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Abstract Sleep scoring is commonly performed from electroencephalogram
(EEG), electrooculogram (EOG), and electromyogram (EMG) to produce a so-
called hypnogram. A neurologist thus visually encodes each epoch of 30 s into one
of the sleep stages (wake, REM sleep, S1, S2, S3, S4). To avoid such a long process
(about 3–4 hours) a technique for automatic sleep scoring from the signal of a single
EEG electrode located in the C3/A2 area using nonlinear delay differential equations
(DDEs) is presented here. Our approach considers brain activity as resulting from
a dynamical system whose parameters should vary according to the sleep stages.
It is thus shown that there is at least one coefficient that depends on sleep stages
and which can be used to construct a hypnogram. The correlation between manual
hypnograms and the coefficient evolution is around 80%, that is, about the inter-rater
variability. In order to rank sleep quality from the best to the worst, we introduced
a global sleep quality index which is used to compare manual and automatic sleep
scorings, thus using our ability to state about sleep quality that is the final goal for
physicians.

1 Introduction

Up to 2007, polysomnographic recordings were scored into sleep stages according
to the rules introduced by Rechtschaffen and Kales [19] which are mainly based on
a spectral analysis. The scoring, accomplished by well-trained neurologist, consists
in scoring all 30 s epochs into one of the six stages of vigilance, namely awakeness,
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rapid eyes movement sleep (REM), and sleep stages S1, S2, S3, and S4. RK rules
were recently modified to overcome the inter-rater variability ([11]). The most
important change was that stages 3 and 4 merged into a single stage, named slow-
wave sleep or N3. In spite of that, recent studies only showed slight improvements
with the new rules ([6]) with an inter-rater agreement slightly greater than 72% ([3]).

Automatic sleep scoring techniques are thus welcome. Most of the computer-
assisted scoring techniques stages were based on RK rules ([10, 12, 18]). In fact,
most of them try to reproduce what is done by neurologists and which can lead
to an overall epoch-by-epoch agreement of 80%, and require a quite complex
decisional tree (see Fig. 2 in [2]). With the emergence of “chaos theory,” recurrence
plots quantifiers, Lyapunov exponents, or correlation dimension were used to
obtain hypnograms with an overall agreement which was rarely greater than 60 or
70% ([23]).

Neural networks were also used to distinguish different features exhibited in
the spectral domain but were not able to distinguish more than the REM sleep
from non-REM sleep ([9]). Another technique was correctly scoring sleep stages
but required two EEG channels, one horizontal electrooculogram channel and one
chin electromyogram channel ([20]). An automatic sleep classification was able to
distinguish wake, slow-wave sleep and rapid eye movements sleep stages ([22]),
but a specific sensor, a head accelerometer, was required and must be added to
conventional sensors.

Our aim is to develop a reliable automatic technique using a single EEG signal for
scoring hypnograms. The subsequent part of this paper is organized as follows. In
Sect. 2 the pool of patients which were recorded is described. Section 3 is devoted to
our automatic sleep scoring technique and to a new global sleep quality index used
to rank a set of hypnograms. In Sect. 4 the results are presented and Sect. 5 gives a
conclusion.

2 Patients

This retrospective observational study was conducted at the sleep laboratory at
the medical university hospital Intensive Care Unit in Rouen. We selected 38
recordings, but only 35 were associated with a reliable sleep scoring. These patients
were long-term ventilated for chronic respiratory failure and grouped into two
types. The first type corresponds to an obesity hypoventilation syndrome (OHS)
commonly seen in severely overweight people who fail to breathe normally resulting
in low blood oxygen levels and high blood carbon dioxide (CO2) levels. Many
of these patients have increased upper airway resistances during sleep (obstructive
sleep apnea). This induces a significant amount of wake after sleep onset (WASO)
leading to abnormal daytime sleepiness. This disease puts strain on the heart,
possibly resulting in heart failure, leg swelling, and various other related symptoms.
The second group of respiratory failure, considered here, is associated with chronic
obstructive pulmonary disease (COPD). This refers to small airway obstructions
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Table 1 Main clinical
characteristics of the patients
(n D 34)

Demographics and respiratory parameters Mean (SD)

Age (year) 64.5 (11.7)

Male:female 24:11

Body mass index (kg.m�2) 42.0 (10.5)

PaO2 (cmH2O) 9.5 1.1

PaCO2 (cmH2O) 5.8 (0.9)

Normal values: (10:7 < PaO2 < 12:0) cmH2O, PaCO2 �
5:3 cmH2O, (18:5 < BMI < 25) kg.m�2 and obesity is
defined by BMI> 30 kg.m�2

and emphysema, two commonly coexisting pulmonary diseases in which the
airways progressively narrow inducing shortness of breath. In these patients, the
airflow limitation is usually nonreversible when treated with bronchodilators and
progressively becomes more and more severe. One efficient treatment is to put these
patients under noninvasive mechanical ventilatory assistance. In the present case, all
patients were ventilated with the bilevel ventilator RESMED VPAP III. All patients
included in this study were in stable condition, as assessed by clinical examination
and arterial blood gases.

Main characteristics of the thirty-five patients for which the sleep was scored
during one night under mechanical ventilation are reported in Table 1. Twenty
patients (57%) had OHS and 15 patients (43%) had COPD. Thirteen patients (38%)
were diagnosed with obstructive sleep apnea syndrome (defined as more than 10
apneas per hour). Upon study inclusion, the patients were ventilated for a few
months. Nineteen patients (56%) were hypercapnic (PaCo2 > 5:6 cmH2O).

3 Method

3.1 Automatic Sleep Scoring

A nonlinear delay differential equation has the general form

Px D a1 x�1 C a2 x�2 C a3 x�3 C � � � C ai�1 x�n C ai x
2
�1

C aiC1 x�1x�2
CaiC2 x�1x�3 C � � � C aj�1 x2�n C aj x

3
�1

C ajC1 x2�1x�2 C : : : � � � C al x
m
�n
(1)

where x D x.t/ and x�j D x.t � �j /. In this general form, the DDE has n delays,
l monomials with their corresponding coefficients ai , and a degree of nonlinearity
equal to m. In the subsequent part of this paper, we will define a k-term DDE as an
equation with only k < l monomials selected from the right-hand side of the general
form (1). As for any global modeling technique, there is a significant improvement
of capturing main characteristics of the underlying dynamics from observed data by
carefully selecting the structure of the DDE model ([1, 14–16]). The minimal mean
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squared error is used for this process. By structure selection, we mean retaining
only monomials in the DDE that have the most significant contribution to classify
the data. An equally important task is to select the right time-delays, since linear
terms are directly related to the fundamental timescales and nonlinear terms to the
nonlinear couplings between them ([16]). This can be performed by using a genetic
algorithm ([15]) or by an exhaustive search for the best model among the general
form with n D 2 and m D 3 resulting in l D 9 monomials as performed in [16].

Here only models with up to three terms were considered (see Table 2 in [16]).
The variable x corresponds to the signal provided by the electrode located in the
C3/A2 area of the scalp. We ran a genetic algorithm to minimize the least square
error of 30 s data windows to select the best models and delays for each 30 s window
([8, 15]). For 95% of the data windows (corresponding to the 35 patients), the four
models

Px D a1 x�1 C a2 x�2 C a3 x
2
�1

I (2)

Px D a1 x�1 C a2 x�2 C a4 x�1 x�2 I (3)

Px D a1 x�1 C a2 x�2 C a6 x
3
�1

I (4)

Px D a1 x�1 C a2 x�2 C a7 x
2
�1
x�2 I (5)

were selected as well as delays between 1 ıt and 4 ıt with ıt D 1
64

s. Among
these four models, model (5) is the best to distinguish wake, REM, and S1 from the
sleep stages S2, S3, and S4 (see left panel from Fig. 1). Delay �1 D 1 is useful to
distinguish wake, S2, S3, and S4 from REM and S1 (right panel from Fig. 1). Delay
�2 D 3 allows to distinguish wake from sleep stages. Thus, combining model (5)
with delays �1 D 1 and �2 D 3 provides the model with the most discriminative
ability. Among the three coefficients of model (5), parameter a2 was found to be the
most correlated (r D 0:95) to the manually scored hypnogram, as exemplified in
Fig. 2 in the case of patient 15. We then used this model and this coefficient to score
the sleep for our 35 patients.

It was then necessary to convert the a2-time series which corresponds to the time
evolution of a real number sampled at 0.1 Hz (one point per 10 s) into a sequence of
integers from 1 (stage S1) to 6 (awake). This is the tricky part of our technique. In
the case of patient 15, we got an automatically scored hypnogram which was quite
close to the manually scored one (Fig. 2b).

3.2 Assessing the Sleep Quality

Since patients with chronic respiratory failures are ventilated during their sleep,
it is important to assess whether the ventilation improves the sleep quality or,
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Fig. 1 Histograms of the number of time each of the four selective DDEs (left) and each delays
(right) were selected with minimum error for each sleep stage
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Fig. 2 Time series of coefficient a2 of the delay differential equation (5) and the corresponding
hypnogram. Case of patient 15 (male, 76 years, BMID50 kg.m�2). The manually scored hypno-
gram (green) is also reported for comparison. (a) Raw a2 time series (b) Sequence of integers

at least, that it does not degrade it. In order to do that, it is necessary to be
able to rank hypnograms according to sleep quality. From a subjective point of
view, sleep quality refers to patient feelings about the refreshing effect of sleep
which can be assessed using some sleep diary or the Pittsburgh Quality Index
([4]). The characteristics commonly taken into account in such evaluation are sleep
latency, sleep duration, regular sleep efficiency, sleep disturbances (including sleep
disruptive events such as snoring, apnea, or pains), use of sleeping medication, and
daytime dysfunction ([4]).

Up-to-now, the objective evaluation of sleep quality was based on the same
characteristics but directly measured from hypnograms ([11]). Also considered
are the arousal index (number of arousals per hour) and the number of various
respiratory events. To assess the evolution of sleep quality, all these quantities are
then subjectively combined and compared since none of them can alone allow
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to rank hypnograms according to sleep quality (see [17] for details). In order to
avoid this last subjective step, we introduced a new index which combines the
most important sleep characteristics. Thus, our global sleep quality index takes into
account the number of sleep cycles (each cycle, between 90 and 120 min, contains
some slow-wave sleep restoring physical functions and some rapid eye movements
restoring cognitive functions), the fraction of WASO, the fraction of stable sleep,
the number of micro-arousals, and the number of stage transitions. The global sleep
quality index �GSQ is defined as

�GSQ D �cycle � �restoring � �stability � .1 � �M � frag/ � .1 � ���frag/ (6)

where �cy D Max
�
Ncy
6
; 1
�

and Ncy is the number of sleep cycles that saturates

to one when it exceeds 6 cycles; the restoring capacity of sleep is evaluated
according to

�restoring D Min

�
5

2

�S3 C �S4 C �R

�S1 C �S2 C �S3 C �S4 C �R
; 1

�
(7)

with �i being the time duration spent in the i th sleep stage (i D S1, S2, S3, S4, and
R) and saturates to 1 when the restorative sleep (S3, S4, and R) exceeds 2

5
of the

effective sleep; the sleep stability is evaluated according to

�stability D � 0
S1 C � 0

S2 C � 0
S3 C � 0

S4 C � 0
R

�effective sleep
(8)

with � 0
i being the time spent in the i th sleep stage without any micro-arousal and

not corresponding to an epoch connexe to a stage transition, and �effective sleep being
the time duration of sleep stages (�S1 C �S2 C �S3 C �S4 C �R); the sleep macro-
fragmentation is evaluated according to

�M � frag D �waso

�waso C �effective sleep
I (9)

the sleep micro-fragmentation is evaluated according to

���frag D .�S1 � � 0
S1/C .�S2 � � 0

S2/C .�S3 � � 0
S3/C .�S4 � � 0

S4/C .�R � � 0
R/

�effective sleep
(10)

with �i � � 0
i being the time spent in an epoch of the i th sleep stage with a micro-

arousal or connection to a stage transition.
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4 Results

The time series of coefficient a2 were found quite well correlated to the correspond-
ing hypnograms (r D 0:86˙ 0:1). To assess the quality of our sleep scorings using
the coefficient a2 we computed the confusion matrix ([13]) which is a specific table
layout used to assess performance of classifier. Each column of the matrix represents
the instances in a predicted class, while each row represents the instances in an
actual class. The confusion matrix for all epochs of all patients is reported in Fig. 3.
To get a graphical representation the numbers were also converted to a percentage.
A dark diagonal from the upper-left corner to the lower-right corner with all other
squares in white would indicate perfect scoring of each data window into the correct
sleep stage.

As additional measure of performance we used Cohen’s kappa  [5,7,21] which
can be computed directly from the confusion matrix as [13].  D pa�pe

1�pe , where

pa D
qP

kD1
pkk , and pe D

qP
kD1

pkCpCk where q D 6 for the 6 classes, pa is the

observed percentage of agreement, pe is the expected percentage of agreement, pkC
is the percentage of actual classification, and pCk is the percentage of predicted
classification. We got  D 0:51 ˙ 0:1 when comparing automatically scored
hypnograms with the manually scored ones. Detailed results are reported in Table 2.

The global sleep quality index �GSQ was first computed from the hypnograms
scored by the neurologist. Patients were then ranked according to a decreasing �GSQ

(Fig. 4). The hypnogram of the patient with the largest �GSQ (35.4 %) is shown
in Fig. 5a: it presents 3 sleep cycles quite well structured. Contrary to this, the
hypnogram of patient 22 with the smallest �GSQ (0.1 %) is shown in Fig. 5b: it does
not present a single well-structured sleep cycle and the effective sleep time duration
is small (�effective sleep D 146min).

The rates of each sleep stage was computed for each hypnograms which were
ranked according to decreasing �GSQ (Fig. 6). The best hypnogram (patient 34,
�GSQ D 35:4) presents a good proportion of restorative sleep. Contrary to this,
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Table 2 Correlation coefficient r and Cohen’s  between the manually scored hypnograms and
the time series of coefficient a2 of model (5) for each subject

# r  # r  # r  # r  # r 

1 0.82 0.36 9 0.91 0.53 17 0.70 0.28 24 0.95 0.65 32 0.91 0.55

2 0.95 0.61 11 0.80 0.36 18 0.81 0.44 25 0.78 0.41 33 0.84 0.41

3 0.89 0.59 12 0.90 0.64 19 0.87 0.53 26 0.82 0.50 34 0.93 0.66

5 0.91 0.63 13 0.91 0.57 20 0.78 0.59 27 0.92 0.64 35 0.82 0.37

6 0.92 0.51 14 0.76 0.36 21 0.79 0.39 29 0.94 0.61 36 0.89 0.55

7 0.92 0.68 15 0.95 0.67 22 0.80 0.40 30 0.87 0.51 37 0.91 0.59

8 0.79 0.43 16 0.90 0.54 23 0.80 0.41 31 0.79 0.43 38 0.91 0.51
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Fig. 4 Global sleep quality index computed from the manually scored hypnograms for the 35
patients of our protocol

the worst hypnogram (patient 22, �GSQ D 0:1) associated with a very small fraction
of restorative sleep and a large one of WASO. Hypnograms are rather well ranked
since the rate of WASO and sleep micro-fragmentation are anticorrelated to �GSQ

(r D �0:65, p < 0:0001 and r D �0:75, p < 0:0001, respectively). The rate
of slow-wave sleep (S3 and S4) and the rate of REM sleep are correlated to �GSQ

(r D 0:83, D< 0:0001 and r D 0:59, p < 0:0001, respectively). These features
and others that are outside the scope of this paper correspond to an increase of the
sleep quality with �GSQ.

We now computed the global sleep quality index from the automatically scored
hypnograms with our technique (Fig. 7). They were ordered in a slightly different
order than the manual hypnograms. In order to quantify this disagreement between
these two orders, let us designate by n the rank (n0) the rank obtained by computing
�GSQ from the manual (automatic) hypnograms. Thus �n D jn � n0j corresponds
to the rank shift observed between these two orders. We thus have �n D 4:6˙ 5:4,
meaning that, in average, the good (bad) hypnograms remain the good (bad) ones.
There are four notable exceptions with the hypnograms for patients 11, 15, 24, and
35 for which �n equals to �23, C15, C20, and +11, respectively.
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Fig. 5 Hypnograms for two of the 35 patients corresponding to the largest and the smallest global
sleep quality index. The gender, age, body mass index, and the rate of synchronous breathing cycles
are also reported. (a) Patient 34 : male, 82 years, BMID44.1, 2.1% of asynchronous cycles, and
�GSQ D 35:4%. (b) Patient 22 : male, 83 years, BMID36.3, 8.0% of asynchronous cycles, and
�GSQ D 0:1%
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The manually scored hypnogram of patient 11 (Fig. 8a) presents many fluctua-
tions between wake and stage S1 and a very few epochs in stages S3 or S4 and
REM sleep, thus associated with a small global quality sleep index (�GSQ D 3:7%).
The evolution of the coefficient of the DDE fluctuates a lot between the values
corresponding to wake and S1 stages. Consequently, since REM sleep is between
these two stages from EEG, our technique returns too often REM sleep (and not
WASO). This is significantly increasing the global sleep quality index to 24.9.



380 C. Lainscsek et al.

30

25

15

5

20

10

0
23 11 34 33 21 18 8 5 15

Patient Number

S
le

ep
 G

lo
ba

l Q
ua

lit
y 

In
de

x 
(in

 %
)

9 331 35 30 3829 26 36 24 14 12 22 32 2 2025 2716 191376137 17

Fig. 7 Global sleep quality index computed from the automatically scored hypnograms for the 35
patients of our protocol

Manual scoring Automatic scoring

0 1 2 3 4 5 6 7 8
Time (h)

Awake
REM Sleep

S1
S2
S3
S4

0 1 2 3 4 5 6 7 8
Time (h)

Awake
REM Sleep

S1
S2
S3
S4

Patient 11 : Male, 78 years, BMI=32.0, 5.5% of asynchronous cycles, ηGSQ = 35.4%

0 1 2 3 4 5 6 7 8
Time (h)

Awake

REM Sleep

S1
S2
S3
S4

0 1 2 3 4 5 6 7 8
Time (h)

Awake

REM Sleep

S1
S2
S3
S4

Patient 24 : Male, 62 years, BMI=50.2, 1.7% of asynchronous cycles, ηGSQ = 0.1%

a

b

Fig. 8 Hypnograms for two badly scored using our automatic technique

It is important to note that a neurologist uses a lot the electrooculogram and the
electromyogram to distinguish REM sleep from awake and S1, two signals which
are not considered by our technique.

Contrary to this, the automatically scored hypnograms for patient 24 is char-
acterized by a global sleep quality index �GSQ D 7:0% is significantly smaller
than the value (16.2%) obtained from the manual hypnograms (Fig. 8b). There are
few reasons explaining such a large departure between these two �GSQ-values. The
global sleep duration (between the first and the last sleep epoch) is larger than the
one obtained from the automatic scoring (221.5 min and 198 min, respectively),
but the number of sleep cycles is 2 in both cases. The rate of WASO in the
automatic hypnogram is about three times the rate obtained from the manually
scored hypnogram (19.9 and 6.6, respectively). The rate of micro-fragmentation
obtained with our technique is about three times the rate returned by the neurologist
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(31.8 and 11.1, respectively). The stability is smaller in the hypnogram provided by
our technique than in the one scored by the neurologist (38.2 and 58.3, respectively).
All these modifications tend to increase the global sleep quality index.

5 Conclusions

In 88% of subjects the overall sleep quality index computed from the DDE
hypnograms are in agreement with the sleep quality index computed from the
visually scored hypnograms. The difference in 12% of all patients results from
converting the real number outputs of the DDE to the integers used for indexing
sleep stages (S1, S2, S3, S4, R, and wake). This is the weakest part of the
present version of our technique. In spite of this, our hypnograms are already
sufficiently close to the manual hypnograms that are used to assess the sleep quality.
Importantly, this first study has led to the identification of possible improvements
that are currently being developed.

Our automatic scoring technique using DDEs is well correlated to the corre-
sponding visually scored hypnograms (r D 0:86 ˙ 0:1). This excellent agreement
becomes even more impressive when considering the use of only one scalp electrode
for the DDE method. Indeed, the most promising aspect of our technique is that only
one scalp electrode is sufficient to accurately score sleep stages.
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