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Abstract: Sleep scoring is commonly performed from electrooculogram (EOG),
and electromyogram (EMG) to produce a so-called hypnogram. A neurologist
thus visually encodes each epoch of 30 s into one of the sleep stages (Awake,
REM sleep, S1, S2, S3, S4). To avoid such a long process (about 3-4 hours)
a technique for automatic sleep scoring from the signal of a single electrode
located in the C3/A2 area using nonlinear delay differential equations (DDEs)
is presented here. Our approach considers brain activity as resulting from a
dynamical system whose parameters should vary according to the sleep stages.
It is thus shown that there is at least one coefficient that depends on sleep
stages and which can be used to construct an hypnogram. The correlation
between manual hypnograms and the coefficient evolution is around 80%, that
is, about the inter-rater variability. In order to rank sleep quality from the
best to the worst, we introduced a global sleep quality index which is used to
compare manual and automatic sleep scorings, thus using our ability to state
about sleep quality that is the final goal for physicians.

1. Introduction

Up to 2007, polysomnographic recordings were scored into sleep stages according to the rules

introduced by Rechtschaffen and Kales (1968) which are mainly based on a spectral analysis.

The scoring, accomplished by well-trained neurologist, consists in scoring all 30 s epochs into

one of the six stages of vigilance, namely Awakeness, Rapid Eyes Movement sleep (REM),

and sleep stages S1, S2, S3, S4. RK rules were recently modified to overcome the inter-rater

variability (Iber, 2007). The most important change was that stages 3 and 4 merged into

a single stage, named Slow Wave Sleep or N3. In spite of that, recent studies only showed

slight improvements with the new rules (Danker-Hopfe, 2009) with an inter-rater agreement

slightly greater than 72% (Basner, 2008).



Automatic sleep scoring techniques are thus welcome. Most of the computer-assisted

scoring techniques stages were based on RK rules (Harper, 1987 — Jansen, 1989 — Principe,

1989). In fact, most of them try to reproduce what is done by neurologists and which can

lead to an overall epoch-by-epoch agreement of 80%, they require a quite complex decisional

tree (see Fig. 2 in Anderer, 2005). With the emergence of “chaos theory”, Recurrence Plots

Quantifiers, Lyapunov exponents or correlation dimension were used to obtain hypnograms

with an overall agreement which was rarely greater than 60 or 70% (Susmakova, 2008).

Neural networks were also used to distinguished different features exhibited in the spec-

tral domain but were not able to distinguish more than the REM sleep from non-REM sleep

(Groezinger, 1997). Another technique was correctly scoring sleep stages but required two

EEG channels, one horizontal electro-oculogram channel and one chin electromyogram chan-

nel (Schaltenbrand, 1996). An automatic sleep classification, was able to distinguish awake,

slow-wave sleep and rapid eye movements sleep stages (Sunderam, 2007), but a specific

sensor, a head accelerometer, was required and must be added to conventional sensors.

Our aim is to develop a reliable automatic technique using a single signal for scoring

hypnograms. The subsequent part of this paper is organized as follows. In Section 2 the pool

of patients which were recorded is described. Section 3 is devoted to our automatic sleep

scoring technique and to a new global sleep quality index used to rank a set of hypnograms.

In Section 4 the results are presented and Section 5 gives a conclusion.

2. Patients

This retrospective observational study was conducted at the sleep laboratory at the medical

university hospital Intensive Care Unit in Rouen. We selected 38 recordings but only 35

were associated with a reliable sleep scoring. These patients were long-term ventilated for

chronic respiratory failure and grouped into two types. The first type corresponds to an

Obesity Hypoventilation Syndrome (OHS) commonly seen in severely overweight people

who fail to breathe normally resulting in low blood oxygen levels and high blood carbon

dioxide (CO2) levels. Many of these patients have increased upper airway resistances during

sleep (obstructive sleep apnea). This induces a significant amount of wake after sleep onset

(WASO) leading to abnormal daytime sleepiness. This disease puts strain on the heart,

possibly resulting in heart failure, leg swelling, and various other related symptoms. The

second group of respiratory failure, considered here, is associated with Chronic Obstructive

Pulmonary Disease (COPD). This refers to small airway obstructions and emphysema, two

commonly co-existing pulmonary diseases in which the airways progressively narrow inducing

shortness of breath. In these patients, the airflow limitation is usually non-reversible when

treated with bronchodilators and progressively becomes more and more severe. One efficient



treatment is to put these patients under noninvasive mechanical ventilatory assistance. In the

present case, all patients were ventilated with the bilevel ventilator ResMed VPAP iii. All

patients included in this study were in stable condition, as assessed by clinical examination

and arterial blood gases.

Main characteristics of the thirty-five patients for which the sleep was scored during one

night under mechanical ventilation are reported in Table 1. 20 patients (57%) had OHS

and 15 patients (43%) had COPD. Thirteen patients (38%) were diagnosed with obstructive

sleep apnea syndrome (defined as more than 10 apneas per hour). Upon study inclusion,

the patients were ventilated for a few months. Nineteen patients (56%) were hypercapnic

(PaCo2 > 5.6 cmH2O).

Table 1. Main clinical characteristics of the patients (n = 34).

Demographics and respiratory parameters Mean (SD)

Age (year) 64.5 (11.7)

Male:Female 24:11

Body Mass Index (kg.m−2) 42.0 (10.5)

PaO2 (cmH2O) 9.5 1.1

PaCO2 (cmH2O) 5.8 (0.9)

Normal values: (10.7 < PaO2 < 12.0) cmH2O, PaCO2 ≈ 5.3 cmH2O,

(18.5 < BMI < 25) kg.m−2 and obesity is defined by BMI> 30 kg.m−2.

3. Method

3.1. Automatic sleep scoring

A nonlinear delay differential equation has the general form

ẋ = a1 xτ1 + a2 xτ2 + a3 xτ3 + · · ·+ ai−1 xτn + ai x
2
τ1 + ai+1 xτ1xτ2

+ai+2 xτ1xτ3 + · · ·+ aj−1 x
2
τn + aj x

3
τ1 + aj+1 x

2
τ1xτ2 + . . . · · ·+ al x

m
τn

(1)

where x = x(t) and xτj = x(t−τj). In this general form, the DDE has n delays, l monomials

with their corresponding coefficients ai, and a degree of nonlinearity equal to m. In the

subsequent part of this paper, we will define a k-term DDE as an equation with only k < l

monomials selected from the right-hand side of the general form (1). As for any global

modeling technique, there is a significant improvement of capturing main characteristics of

the underlying dynamics from observed data by carefully selecting the structure of the DDE



model (Aguirre, 1995 — Lainscsek, 2003 — Lainscsek 2012). The minimal mean squared

error is used for this process. By structure selection, we mean retaining only monomials

in the DDE that have the most significant contribution to classify the data. An equally

important task is to select the right time-delays, since linear terms are directly related to

the fundamental time-scales and non-linear terms to the nonlinear couplings between them

(Lainscsek, 2013). This can be performed by using a genetic algorithm (Lainscsek, 2012) or

by an exhaustive search for the best model among the general form with n = 2 and m = 3

resulting in l = 9 monomials as performed in (Lainscsek, 2013).

Here only models with up to three terms were considered (see Tab. 2 in Lainscsek,

2013). The variable x corresponds to the signal provided by the electrode located in the

C3/A2 area of the scalp. We ran a genetic algorithm to minimize the least square error of

30 s data windows to select the best models and delays for each 30 s window (Goldberg,

1989 — Lainscsek, 2012). For 95% of the data windows (corresponding to the 35 patients),

the four models

ẋ = a1 xτ1 + a2 xτ2 + a3 x
2
τ1 ; (2)

ẋ = a1 xτ1 + a2 xτ2 + a4 xτ1 xτ2 ; (3)

ẋ = a1 xτ1 + a2 xτ2 + a6 x
3
τ1 ; (4)

ẋ = a1 xτ1 + a2 xτ2 + a7 x
2
τ1 xτ2 ; (5)

were selected as well as delays between 1 δt and 4 δt with δt = 1
64

s. Among these four

models, model (5) is the best to distinguish wake, REM and S1 from the sleep stages S2, S3

and S4 (see left panel from Fig. 1). Delay τ1 = 1 is useful to distinguish wake, S2, S3 and S4

from REM and S1 (right panel from Fig. 1). Delay τ2 = 3 allows to distinguish wake from

sleep stages. Thus, combining model (5) with delays τ1 = 1 and τ2 = 3 provides the model

with the most discriminative ability. Among the three coefficients of model (5), parameter

a2 was found to be the most correlated (r = 0.95) to the manually scored hypnogram, as

exemplified in Figs 2 in the case of patient 15. We then used this model and this coefficient

to score the sleep for our 35 patients.

It was then necessary to convert the a2-time series which corresponds to the time evolu-

tion of a real number sampled at 0.1 Hz (one point per 10 s) into a sequence of integers from

1 (stage S1) to 6 (awake). This is the tricky part of our technique. In the case of patient

15, we got an automatically scored hypnogram which was quite close to the manually scored

one (Fig. 2b).



Figure 1. Histograms of the number of time each of the four selective DDEs (left) and each

delays (right) were selected with minimum error for each sleep stage.

0 1 2 3 4 5 6 7 8
Time (hour)

-0,2

-0,1

0

0,1

0,2

0,3

0,4

C
oe

ff
ic

ie
nt

a 2

0 1 2 3 4 5 6 7 8
 Time (h)

Awake

REM Sleep

S1

S2

S3

S4

Automatic
manual

(a) Raw a2 time series (b) Sequence of integers

Figure 2. Time series of coefficient a2 of the delay differential equation (5) and the

corresponding hypnogram. Case of patient 15 (male, 76 years, BMI=50 kg.m−2). The

manually scored hypnogram (green) is also reported for comparison.

3.2. Assessing the sleep quality

Since patients with chronic respiratory failures are ventilated during their sleep, it is impor-

tant to assess whether the ventilation improves the sleep quality or, at least, that it does not

degrade it. In order to do that, it is necessary to be able to rank hypnograms according to

sleep quality. From a subjective point of view, sleep quality refers to patient feelings about

the refreshing effect of sleep which can be assessed using some sleep diary or the Pittsburgh

Quality Index (Buysse 1989). The characteristics commonly taken into account in such an

evaluation are sleep latency, sleep duration, regular sleep efficiency, sleep disturbances (in-

cluding sleep disruptive events such as snoring, apnea or pains), use of sleeping medication,

and daytime dysfunction (Buysse 1989).

Up-to-now, the objective evaluation of sleep quality was based on the same character-

istics but directly measured from hypnograms (Iber, 2007). Also considered are the arousal

index (number of arousals per hour) and the number of various respiratory events. To as-

sess the evolution of sleep quality, all these quantities are then subjectively combined and



compared since none of them can alone allow to rank hypnograms according to sleep quality

(see Messager, 2013 for details). In order to avoid this last subjective step, we introduced a

new index which combines the most important sleep characteristics. Thus, our global sleep

quality index takes into account the number of sleep cycles (each cycle, between 90 and 120

min, contents some slow-wave sleep restoring physical functions and some rapid eye move-

ments restoring cognitive functions), the fraction of WASO, the number of micro-arousals,

and the number of stage transitions. The global sleep quality index ηGQ is defined as

ηGSQ = ηcycle · ηrestoring · ηstability · (1− ηM-frag) · (1− η
μ-frag) (6)

where ηcy = Max
(

Ncy

6
, 1
)
and Ncy is the number of sleep cycles that saturates to one when

it exceeds 6 cycles; the restoring capacity of sleep is evaluated according to

ηrestoring = Min

(
5

2

τS3 + τS4 + τR

τS1 + τS2 + τS3 + τS4 + τR
, 1

)
(7)

with τi being the time duration spent in the ith sleep stage (i = S1, S2, S3, S4 and R) and

saturates to 1 when the restorative sleep (S3, S4 and R) exceeds 2
5
of the effective sleep; the

sleep stability is evaluated according to

ηstability =
τ ′

S1 + τ ′

S2 + τ ′

S3 + τ ′

S4 + τ ′

R

τeffective sleep
(8)

with τ ′

i being the time spent in the ith sleep stage without any micro-arousal and not

corresponding to an epoch connexe to a stage transition, and τeffective sleep being the time

duration of sleep stages (τS1+τS2+τS3+τS4+τR); the sleep macro-fragmentation is evaluated

according to

ηM-frag =
τWASO

τeffective sleep
; (9)

the sleep micro-fragmentation is evaluated according to

η
μ-frag =

(τS1 − τ ′

S1) + (τS2 − τ ′

S2) + (τS3 − τ ′

S3) + (τS4 − τ ′

S4) + (τR − τ ′

R)

τeffective sleep
. (10)

with τi − τ ′

i being the time spent in an epoch of the ith sleep stage with a micro-arousal or

connection to a stage transition.

4. Results

The time series of coefficient a2 were found quite well correlated to the corresponding hypno-

grams (r = 0.86 ± 0.1). To assess the quality of our sleep scorings using the coefficient a2



we computed the confusion matrix (Kohavi, 1998) which is a specific table layout used to

assess performance of classifier. Each column of the matrix represents the instances in a

predicted class, while each row represents the instances in an actual class. The confusion

matrix for all epochs of all patients is reported in Fig. 3. To get a graphical representation

the numbers were also converted to a percentage. A dark diagonal from the upper left corner

to the lower right corner with all other squares in white would indicate perfect scoring of

each data window into the correct sleep stage.
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Figure 3. Confusion matrix for all subjects: The table on the left side shows the numbers of

predicted and actual sleep stage windows. The plot on the right side visualizes the percentage

of predicted and actual sleep stage windows.

As additional measure of performance we used Cohen’s kappa κ which can be computed

directly from the confusion matrix as κ = pa−pe
1−pe

, where pa =
q∑

k=1

pkk, and pe =
q∑

k=1

pk+p+k

where q = 6 for the 6 classes, pa is the observed percentage of agreement, pe is the expected

percentage of agreement, pk+ is the percentage of actual classification, and p+k is the per-

centage of predicted classification. We got κ = 0.51 ± 0.1 when comparing automatically

scored hypnograms with the manually scored ones. Detailed results are reported in Table 2.

The global sleep quality index ηGSQ was first computed from the hypnograms scored by

the neurologist. Patients were then ranked according to a decreasing ηGSQ (Fig. 4). The

hypnogram of the patient with the largest ηGSQ (35.4) is shown in Fig. 5a: it presents 3

sleep cycles quite well structured. Contrary to this, the hypnogram of patient 22 with the

smallest ηGSQ (0.1) is shown in Fig. 5b: it does not present a single well-structured sleep

cycle and the effective sleep time duration is small (τeffective sleep = 146 min).

The rates of each sleep stage was computed for each hypnograms which were ranked

according to decreasing ηGSQ (Fig. 6). The best hypnogram (patient 34, ηGSQ = 35.4)

presents a good proportion of restorative sleep. Contrary to this, the worst hypnogram

(patient 22, ηGSQ = 0.1) associated with a very small fraction of restorative sleep and a



Table 2. Correlation coefficient r and Cohen’s κ between the manually scored hypnograms

and the time series of coefficient a2 of model (5) for each subject.

# r κ # r κ # r κ # r κ # r κ

1 0.82 0.36 9 0.91 0.53 17 0.70 0.28 24 0.95 0.65 32 0.91 0.55

2 0.95 0.61 11 0.80 0.36 18 0.81 0.44 25 0.78 0.41 33 0.84 0.41

3 0.89 0.59 12 0.90 0.64 19 0.87 0.53 26 0.82 0.50 34 0.93 0.66

5 0.91 0.63 13 0.91 0.57 20 0.78 0.59 27 0.92 0.64 35 0.82 0.37

6 0.92 0.51 14 0.76 0.36 21 0.79 0.39 29 0.94 0.61 36 0.89 0.55

7 0.92 0.68 15 0.95 0.67 22 0.80 0.40 30 0.87 0.51 37 0.91 0.59

8 0.79 0.43 16 0.90 0.54 23 0.80 0.41 31 0.79 0.43 38 0.91 0.51

Figure 4. Global sleep quality index computed from the manually scored hypnograms for

the 35 patients of our protocol.
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(a) Patient 34 : Male, 82 years, BMI=44.1, 2.1% of asynchronous cycles, ηGSQ = 35.4%
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(b) Patient 22 : Male, 83 years, BMI=36.3, 8.0% of asynchronous cycles, ηGSQ = 0.1%

Figure 5. Hypnograms for two of the 35 patients corresponding to the largest, and the

smallest global sleep quality index. The gender, age, body-mass index and the rate of

synchronous breathing cycles are also reported.



large one of WASO. Hypnograms are rather well ranked since the rate of WASO and sleep

micro-fragmentation are anti-correlated to ηGSQ (r = −0.65, p < 0.0001 and r = −0.75,

p < 0.0001, respectively). The rate of slow-wave sleep (S3 and S4) and the rate of REM

sleep are correlated to ηGSQ (r = 0.83, =< 0.0001 and r = 0.59, p < 0.0001, respectively).

These features and others that are outside the scope of this paper correspond to an increase

of the sleep quality with ηGSQ.

Figure 6. Fraction of time for the sleep stages. Patients are ranked according to the global

sleep quality index ηGSQ.

We now computed the global sleep quality index from the automatically scored hypno-

grams with our technique (Fig. 7). They were ordered in a slighly different order than the

manual hypnograms. In order to quantify this disagreement between these two orders, let

us designate by n the rank (n′) the rank obtained by computing ηGSQ from the manual

(automatic) hypnograms. Thus Δn = |n − n′| corresponds to the rank shift observed be-

tween these two orders. We thus have Δn = 4.6 ± 5.4, meaning that, in average, the good

(bad) hypnograms remain the good (bad) ones. There are four notable exceptions with the

hypnograms for patients 11, 15, 24 and 35 for which Δn equals to -23, +15, +20, and +11,

respectively.

The manually scored hypnogram of patient 11 (Fig. 8a) presents many fluctuations be-

tween awake and stage S1, very few epochs of stage S3 or S4 and REM sleep, thus associated

with a small global quality sleep index (ηGSQ = 3.7). The evolution of the coefficient of the

DDE fluctuates a lot between the values corresponding to awake and S1 stages and, conse-

quently, since REM sleep is between these two stages, our technique returns too often REM

sleep (and not WASO), with the effect of significantly increasing the global sleep quality

index to 24.9. It is important to note that a neurologist uses a lot the oculogram and the

electromyogram to distinguish REM sleep from awake and S1, two signals which are not



Figure 7. Global sleep quality index computed from the automatically scored hypnograms

for the 35 patients of our protocol.

considered by our technique.
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(a) Patient 11 : Male, 78 years, BMI=32.0, 5.5% of asynchronous cycles, ηGSQ = 35.4%
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(b) Patient 24 : Male, 62 years, BMI=50.2, 1.7% of asynchronous cycles, ηGSQ = 0.1%

Figure 8. Hypnograms for two badly scored using our automatic technique.

Contrary to this, the automatically scored hypnograms for patient 24 is characterized by

a global sleep quality index ηGSQ (7.0) is significantly smaller than the value (16.2) obtained

from the manual hypnograms (Fig. 8b). There are few reasons explaining such a large

departure between these two ηGSQ-values. The global sleep duration (between the first and

the last sleep epoch) is larger than the one obtained from the automatic scoring (221.5 min

and 198 min, respectively) but the number of sleep cycles is 2 in both cases. The rate of

WASO in the automatic hypnogram is about three times the rate obtained from the manually

scored hypnogram (19.9 and 6.6, respectively). The rate of micro-fragmentation obtained

with our technique is about three times the rate returned by the neurologist (31.8 and 11.1,



respectively). The stability is smaller in the hypnograms provided by our technique than in

the one scored by the neurologist (38.2 and 58.3, respectively). All these modifications tend

to increase the global sleep quality index.

5. Conclusions

In 88% of subjects the overall sleep quality index computed from the DDE hypnograms are

in agreement with the sleep quality index computed from the visually scored hypnograms.

The difference in 12% of all patients results from converting the real number outputs of the

DDE to the integers used for indexing the sleep stages (S1, S2, S3, S4, R and awake). This

is the weakest part of the present version of our technique. In spite of this, our hypnograms

are already sufficiently close to the manual hypnograms that are used to assess the sleep

quality. Importantly, this first study has lead to the identification of possible improvements

that are currently being developed.

Our automatic scoring technique using DDEs is well correlated to the corresponding

visually scored hypnograms (r = 0.86 ± 0.1). This excellent agreement becomes even more

impressive when considering the use of only one scalp electrode for the DDE method. Indeed,

the most promising aspect of our technique is that only one scalp electrode is sufficient to

accurately score sleep stages.

References

1. Aguirre L. A., & Billings S. A.: Improved structure selection for nonlinear models based
on term clustering, International Journal of Control, 62, 1995, 569-587.

2. Anderer P., Gruber G., Parapatics S., Woertz M., Miazhynskaia T., Klösch G., Saletu
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