when the same weights were randomly

rearranged to provide a control group for comparison.

To achieve good perf‘orméncc on the completibn tests, it was necessary Lo use a very gentle annealing ;chedule
during testing. The schedule spent twice as long at each temperature and went down to half the final
temperéture of the schedule used during learning. As the anncaling was made faster, the error rate increased,
thus giving a very natural speed/accuracy trade-off. We have not pursued this issue any further, but it may
prove fruitful because some of the better current models of the speed/accuracy trade-off in human reaction
time experiments involve the idea of a biased random walk (Ratcliff 1978) and the annealing search gives rise -

to similar underlying mathematics.




Figure 5: A 40-10-40 encoder network. The center column is group
four columns are groups ¥; and V,.
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Figure 6: Completion accuracy of a°40-10-40 encoder during learning. The network was tested
by clamping the states of the units in %) and letting the remainder of the network reach
equilibrium. If just the correct unit was on in V;, the test was successful. This-was repeated 10
times for each of the 40 units in ¥,. For the first 300 learning cycles the network was run without
connecting up the hidden units. This ensured that each group of 40 visible units developed
enough lateral inhibition to implement an effective winner-take-all network. The "hidden units
were then connected up and for the next 500 learning cycles we used “noisy” clamping, switching
on bits to off with a probability of 0.1 and off bits to on with a probability of 0.0025. After this we
removed the noise and this explains the sharp rise in performance after 800 cycles. The final
performance asymptotes at 98.6% correct.

5 Representation in parallel networks

So far, we have avoided the issuc of how complex concepts would be represented in a Boltzmann machine.
'I‘h_e.individual_unit_s stand for “hypotheses”, but what is the relationship between these hypotheses and the

- kinds of concepts for which we have words? Some workers suggest that a concépt shouid be represented in an
essentially “local” fashion: the activation of one or a few compuﬁng units is the rebresentation for a concept -
(Feldman & Bai]ard, 1982), while others view concepts as “distributed” entities: aparﬁcular pattern of activity .
over a large groub of units represents a concept, and different concepts correspbnd to alternative patterns of

activity overﬂw same group of units (Hinton, 1981a).
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One of the better arguments in .favor of local representations is their inherent modi:larity. Knowledge about
relationships between concepts is localized in specific connections and is therefore easy to add, remove, and
modify, if some reasonable scheme for forming hardwarc ‘connections can be found (Feldman, 1981;
Fahlman, 1980). With distributed representations, however, the knowledge is diffuse. This is good for
tolerance to local hardware damage, but it appears to make the design of modules to perform specific

functions much harder. 1t is particularly difficult to see how new distributed representations of concepts

could originate spontancously.

In a Boltzmann machine, a distributed representation corresponds to an energy minimum, and so the problem
of creating a good collection of distributed representations is equivalent to the problem of creating a good
“energy landscape.” The learning algorithm we have presented is capable of solving this problem, and it
: therefore makes distributed representations con51derab1y more plausible. The diffuseness of any one piece of
knowledge is no longer a serious objection, becausa the mathematical simplicity of the Boltzmann distribution
makes it possible to manipulate all the diffuse local weights in a coherent way on the basis of purely local

information. The formation of a simple set of distributed representations is illustrated by the encoder

problems.

5.1 Communicating information between modules

The encoder problem cxamples also suggest a method for communicating symbols between various
components of a parallel computational network. Feldman & Ballard (1982) present sketches of two
implementations for this task, using the example of the transmission of the concept “wormy apple” from
where it is recognized in the perceptual system to where the phrase “wormy apple” can be gerierated by the
speech system. They argue that there appear to be only two ways that this could be accomplished. In the first
method, the perceptual information is encoded into a set of symbols that are then transmitted as messages to
the speech systermn, where they are decoded into a form suitable for utterance. In this case, there would be a
set of general-purpose commumcatxon lines, analogous to a bus in a conventional computer, that would be
used as the medium for all such messages from the visual system to the speech system. Feldman & Ballard

describe the problems with such a system as:

e Complex messages would presumably have to be transmitted sequentially over the.
communications lines. :

e Both sender and receiver would have to learn the common code for each new concept.

e The 'method seems biologically implausible as a mechanism for the brain.

The alternative implementation they suggest requires an individual, dedicated hardware pathway for each

concept that is communicated from the perceptual system to the speech system. The idea is that the
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simultaneous activation of “apple” and “worm” in the perceptual system cén be transmitted over private links
to their countcrparts in the spcech system. The critical issucs for such an implementation are having the
neccssary connections available betwecn conccpts, and being able to cstablish new conncction' pathways as
new concepts are learned in the two systems, The main point of this approach is that the links between the

computing units carry simple, non-symbolic information such as a single activation level.

The behavior of the Boltzmann machiné when presented with an encoder problem demonstrates a way of
communicating concepts that largely combines the best of the two implementations mentioned above, Like
the second approach, the computing units are small, the links carry a simple numeric value, and the -
computational and connection requirements are within the range of biological plausibility. Like the first
approach, the architecture is such that many different concepts can be transmitted over the same
‘ communication lines, altowing for effective use of limited connections. The learning of new codes to
represent new concepts emerges automatically as a cooperative process from the G-minimization learning

algorithm,

6 The Shifter Problem

The encoder example is a good test case for the learning algorithm because it is clear how the hidden units |
must be used. However, the encoder example is very untypical in an important way: the only reason the
hidden units are needed at all is that the visible units do not have the appropriate direct connections. For
most interesting tasks, hldden units are needed even if each visible unit is connected to every other because
the sum of a lot of pairwise intcractions is incapable of capturing any higher-order statistical structure that

exists in the ensemble of pattefps which the environment clamps on the visible units.

A simple example which can only be solved by capturing the higher-order structure is the shifter problem.
The visible units are divided into three groups. Group ¥, is a one-dimensional array of 8 units each of which
is clamped on or off at random with a probability of 0.3 of being on. Group ¥, also contains 8 units and their
states are determined by shifting and copying the states of the units in group -Vl. The only shifts atfowed are -
one to the left, one to the right, or no shift. Wrap-around is used so that when there is a right shift, the state of
the right-most unit in V) determines the state of the left-most unit in ¥, The three shifts are chosen at
random with equal probabilities. Group ¥, contains three units to represent the three possible shifts, so at any

one time one of them is clamped on and the others are clamped off,

The problem is to “recognize” the shift — i.c. to complete a partial input vector in which the states of ¥V, and
V, arc clamped but the units in ¥ are left free. Itis fairly easy to see why this problem cannot possibly be

solved by just adding together a lot of pairwise interactions between units in ¥}, ¥}, and V. If you know that
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units into feature detectors of this kind, and whether it will generate a set of detectors that work well together
rather than dupticating the same detector. The sct of weights that minimizes G defines the optimal sct of
detectors but it is not at all obvious what these detectors are, nor is it obvious that the learning algorithm is

capable of finding them.

Figure 7 shows the result of running a variation of the standard Iearnihg algorithm. Of the 24 hidden units, 5
" geem to be doing very little but the remainder are sensible looking dctectors and most of th_:m have become
spatially localised. One type of detector which occurs several times consists of two large negative weights, one
above the other, flanked by smaller excitatory weights on each side. This is a more discriminating detector of
no-shift than simply having two positive weights, one above the other. It is interesting to note that the various
instances of this feature type all have different locations in ¥ and V;, even though the hidden units are not
" connected to each other. The pressure for the feature detectors to be different from each other comes from
the gradient of G, rather than from the kind of iateral inhibition among the feature detectors that is used in

“competitive learning” paradigms (Rumelhart & Zipser, 1984; Fukushima, 1980).

The shifter problem is encouraging because it is a clear example of the kind of learniﬂg of higher-drder

structure that was beyond perceptrons, but it also illustrates several weaknesses in the current approach to
learning: ' ’

1. The weights are fairly clearly not op timal because of the 5 hidden units that appear to do nothing
useful, and further learning did not fix this. Also, the performance is not as good as it could be.
When the states of the units in ¥; and ¥, are clamped and the network is annealed gently to half
the final temperature used during learning, the shift units quite frequently adopt the wrong states.
1f the number of on units in ¥ is 1, 2, 3, 4, 5, 6, 7 the percentage of correctly recognized shifts is
50% 71% 81% 86% 89% 82% 66% respectively. The wide variation in the number of active units in
¥, naturally makes the task harder to learn than if a constant proportion of the units were active.

2. When the “standard” version of the learning algorithm described above was applied to the shifter
problem there was a pronounced tendency for some of the hidden units to develop weights that
caused them 1o be permanently off. This “suicide™ effect is hard to recover from because if a unit
is always off, its co-occurence statistics will always be the same (zero) in both the clamped and the
free-running phases, and so the estimated derivative of G with respect to any of its weights will be
zero. Some of the reasons for the suicide effect are discussed by Derthick (1984). To avoid it we
used a variation of the Iearning algorithm that was suggested and tested by Barak Pearlmutter.
This variation is described in Section 6.1. '

3. The learning was very slow. 1t required 9000 learning cycles each of which involved reaching
equilibrium 20 times with clamped input vectors and the same number of times without any
clamping. The speed of learning is discussed further in Section 7. '
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6.1 Keeping the weights smal

The learning algorithm presupposes that the network reaches thermal cquilibrium, and it uscs the co-
occurence statistics measured at cquilibriufn to create an cnergy landscape that models the structure of the
ensemble of vectors produced by the environment. Unfortunately there is nothing in the learning algorithm
to prevent it from creating an e.nergy landscape that contains large energy barriers which prevent the network
from rteaching equilibrium. If this happens, the network may perform badly, and more importantly, the
statistics that are collected will not be equilibrium statistics so there is no guarantee that the bhanges in the

weights will improve G.

One way to avoid the large weights that tend to make it hard to achieve equilibrium is to keep all the weights

small. A simple way of doing this is to redefine the quantity to be minimized as:
G+ hy. (w)
ij

where A is a coefficient that determines the relative importance of minimizing G and keeping the weights
small. The effect of the extra term is to make all the weights decay towards zero by an amount proportional to
their current magnitude. This ensures that large weights which are not important for achieving a low value of

Gtend to shrink. For the shifter example shown in Figure 7 the value of & was 0.0005.

7 The speed of learning

The examples presented here took a long time to learn even though they are very small-scale. The time taken
is not just a consequence of using serial machines to simulate parallel networks. Even in a truly paratlel
machine’ the learning would be slow because the gradient descent requires a great many annealings with

different input vectors. This slowness raises several questions:

1. How does the learning time scale with the size of the problem?

2. Can the learning algorithm be generalized to exhibit the kind of “one—_shot” learning in which a.
person is told a fact once and then remembers it for a long time? :

3. How much faster is the learning when the connectivity of the network and the initial values of the
weights are approximately correct for the task at hand (as they might be for parts of the visual or
motor system that have had time to evolve an appropriate architecture)?

4.Do good solutions generally have a particular statistical structure? If so, it may be possible to
impose strong a priori domain-independent constraints on the values of the weights or the _
connectivity that will constrain the search for a good set of weights to a subspace. For example, it

5A trly parallel machine requires the annealing process to be tolerant of time delays. When one unit makes its decision it will be
“unaware” of the states of other units that changed very recently, and this must not prevent the nctwork from reaching equilibrium. See
Section 11 for 2 discussion of time delays.




Hinton, Sejnowski, & Ackley : 23

may be that for many problems a layered network with lateral inhibition within a layer and
excitation between layers is a good solution. If so, the scarch can be confined to this subspace of

the weight space,

We do not yet have good answers to any of these questions, but some comments on “one-shot™ learning and

on the way learning-time scales with the size of the problem may be helpful.

7.1 One-shot learning versus regularity detection

In the shifter problem there are 19 visible units and hence 2! possible vectors that can be clamped on the |
visible units. Of these, only 3 x 28 actually occur. This is far t00 many for each pattern to be learned as an
independent fact. The only way to learn the task is to capture the relatively tow-order underlying regularities,
- and this is what the hidden units do. It is not surprising that the learning is stow. To reach the weights shown
in Figure 7 required 20 x 9000 samples, but this does not seem all that excessive when the problem is
expressed as learning a particular subset of 768 out of half a million pattérns. A lot of samples must be taken

before this subset is revealed.

Tt is hard for people to realise the difficulty of the task because Figure 7 is laid out in such a way that m-n'
existing notions of spatial locality make ‘it easy to express the task. If the visib]e units were randomly '
reordered, the learning algorithm would do just as well because it starts from scratch, but people would find
the task much harder. When it creates localised feature detectors among the hidden units, the learning

algorithm is actually constructing spatial locality.

Learning a single new fact that can be expressed in terms of familiar concepts is very different from learning
frdm scratch, particularly if the fact is one which is plausible given the existing knowledge that the system has.
In the Boltzmann machine, the existing knowledge is an cnergy landscépe, and to learn a new fact is to create
a new energy minimum. For a plausible fact this means taking a state which had an energy somewhat higher
than the energy of the known facts and lowering its energy. For successful one-shot learning it is important
that creating this new minimum does not disturb the existing minima too much. If we use local
representations in which one unit is dedicated to each fact, only the connections to this unit need to be
modified, and so it is obvious that a new fact can be incorporated without interfering with existing facts. If we
use distributed repfesentations it is less obvious, because each weight will be involved in many minima, and

so changing the weights to lower one minimum will interfere with many others.

The following reasoning shows that the interference effect can be made very small by using patterns of-
activity in which the fraction, £ of the units which are on at any one time is small. To keep the mathematics

simple we assume a version of the learning algorithm that performs gradient descent by changing each weight
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by e (py — pfj)- We also assume that all the global states which occur have the same fraction of on bits. This
means that the total number of pairs of on units remains constant. Hence, the mean values of p; and P

averaged over all connections must be the same and so the total of all the weights must remain constant.

Suppose that the units in the network are totally connected.® Suppose also that a set of global states are used
to estimate p; before changing the weighis. Now consider the effect of adding a single additional global state,
a, to this set. This will have two effects: |

1. The weights between units which are both on in a will get a bigger increment than before. Define

5 to be the size of this increase in the increment.

2.To keep the sum of the weights constant, the remaining weights must have a reduction of
f28/{1 — f?)in their expected increment.

So the global state « will have its energy lowered by N§ where N is the number of pairs of o unitsin a global

state. A global state, 8, that is randomly related to a will have about Nf 2 of its weights incremented by & -
more than before and the remainder incremented by £28/(1 — £?) less than before. The net effect of the '
occurence of & on the energy of B will therefore be about 0, and this effect will be composed of twod
conflicting effects each of which is only about f? of the change in the energy of a. So provided fK1 thered
will be very little unwanted transfer of learning. Only patterns which are significantly similar to a will have

their energies significantly effected, and this is just what is need to achieve gencralization. Hence one shot

learning is possible without significantly disrupting the existing knowledge.

7.2 How the learning-time scales

The question of how the learning time depends on the size of the problem is very important, but it is also very

complex because many other factors have to be scaled at the same time and it is not at all obvious how they

should be scaled. The factors include:

1. The ratio of hidden to visible units.
2. The number of connections per unit.
3. The number of constraints in which each visible unit is involved.

4. The ordér of the underlying constraints: If the constraints among the visible units become higher
order as the problem gets bigger, the problem may get much harder.

5. The compatibility of the constraints: If different constraints typically conflict with one another,
the problem may become much harder as its size increases because many constraints must be

6The use of sparse conneetivily does-not affect the argument,
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traded off against each other and this means that the system will take a long time to reach
equilibrium and wilt only perform well if the various weak constraints have just the right relative
strengths. If, on the other hand, the constraints typically agrec with cach other the global
minimum will be over-determined.’. 1t will be possible to reach equilibrium rapidly, and the
learning afgorithm will only need to find a subset of the constraints in order to achieve good
performance. )

The encoder problem illustrates some of these points about scaling. The 8-3-8 encoder takes much longer to
achieve 8 different codes than the 4-2-4 takes to achieve 4 different codes. However, the 40-10-40 encoder

achieves atmost perfect performance in fewer annealings than the 8-3-8 encoder.

There are an exponential number of valid constraints that the hidden units can capture in the encoder
_problem. These constraints have the form: If the active unit in ¥, is in subset S, then the active unit in ¥,
must be in the equivalent subset within V,. If the subset, S, is small the hidden unit will rarely be active and
so it will convey little information on average. The best solution is for each hidden unit to dedicate itself to
representing a different subset of about half the alternatives. The subsets should be chosen so that when a
unit in ¥, is activated, the represented subsets that contain the unit are sufficient to encode which unit it is.’
For the 4-2-4 and 8-3-8 cases this can only be done by choosing orthogonal subsets each. of which contains '
exactly half the alternatives. - For the 40-10-40 case there is much more freedom in choosing the particular

constraints that the hidden units should represent, and that is why the learning is relatively easier.

7.3 Degeneracy and the speed of lea rning

The small examples presented hcre require each and every visible unit to behave correctly. This may be
unreasonable for larger problems. It may well be sufficient to have rather broad, dcgenefate energy minima
in which many of the visible units arc not strongly constrained to be on or off. In large networks it will
probably be much easicr to construct and modify these degenerate minima than to construct deep narrow
minima in which the state of every unit is crucial. Narrow deep minima require large weights because
changing the states of a few units must make a big change in the energy. Broad minima can be made dcep

without any of the weights being large.

A further interesting property of broad minima is that they suggest a way in which one concept can be-
differentiated into several more refined oncs, By varying the weights between units that are not firmly on or '
off within a minimum it is possible to modify the shape of the floor of the minimum and thus o differentiate

one large minimum into several closely related minima which are only separated by small energy barriers.

7The problem of labeling a line-drawing in computer vision has this property. Simple drawings wilhout shadows are often highly
ambiguous. More complex drawing with shadows can be easier to label beeause more constraints conspire together to rule out all but the
correct labeling (Waltz, 1975)
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This kind of differentiation could be used to model what happens when a concept fike “dog” gets refined into
two more specific concepts like “big nasty dog” and “fittle nice dog.” The small barriers between concepts
within the same general class should make it easy for the network to “side-track™ to a neighboring, similar

concept when the current concept does not quite match the data, as suggested by Minsky (1975).

When a neural model does not work as well as was hoped, it is not uncommon for its creators to claim that if
only they had a really big network everything would be fine. Despite this unfortunate tendency, we feel that
the degeneracy of farge broad minima may be very important for the speed of learning and the ease of search,

and s0 large networks may be essential because degeneracy effects disappear in very small networks

8 Reducing higher-order constraints

An important way of distinguishing between constraints is by their “order.” A first-order constraint involves
only a single variable; a system consisting of only first-order constraints is tmrlal since the constraints can be
considered independently, Second-order constraints, involving two variables, are the simplest constraints that
can require a combinatoric search. Constraints which necessarily involve more than two variables will be
called “higher-order.” When no strong constraints are involved, weak higher-order constraints among three
or more given variables can qlways be approximated by introducing further variables and using only weak
first and second-order constraints among the larger set of variables. This means that a general architecture for
solving problems involving weak constraints need only implement ﬁmt and second-order constraints directly,
provided it can automatically reduce higher-ofder constraints to lower-order ones among a larger set of

variables.

Some weak constraints on a set of variables that appear to be higher-order can be expressed as collections of
first and second-order constraints without any extra variables. Consider, for example, the constraint on »
boolean variables “If exactly one variable is true, win one point, otherwise lose at least one point”. This
appears (0 an ah-order constraint, but it can actually be expressed by the following collection of first- and
second-order constraints: For each variable “Win one point if the variable is true”, and for each pair of

variables “Lose two points if the variables are both true”.

On the other hand, some third-order constraints cannot be reduced to first- and second-order ones without
introducing extra variables, The prototypical example of such a constraint is the exclusive-OR function: C
should be true if A is true or B is true, but not both, The difficulty is that only the combination of the states of
A and B constrains the state of C; the state of 4 or B alone says nothing about the state of C. Section 8.1
discusses this key example at length and demonstrates how the addition of an extra variable makes the

reduction to second-order possible.
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In general, there may -be an exponentiatly Iar_ge number of higher-order constraints among a given set of
variables. A practical system will have only a limited number of extra variables at its disposal for doing the
reduction to second order, so it must make.compromises in sefecting the best reduction. Determining which
higher-order constraints to reduce, and what to reduce them to, is a central problem for efficient constraint-
based knowledge representation. The general purpose learning algorithm presented in Section 3 can be
viewed as an automatic method of reducing higher-order constraints among a set of variables to second-order
constraints among a larger set. One can view the set of states of the visible units on which the machine is
trained as a single, very high-order, disjunctive constraint. To perform search efficiently, the machine must
reduce this constraint to a large set of first and second-order constraints, and to do this it must typically use

extra “hidden” units that are not mentioned in the task specification.

8.1 An example )
The approach and the key issues can be made clearer by considering in some detail a very simple example.
Suppose an environment consisted of the following equiprobable vectors: {0,00><0,1,1>,<1,0,D><1,1,00}. In
this case, there is an obvious rule that characterizes the set: the third element is the exclusive-OR of the first
two. That is not the only such rule; it could also be phrased as the second being the exclusive-OR of the first
and the third, or as the set of all triples of bits with even parity. The difference between these rules is in 110\‘&r
the instances of the problem are speciﬁed. For the first rule, an instance would provide constraints on the
first and second elements, and in finding a solution state that satisfied those constraints, the system could
naturally be viewed as computing the exclusive-OR of the first two clements and representing the result in the
third. With the third rule, any one or two of the elements migh_t be constrained by an instance, and the system

could be viewed as finding an even parity triple that satisfies the constraints of the instance.

This example is simple because the set of solution states is so small that a learning system of any significant
size could simply produce an internal List of the solution states and enumerate them to find a solutlon state
that fits any particular pamal pattern. Interestmg constramt satisfaction problems are rarely so compact -To
learn to be an effective problem-solver, a system must have the ability to extract rules from a presentation of

solution states; to extract regularities that tend to characterize membership in the set of solution states.

On the other hand this example is non—trmal for one important reason.” The state of any one element, by
itself, provides no information about whether any other element should be one or zero For each pair of
clements, the solution set contains all four combinations of ones and zeros. It is for precisely this reason that
Perceptrons were unable to compute the exclusive-OR function (Rosenblatt, 1961; Minsky & Papert, 1968).
A single-level decision unit is unable to capture the distinguishing feature of all characterizations of this

solution set: the states of two of the units, taken together, determines the third.
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For the same.reason, a Boltzmann Machine with only three interco.nnec.ted units is unable to represeﬁt this
solution set. Hypothesizing that the first element is a 1, by itself, does not constrain hypotheses about the
second or the third sufficiently to solQe the problem. However, notice the following decomposition of the set
of solution states: S,={<0.0,0,<0LDODLS,={CLLO}. § alone is a partial description of the
inclusive-OR function, and for that set there are constraints between pairs of units.} The hypothesis that the
first unit is a 1 constrains the third unit also to be a one, and analogously for the second unit. S, can be
represented by linking the first and second units to the third with positive weights, énd prdviding the third

unit with a negative bias, so that in absence of input from either of the other units, the third unit will tend to

be off.

The network will now correctly find the elcments of S,, but fails on S,, preferring <1,1,1> over.the correct
" state. By adding a hidden unit, however, this preference can be overridden. The hidden unit is given positive
weights to the first two units, a negative weight to the third unit, and a bias low enough that both of the first
two units must be on for the hidden unit to be likely to come on. The magnitudes of the weights are chosen
so that the negative weight between the hidden unit and the third unit overrides the positive weights between

the third unit and the first two. Figure 8 shows the resulting network.

-1

Figure 8: A Boltzmann Machine that computes the exclusive-OR ﬁmction

It is worth emphasizing that connections in a Boltzmann Machine are symmeltric; inside the machine there is
no concept of “input lines” or “output lines.” For example, it can cause confusion to think of the hidden unit
in the exclusive-OR network as taking the states of the first two units as “input”, and affecting the state of the
third unit as “output.” There is no preferred direction of causal flow through a Bolizmann Machine, there are

only states and energies associated with those states. Units function as “inputs” when they are clamped by the

a'l‘her.ﬂ. are other decompositions which work equally well.
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environment and therefore cannot be changed by the network, and they function as “outputs” when they are
not clamped, so with the pattern completion approach that we use in this paper, different instances of the

same problem can completely redefine the notions of input and output.

The exclusive-OR example is a very simple iilustration of a very hard general problem ihat a learning system
must face: the task of discovering and representing the higher-order regularities of the solution set, those that
do not manifest themselves as constraints on individual units or constraints between pairs of visible units.
Hidden units are not diréctly constrained by the instances in a solution set and are thus available for reducing
these higher-order constraints. Based on the environment and the structure of the network, a learning

algorithm must discover distinctions that are helpful for solving the problem, as was the distinction between

S, and S, above.

9 Bayesian inference

Bayesian inference suggests a general paradigm for perceptual interpretation problems: _S.uppose the
probability associated with one unit represents the probability that a particular hypothesis, h, 18 correct.
Suppose, also, that the “true” state of another unit is used to represent the existence of some evidence, e.
Bayes theorem prescribes a way of updating the probability of the hypothesis p(%) given the existence of new

evidence &
ISR (R CL)
plhle) = 208 ol + p(®) P(e®)
(.. p(R) plelR)
=1 (1 " p(h) P(elh))
=1/ {14e (1 263310 23
where J is the m;,g'a.tio.n ofh.

The Bayes rule has the same fonﬁ as the decision rule in (5) if we identify the probability of the unit with the
probability of the hypothesis. The bias of the unit implements the @ priori likelihood ratio and the weight
implements the effect of the evidence provided by the state of the other unit (assuming the temperature is
fixed at 1): - |




30 Boltzmann Machines

. | A
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p(h) ple[h)

Bayesian inference with one piece of evidence can therefore be implemented by units of the type we have

been considering. There are, however, several difficulties with this simple formulation.
1. It provides no way for the negation of the evidence e to affect the probability of h.

2.1t does not lead to symmetrical weights when two units affect each other since p(dh)/p(dh) is
generally not equal to p(le)/p(hle). i .

Although it can easily bé generalized to cases where there are many independent pieces of

3.
" evidence, it is much harder to generalize to cases where the pieces of evidence not independent of

each other.

A diagrammatic representation of the way to solve the ﬁrst difficulty is shown in Figure 9.

OR—"

p(elh)
where wpz =In——=
o r(elh)

Figure 9: How to implement the required effect of an off unit. The effect of ¢ is'irpplemented,by
putting it into the bias term for A4, and by subtracting an equal amount from the weighting
coefficient from e, so that when e is in the true state the effect of the bias term on k is cancelfed

T out.

The combined weight from e in Figure 9 is:
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Wiotal = Whe — Whs

o Pleln) | p(eEh)
plelh)  p(Eh)

(e AR)[L - ple) — p(h) + ple A )]

~In?
[p(e) — ple A h)][p(h) — p(e A h)]

This equation is symmetrical in e and. 4, so in solving the problem of how to make the negation of e have the
correct cffect on / we have also solved the second problem — the required weights are now symmetrical. The
' more complicated weight in the resultant equation does not alter the fact that the probability of a hypothesis

has the form of the Boltzmann distribution for a unit with two energy states.

Systems which use Bayesian inference often make the assumption that pieces of evidence are independent.
This assumption is motivated by the belief that it would be too difﬁcul_t to discover all the dependencies and
100 expensive to store them even if they were known. 'Unfortunately, the ihdependence assumption is hard to
justify and it is typically a poor approximation in systems with many mutually interdependent hypotheses.
This has led people working in the domain of medical diagnosis, for example, to reject Bayesian statistics in
favor of more discrete, symbolic systems that use underlying causal models. Recently, however, Charniak
(1983) has argued that the two approaches can be reconcxled It is possible to use Baycsian statistics and to do
much better than the independence assumptlon by using a relatively small set of additional “causal factors™

which capture the most significant non-independencies. These causal factors are analogous to our hidden _
units because they are not part of the definition of the task — which is to relate diseases to symptoms — but

they arc useful becausc they allow the higher-order structure of the refationships to be expressed.

The analogy can be taken further. Any practical medical diagnosis system that attempted to extend the
applicability of Bayesian statistics by using underlying causal faetors would probably get the appropriate
factors from medical experts. It is tempting, however, to ask if there is an automatic procedure for deriving
the factors from the data, or for fine-tuning the factors provided by expests. This is Just what our learning
algorithm does. Given some hldden units, it adjusts the strengths of their connections to the visible units and

to each other so as to turn them into a useful set of “causal factors.”

To summarize: The independence assumption keeps things simple, but it is likely to be wrong for complex
problems. The full set of inter-dependencies (higher-order statistics) is much too large to acquire or to store.

A good compromise is to focus on the most significant violations of independence and to use extra “causal”
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factors-to express them. The hidden units of a Boltzmann machine are just like these causal factors, and the

learning algorithm can discover effective ways of using them,

10 Sequences

There is a serious obstacle which appears to prevent Boltzmann machines from modeling sequential symbol
processing: At thermal equilibrium, there are no consistent sequences, and so a Boltzmann machine of the
kind we have described is unable to produce sequential behavior. It can only respond to environmental

changes, it cannot generate internal sequences.

It is tempting, when confronted with this problem to abandon the symmetry assumption and to use
“asymmetrical weights to encode sequential behavior. Sequences then correspond to continuous paths through
phase-space. This is certainly a possibility (Hopfield, 1983), but it is incompatible with the central idea of
performing constraint-satisfaction searches by relaxing to equilibrium under the influence of sustained input.9
If syslemalz:c asymmetries are used to encode sequential information, Lhé whole power of the search technique

and of the resultant learning algorithm is destroyed.

What is at issue here is not just a minor modification. Systems with symmetric weights form a very interesting
class of computational device because their dynamics is governed by an energy function.®This is what makes
it possible to analyze their ‘behavior and to use them _for iterative constraint-satisfaction. They form an
important natural class precisely because they lack the ability to go through regular sequences. In their
influential exploration of Perceptrons, Minsky & Papert (1968; p 231) concluded that: “Multilayer machines
with loops clearly of)cn up all the questions of the general thcory of automata.” This statement is very
plausible but recent developments suggest that it may be misleading because it ignores the symmetric case
and it scems to have led to the general belief that it would be impossible to find an interesting generalization

of perceptrons, and in particular a generalized perceptron convergence theorem for multi-layered networks.

An alternative to simply mixing in some asymmetric links in order to allow sequences is to separate out the
symmetric and asymmetric components. A system could be composed of a number of internaily symmetric

modules that are asymmetrically connected to one another. Fach module could then perform constraint-

9It is, of course, possible to represent sequences in a symmetric Bolizmaon machine. 1f several different groups of units are dedicated
to the different temporal pieces of a sequence, the states of these groups can represent the “fillers” of these temporal “slots,” and the
weights can be set 5o as to create energy minima for particular combinations of temporal slot fillers. It is then possible to recall the rest of
a sequence from some fraction of it. However, this ability to recreate a static “spatial” representation of a sequence is quite different
from the ability to proceed through the sequence. It does not require any temporal regularity in the internal states of the machine.

10One can easily write down a similar energy function for asymmetric networks, but this energy function does not govern the behavior
of the network when the links are given their normal causal interpretation.
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satisfaction searches, with the asymmetric inpﬁts to the module acting as boundary conditions that determine
the particuiar problem it has to solve at any moment, Given an architecturc of this kind, it might be
appropriate to use very different kinds of description at different time-scales. In the short term, the modules
would perform péu'al]el iterative constraint-satisfaction searches. In the longer term, the result of each search

could be viewed as a single step in a strictly serial process, with each search setting up the boundary

conditions for the next.

The idea of a codrse—grained, sequential dcséription that is implemented by a series of parallel constraint- -
satisfaction searches seems to fit quite well with the idea of a production system architecture in which all the
heavy computational work is done by a parallel “recognition process” that decides which rule best fits the

current state of working memory.

One of the major difficulties in implementing this kind of matching is to ensure that there is a consistent set of
bindings between the variables in a rule and the constants and variables of the instances in working memory.
Discovering a consistent set of bindings is called unification and it requires a rather flexible matching process.
Newell (1978) has suggested that this kind of flexible matching acts as a sequential bottleneck in people.
Hinton (1981) describes a parallel network that is capable of performing the equivalent process im
object-recogniI:ion.11 This network has Lhe; interesting property that it can only settie on one match at a nme
The settling process performs a large parailel search amdn_g alternative “rules” and “bindings” but the only

way to ensure consistency of the bindings is to settle on a single match.

There are clearly many difficult problems in implementing production systems in a collection of Boltzmann
machine modules, but we fecl that this “discrete symbolic” approach may be more fruitful than trying to
model scquences by continuous paths through state space, and it may help to explain how a collection of

massively parallel, rather noisy modules can behave like a machine that manipulates discrete symbols

according to formal rules.

11 The relationship to the brain

One of the main reasons for studying Boltzmann machines is that they bear some resemblances to brains. The
“hope is that by studying a simple and idealized machine that is in the same general class of computatioha]
device as the brain, we can gain insight into the principles that underlie biological computation (especially the

kinds of computation that occur in mammalian neocortex). This is clearly a vain hope if there are

11In object recognition the problem is to find the viewpoint-independent object-model that best fits the current collection of
viewpoint-dependent features. The object-models are like rules and the viewer-centered features are like instances in working memory.
The viewing transform that relates viewer-centered and object-centered features is like the set of variable bindings.
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irreconcilable differences between the cortex and Boltzmann machines that are crucial to the way Boltzmann

machines compute. In this section we discuss some of the most obvious differences.

11.1 Binary states and action potentials

Neurons are complex biochemical entities and the simple binary units studied here are not meant to be literal
models of cortical neurons. However, two of our key assumptions, that the binary units change state
asynchronously and that they use a probabilistic decision rule, seem closer to reality than a model with

synchronous, deterministic updating.

The energy gap for a binary unit has a role similar to that played by the membrane potential for a neuron:
both are the sum of the excitatory and inhibitory inputs and both are used to determine the output state.
" However, neurons produce action potentials — I_Jrief spikes that propagate down axons — rather than binary
outputs.' When an action potential reaches a synapse, the signal it produces in the postsynaptic neuron rises to
a maximum and then exponentially decays with the time constant of the membrane (typically around $ msec
for neurons in cerebral cortex). The effect of a single spike on the postsynaptic cell body may be further

broadened by electrotonic transmission down the dendrite to the cell body.

The energy gap represents the summed input from all the recently active binary units. If the average time
bétwéen updates is identified with the average duration of a postsynaptic potential then the binary pulse
between updates can be considered an approximation to the postsynaptic potential. Although the shape of a
single binary pulse differs significantly from a postsynaptic potential, the sum of a largernumber of stochastic
pulses is independent of the shape of thé individual pulses and depends only on their amplitudes and
durations. Thus for large networks having the large fan-ins typical of cerebral cortex (around 10,000) the

binary approximation may not be too bad.

11.2 Implementing temperature in neurons

What significance could the probabilistic decision rule in Eq. (5) have for neurons, and in particular, what
does the temperature correspond to and how can it be controlled? The membrane potential of a neuron is
graded, but if it exceeds a fairly sharp threshold an action potential is produced followed by a refractory
period lasting several msec during which another action potential cannot be elicited. If Gaussian noise is
added to the membrane potential, then even if the-total synaptic input is below threshold, there. is a finite

. probabiiity that the membrane potential will reach threshold.

The amplitude of the Gaussian noise will determine the width of the sigmoidal probability distribution for the

neuron to fire during a short time interval, and it therefore plays the role of temperature in the model.
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Figure 10: Two superimposed curves. One is the sigmoid function of Figure . The other is the
cumulative area under a Gaussian, which gives the probability that the threshold of a unit will
be exceeded by the sum of its encrgy gap and some Gaussian noise with mean 0. If the standard
deviation of the Gaussian is chosen appropriately, the two curves never differ by more than about

1%. '
Surprisingly, a cumulative Gaussian is a very good approximation to the required probability distribution
{Figure 10). Intracellular recordings from neurons show that there is stochastic variability in the membrane
potential of most neurons, in part due to fluctuations in the ﬁaHSmitter released by presynaptic terminals.

Othei’ sources of noise may also be present and could be controlled by cellular mechanisms,

In the visual cortex of primates single neurons respond to the same visual stimulus with different sequences of
action potentials on each trial (Sejnowski, 1981). In order to measure a repeatable response the spike trains
are typically averaged over 10 trials. The gesult, called the post-siimulus time histogram, gives the prdbability '
for a spike to occur as a functAio_nrof the time after the onset 6f the sﬁmulus.- However, this averaging
procéclure throws out all information about the variance of the noise, so that there is no way to determine
whether the noise varies systematically during the response to the stimulus or perhaps on a longer time scale

while the stimulus is being attended.

Unlike the bulk of the brain, which is composed of many morphologically different nuclei, the cerebral cortex
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is relatively uniform in structure. Different areas of cerbral cortex are specialized for processing information
from different sensory modalitics, such as visual cortex, auditory cortex, and somatosensory cortex, and other
areas are specialized for motor functions; ‘however, all of these cortical areas have a similar anatomical
organization and are more similar to each other in cytoarchitecture than they are to any other part of the

brain. Many problems in vision, specch recognition, associative recall, and motor control can be formulated
as searches. The similarity between different areas of cerebral cortex suggests that the same kind of massively

parallel searches may be performed in many different cortical areas.

It may be diffieult to arrange for all neurons in a network to have the same amplitude of noise. How sensitive
are our statistical results to the assumption that all binary units are making decisions at the same temperature?
The effect of variations in the temperature was tested in large-scale simulations of a problem reported in
' (Sejnowski, Hinton, Kienker, & Schumacher, 1984). Random variations in the temperature from unit to unit
of up to 25% did not significantly affect the annealing and equilibrium solutions. The effect of variations in

temperature on learning has not been studied.

11.3 Asymmetry and time-delays

In a Boltzmann Machine of the ki1_1d we have presented all connections are symmetrical. It is very unlikely
that this assumption is strictly true of neurens in cerebral cortex. However, if the constraints of a problem are
inherently symmetrical and if the network on average approximates the required symmetrical connectivity,
then random asymmetries in a large network will be reflected as an increase in the Gaussian noise in each
unit. Systematic asymmetries may have other purposes. For example, some interneurons are thought to have
only inhibitory links to othcr neurons, and these could serve as automatic gain controls to kecp a network

within a narrow operating range of firing rates,

To see why random asymmetry acts like gaussian noise, consider a symmetrical network in which pairs of
units are linked by two equal one-way cohnections, one in each direction. Now, perform the following
operation on all pairs of these one-way conneétions: Remove one of the connéctions and double the strength
of the other. Provided the choice of which connection to remove is made randomly, this operation will not
alter the expected value of the input to a unit from the other units. On average, it will “see” half as many
other units, but with twice the weight. So if-a unit has a large fan-in it will be able to make a good unbiased
estimate of what its total input would have been if the links had not been cut. However, the use of fewer,

larger weights will increase the variance of the energy gap, and will thus act like added noise.

The idea that a large fan-in is needed to reduce the effects of random asymmetries has an interesting
consequence for artificially produced systems of this kind. There may be a trade-off between symmetry and

fan-in. In systems like the brain where connections are grown it may be hard to ensure symmetry, So a large
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fan-in may be essential (Cortical pyramidal cells typically receive between 10% and 10° input connections). In
artificial systems it may be hard to achieve very high fan-ins, but this may not be essential provided the

connections are symmetrical.

The analysis of the effects of time-delays is somewhat more complex, but simulations suggest that time-delays
act like added noise, and preliminary mathematical results (Venkataraman Venkatasubramanian, personal
communication) show that this is true to first order provided the fan-in is large and the individual weights are

small compared with the energy gaps.

The main difficulty in the treatment of both asymmetry and time-delays is that it is hard to know how they

will interact with the learning algorithm. It is quite possible, for example, that a network which starts with

‘random asymmetry will develop systematic asymmetry.

12 Conclusion

The application of statistical mechatiics to constraint-satisfaction searches raises a great many issues that we
have only mentioned in passing. Some of these issues are discussed in greater detail elsewhereﬁ Hinton and
Sejnowski (1983) describe the relation to more conventional relaxation techniques; Fahlman, Hinton and
Sejnowski (1983) compare Boltzmann machines with some alternative paralle]l schemes, and discuss some of
the knowledge representation issues; Geman and Geman (1983) describe a very simiia: model, developed

independently, and discuss its relationship to Markov random fields.

The two main ideas that led to the Boltzmann Machine are that noise can help with search, and that
Boltzmann distributions make it possible to assign credit on the basis of local information in a non-linear
network. It is interesting that a similar approach can be derived from entirely different considerations. While
investigating how to perf'ohn computation reliably with unreliable components, Von Neumann was led to the

following conclusion:

All of this will lead to theories [of computation] which are much less rigidly of an all-or-none
nature than past and present formal logic. They will be of a much less combinatorial, and much
more analytical, character. In fact, there are numerous indications to make us believe that this new
system of formal logic will move closer to another discipline which has becn little linked in the
past with togic. This is thermodynamics, primarily in the form it was received from Boltzmann,
and is that part of theoreétical physics which comes ncarest in some of its aspects to manipulating

and measuring information.
' —- John Von Neumann, Collected Works Vol 5, pg 304
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Appendix: Derivation of the learning algorithm

When a network is free-running at cquilibrium the probability distribution over the visible
units is given by '

. Ze_Eﬂtﬂ/T )
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where V,, is a vector of states of the visible units, Hp is a vector of states of the hidden units, and
E4p 1s the energy of the system in state Vo A Hyg :
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Differentiating (11) then yields
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This derivative is used to compute the gradient of the G-measure

G=) P(Vu)ln II:,((‘;‘,:))

where F(Va) is the clamped probability distribution over the visible units and is independent of
Wiy . So ' .

G P(Va) aP’(V.a)

dwyy T — P'(V,) 0wy

— 1 P(Va) axf cz,G t 1] A A
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Now,
P(Vs A Hg) = P(Hp|Va) P(Va),
P(V A Hg) = P'(HplVa) P'(V )

and
P'(Hg|Va) = P(Hgl|Va) (12)




Equation (12) holds  because the probability of a hidden state given some visible state must be
the same in equilibriurn whether the visible units were clamped in that state or arrived there by

free-running. Hence,

P(Va) '
! - =
P'(Va A Hg) P(Va) P(Vy A Hg)
Also,
‘ > P(Va) =
[
Therefore,
oG _ 1.
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where
pi =3 P(Va AHp)sPP a3’
ap
and

PLE ST P(vaAH)s s
v

as given in (9).

The Boltzmann Machine learning algorithm can also be formulated as an input-output model.
The visible units are divided into an input set I and an output set O, and an environment specifies a
set of conditional probabilities of the form P(Qg|I.). During the “training” phase the environment
clamps both the input and output units, and p;;s are estimated. During the “testing” phase the
input units are clamped and the output units and hidden units free-run, and p}js are estimated.
The appropriate G measure in this case is

L o P(Os]la)
G = %P(Ia AOp)! F(Op|L)

Similar mathematics apply in this formulation and 8G/ Bw,-j is the same as before.




