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Analytical prediction of specific spatiotemporal patterns in nonlinear oscillator networks
with distance-dependent time delays
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We introduce an analytical approach that allows predictions and mechanistic insights into the dynamics
of nonlinear oscillator networks with heterogeneous time delays. We demonstrate that time delays shape the
spectrum of a matrix associated with the system, leading to the emergence of waves with a preferred direction.
We then create analytical predictions for the specific spatiotemporal patterns observed in individual simulations
of time-delayed Kuramoto networks. This approach generalizes to systems with heterogeneous time delays at
finite scales, which permits the study of spatiotemporal dynamics in a broad range of applications.
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I. INTRODUCTION

What is the effect of heterogeneous time delays in net-
worked systems? This question is difficult to treat analytically
in the context of multiple distributed time delays. In recent
work [1], we studied intracranial electrophysiological record-
ings from human clinical patients during sleep. We found
that the 11–15-Hz sleep “spindle” oscillation, a brain rhythm
important for learning and memory [2], was not perfectly syn-
chronized with zero phase difference across the cortex; rather,
sleep spindles are organized into rotating waves that travel in a
preferred direction (see Movie 1 in Ref. [1]). Importantly, the
propagation speed of the observed waves is consistent with
the axonal conduction speed of the long-range fiber network
in the cortex (3–5 m/s [3]). This set of observations raises
an important question: How do these fibers, with no major
anisotropy, create a specific spatiotemporal structure with a
preferred chirality?

In this paper, we analyze a time-delay Kuramoto model
to address this question. Utilizing a recently reported analyt-
ical approach to the Kuramoto dynamics [4], we introduce
a complex-valued delay operator. This operator shapes the
dynamics of the Kuramoto system into waves traveling across
the network. The combination of this delay operator and the
adjacency matrix determines these dynamics through their
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effect on eigenvalues in the complex plane, thus providing
mechanistic insights into the effect of heterogeneous time
delays. The approach introduced here offers a mathematical
description for the dynamics of time-delayed networks, an
important open problem in physics [5] with many applica-
tions in neuroscience [6], engineering [7], and technology
[8]. In general, approaches to systems with heterogeneous
time delays center on numerical simulations, and no coherent
analytical approach currently exists [9,10]. Importantly, while
this question first arose from observations of neural dynamics
in the human cortex during sleep, the delay operator we intro-
duce here is general to studying the effect of distributed time
delays in networks at finite scales, potentially allowing insight
into these dynamics in a broad range of systems [11–13].

II. DELAY OPERATOR

We start with the standard Kuramoto model (KM) [14–16]
and then consider the model with distance-dependent time
delays [17–19]. The original KM on a general network of N
nodes is defined by

θ̇i(t ) = ωi + ε

N∑
j=1

Ai j sin(θ j (t ) − θi(t )), (1)

where θi ∈ [−π, π ) represents the state variable (phase) of
oscillator i at time t , ωi is the intrinsic angular frequency,
ε scales the coupling strength, and Ai j ∈ {0, 1} represents
the elements of the adjacency matrix. The coupling of two
connected oscillators i and j causes their phases to attract
[15,16,20,21].

Time delays have been observed to be an important mech-
anism underlying the generation of traveling waves in the
brain [13,22–24]. With this in mind, we consider a time-delay
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Kuramoto model (dKM) with delays τi j that depend on the
distance between two oscillators i and j:

θ̇i(t ) = ωi + ε

N∑
j=1

Ai j sin(θ j (t − τi j ) − θi(t )). (2)

The delay operator approach we introduce here generalizes to
arbitrary adjacency matrices. In order to demonstrate this ap-
proach, we start by considering an undirected ring graph GRG,
where N = 100 nodes are arranged on a one-dimensional
ring with periodic boundary conditions. Each node in GRG is
connected to the k = 25 nearest neighbors in each direction,
and Ai j ∈ {0, 1} is 1 if oscillators i and j are connected, and
0 otherwise. The time delay τi j = di j/ν between two nodes
i and j grows linearly with distance (di j) with respect to
the periodic boundary conditions on the ring [di j = min(|i −
j|, N − |i − j|)]. For the parameters chosen in this paper, the
time delays range from approximately 2 to 62 ms, a timescale
relevant to neural dynamics [10,25,26]. We consider the case
where all oscillators have the same frequency of 10 Hz (ω =
20π ); however, our approach can be applied to the case of
nonidentical natural frequencies [27].

The time-delay term θ j (t − τi j ) can be approximated by
θ j (t ) − ωτi j [17,18,24]. Using this approximation, in combi-
nation with the algebraic approach to the Kuramoto dynamics
[4,28], we introduce a delay operator, which provides analyt-
ical insight into how heterogeneous time delays can create
specific, sophisticated spatiotemporal structures in the re-
sulting nonlinear dynamics. Applying this approximation to
Eq. (2), we arrive at an equation that captures the time-delay
dynamics in the dKM in heterogeneous phase lags [17,18,24].
We can then use our algebraic approach to the Kuramoto
dynamics and arrive at (see Appendix A for details)

x(t ) = eiωt etW x(0), (3)

where x ∈ CN and the matrix W is given by

W = εe−iη ◦ A, (4)

where ◦ represents the Hadamard (elementwise) product. This
matrix has information about the coupling strength ε, the time
delays η = ωτ present in the original dKM, and the connec-
tion scheme of the system on A. In previous work, we have
shown that this complex-valued equation, when evaluated
through the procedure described below, precisely captures the
trajectories of the original, nonlinear Kuramoto model [28].
We now show that this approach generalizes to the case of
heterogeneous time delays.

With this approach, we have two dynamical systems:
the original, nonlinear KM and a complex-valued system
with the explicit solution in Eq. (3) (details on the deriva-
tion can be found in Ref. [28] and in Appendix A). In
the complex-valued system, x ∈ CN has elements xi(t ) ∈ C
whose argument we compare with the numerical solution of
the original Kuramoto model with heterogeneous time delays
(dKM) θi(t ) ∈ R [obtained by Euler integration of Eq. (2)
with high temporal precision]. That is, Arg[xi(t )] is com-
pared with θi(t ). When initialized with unit-modulus initial
conditions |xi(0)| = 1 for all i, with arguments Arg[xi(0)] that
match the initial phases θi(0) in the original dKM, the tra-
jectories in the original and complex-valued KM correspond

FIG. 1. Synchronization level for nondelayed and delayed net-
works. The time-average Kuramoto order parameter 〈R〉 is plotted
as a function of the coupling strength ε for the nondelayed case
(blue circles, original KM; orange diamonds, complex-valued KM)
and for the delayed case (red squares, original dKM; green triangles,
complex-valued dKM). Each point represents one 10-s simulation
with random initial conditions [U (−π, π )], which are the same
for the complex-valued case and for the numerical simulation at
each point.

for a nontrivial window of time [4]. As mentioned above, in
Ref. [28] we found that iterating the explicit expression (3) in
a specific manner produces trajectories in the complex-valued
system that precisely match those in the original, nonlinear
Kuramoto model. Specifically, we can evaluate

x(t + ς ) = 	[eiως eςW x(t )], (5)

where ς is small but finite, t ∈ [0, ς, 2ς, . . . , nς ], and 	 rep-
resents an elementwise operator mapping the modulus of each
state vector element xi(t ) to unity. This approach represents an
iterative analytical procedure, defined by the application of the
linear matrix exponential and 	. Note that Eq. (5) propagates
the solution at discrete time intervals defined by ς , Eq. (3)
can be applied within intervals defined by ς , and ς > dt .
Critically, while this iterative procedure does not represent a
closed-form, all-time solution for the dynamics of the original
nonlinear Kuramoto system, all evolution of the arguments
Arg[xi] [which, again, correspond with θi(t ) ∀ i in the orig-
inal KM] is governed under the linear matrix exponential
operator, and it is clear that the elementwise 	 operator only
changes the moduli. In this paper, we show that this approach
applies also in the case of heterogeneous time delays and
provides analytical insight into how distance-dependent time
delays create specific spatiotemporal patterns.

III. RESULTS

We first study phase synchronization in networks with
(dKM) and without (KM) time delays on GRG, as a function
of the coupling strength ε (Fig. 1). We use the Kuramoto order
parameter,

R(t ) = 1

N

∣∣∣∣∣∣
N∑

j=1

eiθ j (t )

∣∣∣∣∣∣, (6)
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FIG. 2. Analytical and geometric view of the effect of time delays. The spatiotemporal dynamics of the system is represented using
color coding, where the phase of each oscillator is plotted as a function of time for (a) the original KM, (b) the original dKM, (c) and the
complex-valued dKM. Dark colors represent phases close to −π , and light colors represent phases close to π . (a) Without delay, the network
transitions to phase synchronization, which is represented by the horizontal lines. The effect of the delay, however, induces wave patterns in
the system, whose dynamics are represented (b) in the original dKM and also captured (c) by the complex-valued model. (d) These dynamical
characteristics are corroborated by the Kuramoto order parameter R(t ). (e) The eigenmodes offer a geometric perspective to such dynamics,
where the waves are represented by a single eigenmode contribution (third mode in this case). (f) The eigenvalues of W (delayed) and εA
(nondelayed) provide further analytical insights into the effect of the delay in the system: It rotates the eigenvalues in the complex plane, which
allows the system to access different modes. In the nondelayed case, the leading eigenvalue (in the real part) is associated with an eigenvector
with a zero-phase-difference configuration (first mode). In the delayed case, otherwise, there are two leading eigenvalues that are associated
with the eigenvectors v3 and v99, which have phase configurations representing traveling waves.

and its time average 〈R〉 for 10-s simulations to measure the
level of phase synchronization. As the coupling strength ε

increases in the nondelayed case (original KM and complex-
valued KM), 〈R〉 begins at a low value and increases until
approaching unity (representing phase synchronization).

In the case with heterogeneous time delay (original dKM
and complex-valued dKM), the order parameter remains low
(Fig. 1, red squares and green triangles), reflecting the fact
that time delays induce a range of spatiotemporal patterns,
as observed previously [17,18,29–33]. Here, we observe that
the complex-valued model is able to capture the average dy-
namics that the original Kuramoto model depicts, for both the
nondelayed and delayed cases, for different coupling strengths
across different initial conditions (Fig. 1).

We next study dynamics in the KM and dKM consider-
ing an individual realization, for a fixed coupling strength
(ε = 0.5), and compare the dynamics of the original dKM
with the evaluation of the complex-valued approach. With-
out time delays, the original KM exhibits a quick transition
from random initial conditions to a phase-synchronized state
[horizontal lines, Fig. 2(a)]. With time delays, however, phase
synchronization is not reached, and the original dKM exhibits
a transition from random initial conditions to a traveling wave
state [diagonal structures, Fig. 2(b)]. The evaluation of the
complex-valued dKM captures both the transient dynamics

and the traveling wave state exhibited in the original dKM
[Fig. 2(c)], as well as the dynamics of the Kuramoto order
parameter R(t ) [Fig. 2(d)].

Our approach to systems with heterogeneous time delay
provides insight into the mechanism for these dynamics in
terms of the spectrum of W—Eq. (4). If A and τ are circulant,
W is also circulant (see Appendix B); hence W and A share
the same eigenvectors (which form an orthonormal basis). We
can then write Eq. (3) using the eigenspectrum of W , which
results in x(t ) = eiωt (α1eλ1tv1 + · · · + αN eλN tvN ), where αi
can be written in terms of initial conditions. Importantly, we
can also write Eq. (5) in a similar fashion, which results
in x(t + ς ) = 	[eiως (α1eλ1ςv1 + · · · + αN eλN ςvN )], where αi
can again be written in terms of the state of the system at
time t ∈ [0, ς, 2ς, . . . , nς ]. Thus, while it is in general a very
difficult problem to understand the dynamics of nonlinear
networks in terms of eigenspectra, this approach provides a
unique insight into the connection between the spectrum of
W—Eq. (4)—and the spatiotemporal dynamics of the non-
linear oscillator network—Eq. (2). Critically, our approach
uses familiar mathematical techniques from linear algebra
matrix theory in a distinct way: While previous approaches
in nonlinear dynamics have sought to describe the dynamics
using the spectrum of the Laplacian matrix [34–36], the focus
on the complex-valued system in our approach enables the
insight that the argument of the eigenvectors of the matrix W
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provides analytical predictions about the resulting nonlinear
dynamics.

Following this idea, Fig. 2(e) shows the eigenmode contri-
butions, here represented by log |μi|, as a function of time,
for the dynamics in Fig. 2(c). Here, the eigenmode contri-
butions are given by the projection of the complex-valued
approach solution x(t ) onto the eigenvectors of W . The eigen-
mode contributions are obtained as μk (t ) = 〈x(t ), vk〉, where
〈·〉 denotes the standard complex inner product. Figure 2(e)
shows that, when the network exhibits incoherent dynamics,
the eigenmode contributions remain uniform across μi. When
the traveling wave pattern is reached, on the other hand, the
third eigenmode becomes dominant (note the log scale). These
results demonstrate that the change from incoherent dynamics
to a traveling wave can be understood quite directly through
the geometry of the eigenmodes. Furthermore, in the case of
circulant networks, we can evaluate eigenvalues and eigenvec-
tors analytically using the circulant diagonalization theorem
(CDT) [37]; in this case, the first eigenvector represents the
solution where all oscillators have the same phase (phase
synchronization), and higher modes represent wave patterns,
given by Fourier modes (see Appendix C).

The effect of heterogeneous time delays on the dynamics
of the dKM can be understood through the geometry of
eigenvalues in the complex plane. Figure 2(f) illustrates the
eigenvalues of εA (nondelayed) and W (delayed). While
the nondelayed case (blue line and circles) has purely real
eigenvalues, the effect of the heterogeneous time delays (red
line and squares) can be understood in our framework in terms
of the Hadamard (elementwise) product of the delay operator
τ and A [see Eq. (4) and Appendix B]. The effect of this
operation is to provide a specific rotation of the eigenvalues in
the complex plane. This rotation allows the system to access
higher modes and, therefore, to exhibit different traveling
wave patterns. Furthermore, the rotation is not the same for
all eigenvalues because the delays are heterogeneous. In this
particular case, the rotation leads to eigenvalues associated
with the 3rd and 99th modes to have the largest real part,
allowing the system to reach traveling wave states associated
with the 3rd and 99th modes. In the particular example of
Fig. 2, the network evolves to a wave given by the third
mode, but different (random) initial conditions can evolve
to the dynamics described by either the 3rd or 99th mode
[27]. Moreover, when different time delays are considered,
different modes can be dominant, and therefore the system
evolves to a different wave pattern [27].

We can now uncover how the combination of network
structure, time delays, and node state can create specific spa-
tiotemporal patterns. By using our delay operator approach,
we can analytically predict the specific pattern to which the
original dKM evolves. Figure 3(a) shows the wave pattern
given by θ obtained from the original dKM (blue line) and
the argument (elementwise) of the third eigenvector (red line),
which predicts the observed dynamics [27]. In this case,
phases increase in the clockwise direction around the ring,
which we define to be the positive direction (+1). It is im-
portant to note that, in our approach, the argument of each
eigenvector element (Arg[(vk )i] ∀i ∈ [1, N]) directly relates
with the phase offset in the resulting network dynamics.
Because of the correspondence between trajectories in the

FIG. 3. Analytical predictions of specific wave patterns. (a) The
phase configuration for the original dKM (blue line) matches the
argument (elementwise) of the third eigenvector Arg[v3]—the an-
alytical prediction (red dotted line). A representation on the circle
using color coding reveals the wave pattern (right). (b) Different
initial conditions lead to the wave pattern that matches the argument
of the 99th eigenvector Arg[v99]. These waves can propagate either
counterclockwise (negative) or clockwise (positive). (c) With random
initial conditions, due to the dominance of two eigenvalues (3rd and
99th), the system exhibits waves propagating in both directions—
with approximately half of the initial conditions evolving to each
direction (top right). (d) With biased initial conditions, starting from
Arg[v3] (red line, bottom right) and adding uniform random phases
0.8(U (−π, π )), we obtain a preferred direction of propagation.

complex-valued model and the original dKM, this approach
creates a direct link between eigenvectors of the adjacency
matrix and the specific spatiotemporal dynamics that result.
For the dynamics in Fig. 3(a), the eigenmode contribution
is given by μ3 [see Fig. 2(e)], and the phase configuration
matches the argument of v3. In the example considered here,
two eigenvalues are dominant (i.e., having the largest real
part): λ3 and λ99 [Fig. 2(f)]. Different initial conditions can
thus evolve to the phase pattern given by the 99th mode,
which is predicted by v99 [Fig. 3(b)]. In this case, the spatial
frequency is the same as observed in the previous case, but
the direction of the wave pattern is the opposite [27]. These
results show a clear connection between the spectrum of the
network (described by W ) and the dynamics on the original
dKM, where the wave pattern (solution) can be described by
the phase configuration of the eigenvector associated with the
dominant mode.

We take counterclockwise increases in phase to be in the
negative direction, and clockwise increases to be positive.
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(a)

(b)

(c)

(d)

FIG. 4. Analytical predictions of spatiotemporal patterns in brain networks. We use our approach to investigate networks based on the
Human Connectome Project (HCP) [38]. We consider the case without delay in the coupling between nodes and also the case with distance-
dependent delays (heterogeneous delay). We use our delay operator to create the matrix W , which allows analytical predictions of the dynamics.
We show the phase of each node, given by the Kuramoto model, using color coding (dark colors are values close to −π , and light colors are
values close to π ). (a) In the case without delay, the argument of the leading eigenvector depicts zero phase difference, which predicts phase
synchronization. (b) We then study the numerical simulation for the network without delay, given by Eq. (1), which shows a phase-synchronized
state. (c) In the case with heterogeneous time delays, the argument of the leading eigenvector shows a phase offset from the bottom left to the
top right (in the projection), which predicts a wave pattern. (d) We perform the numerical simulation with the delayed Kuramoto model, given
by Eq. (2), and the network depicts the wave pattern that is predicted by our approach. This shows that we are able to predict the dynamics
observed in the simulations using our delay operator.

Because the network considered here has two dominant eigen-
values equal in their real parts, random initial conditions
evolve equally either to the phase pattern of v3 or to the phase
pattern of v99 in individual simulations [Fig. 3(c)]. To quantify
the spatiotemporal dynamics, the spatial frequency, and the
direction of propagation, we compare the phases obtained
from the original dKM and the argument of the eigenvectors
of W . Specifically, we evaluate

ρ (k)(t ) =
∣∣∣∣∣∣

1

N

N∑
j=1

eiθ j (t )e−iArg[(vk ) j ]

∣∣∣∣∣∣, (7)

where θ j (t ) is the phase of the oscillator j at time t obtained
from the original dKM, N is the number of oscillators in the
network, i is the imaginary unit, and vk is the kth eigenvector
of W . Here, we use v3, and ρ (k) = 1 means that the phase
configuration of the network given by the θ(t ) is the same as
the one given by the argument of the eigenvector vk . In the
case shown in Fig. 3(c), approximately half of the simulations
evolve to the positive direction, indicating that the dynamics
matches the argument of v3, and approximately half evolve
to the negative, indicating that the dynamics is given by the
argument of v99. A small fraction of initial conditions exhibit
inner products of approximately ±0.5, corresponding to a
wave with a different spatial frequency.

Using the insights from this approach, we can now de-
sign initial conditions that generate waves in a preferred

direction. To do this, we started from the phase pattern spec-
ified by v3 and randomized the phases by nearly a full cycle
(0.8 U [−π, π ], then wrapped in [−π, π ]). While this initial
condition is nearly random (Fig. 3(d), bottom right, where the
red line represents Arg[v3]; compare with Fig. 3(c), bottom
right), nearly all simulations evolve to the positive direction.
These results demonstrate that the combination of connec-
tivity, time delays, and network state can generate specific
spatiotemporal patterns in oscillator networks—here, travel-
ing waves with a chirality in a preferred direction.

The framework for systems with heterogeneous time de-
lays introduced in this paper generalizes to many types of
networks. This approach can be applied to very sophisticated
networks obtained from experimental data. In particular, this
approach can successfully predict traveling wave patterns
arising in an oscillator network based on connectivity in the
human brain. Figure 4 illustrates simulations and the ana-
lytical prediction resulting from our approach for networks
where the connectivity data are based on the Human Con-
nectome Project (HCP) [38]. In this case, N = 998 cortical
regions are given at a point in 3-space, with connections
between areas derived from neuroimaging data. Connection
weights between regions are determined by the number of
fibers [38,39], which we use to build the adjacency matrix
A. Here, the coupling strength is scaled with ε = 200, and
the initial conditions for each analysis are given by random
phases [−π, π ]. Furthermore, time delays are obtained by
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τi j = di j/ν, where the distances di j are determined by the av-
erage length of these fibers and the known axonal conduction
speed is given by ν = 5 m/s [40]. The dynamics of each node
is represented by the Kuramoto model, given either by Eq. (1)
in the nondelayed case or by Eq. (2) in the delayed case.
The natural frequency of each oscillator is given by 10 Hz
(simulating, for example, a specific drive from the thalamus).
Using the delay operator, we construct the matrix W for these
systems—Eq. (4)—which allows us to obtain analytical pre-
dictions of the spatiotemporal patterns that emerge. First, we
consider the case without time delays, where τi j = 0. We then
obtain the eigenspectrum of the matrix W and plot the ar-
gument (elementwise) of the eigenvector associated with the
leading eigenvalue [Fig. 4(a)]. In this case, this eigenvector
shows a zero phase difference across nodes, predicting phase
synchronization. We then perform the numerical simulation
of the Kuramoto model (without delay), given by Eq. (1), and
plot the phase of each node using color coding [Fig. 4(b)],
where we observe a phase-synchronized behavior [27]. On the
other hand, when we consider time delays in the interaction
between cortical areas, the scenario is different. In this case,
the argument (elementwise) of the eigenvector associated with
the leading eigenvalue depicts a phase offset increasing from
the bottom left to the top right (in this projection), predict-
ing a wave propagating along that direction [Fig. 4(c)]. We
then perform numerical simulations of the Kuramoto model
with heterogeneous time delays—Eq. (2)—and we observe
the wave pattern that is predicted by our approach, as shown
in Fig. 4(d) [27]. This example now clearly demonstrates the
advantage of this analytical approach: When we numerically
evaluate the eigenspectrum of W in this case, the leading
eigenvector for the case without delays predicts phase syn-
chrony, while the leading eigenvector for the case with delays
predicts the precise wave pattern observed in the simulation.
This result shows that our approach is able to predict the
spatiotemporal pattern that results from connectivity and time
delays in a highly relevant, real-world case.

IV. CONCLUSION

In this paper, we have introduced an analytical approach
to the dynamics of nonlinear oscillator networks with hetero-
geneous time delays, an important open problem in physics
with many potential applications. The advance in this paper
is based on an algebraic approach to the Kuramoto model
introduced in Ref. [28]. Importantly, the flexibility of this
framework allowed us to introduce a delay operator, which
provides rigorous analytical predictions for the specific travel-
ing wave patterns induced by distance-dependent time delays.
Using this approach, we can explain the effect of time de-
lays in terms of a rotation of the eigenvalues of the matrix
describing the system, which provides a clear and precise
way to understand heterogeneous time delays in terms of
the geometry of eigenmodes. Our approach therefore allows
analytical predictions for the specific spatiotemporal patterns
exhibited by the original dKM.

This framework allows us to understand how the combi-
nation of isotropic connectivity and time delays can produce
traveling waves propagating in a preferred direction, as
observed in experimental data [1]. Importantly, while this

question first arose in our study of neural dynamics in human
cortex during sleep, the approach we have introduced here is
general to networks of oscillators at finite scales. The results
shown in this paper, together with the results in Refs. [4,28],
represent a coherent and general framework for nonlinear
oscillator networks.

al advance of this framework is to consider the dynamics in
an individual simulation, taking into account both the initial
conditions and the specific connectivity pattern in the net-
work. This framework thus provides an opportunity to connect
an individual adjacency matrix, for example, a single network
taken from experimental data or a single realization of a
random graph model, to the specific spatiotemporal pattern
that results in a simulation. This approach has important po-
tential applications, for example, in linking an experimentally
reconstructed brain network to dynamics and computation
in a neural system [41] or in linking the connections in
a large-scale power grid to potential large and transient
disruptions [42,43]. In this paper, we have generalized this
framework to systems with heterogeneous time delays, which
demonstrates the utility of this algebraic, operator-based
approach to nonlinear dynamical systems at finite scales.

An open-source code repository for this work is available
on GitHub [44].
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APPENDIX A: THE COMPLEX-VALUED APPROACH

We consider the Kuramoto model with heterogeneous time
delays described by Eq. (2) and then use the approximation
given by θ j (t − τi j ) ≈ θ j (t ) − ωτi j [17,18,24], which leads to

θ̇i(t ) = ω + ε

N∑
j=1

Ai j sin(θ j (t ) − θi(t ) − ηi j ), (A1)

where ηi j = ωτi j .
Based on Refs. [4,28], we introduce the complex-valued

approach to the Kuramoto model described by Eq. (A1). To
do that, we introduce a new dynamical system, described by
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the variable ψ ∈ C:

ψ̇i(t ) = ω + ε

N∑
j=1

Ai j[sin(ψ j (t ) − ψi(t ) − ηi j )

− i cos(ψ j (t ) − ψi(t ) − ηi j )]. (A2)

Next, multiplying both sides by i and applying Euler’s formula
yields

iψ̇i(t ) = iω + εe−iψi (t )
N∑

j=1

Ai je
iψ j (t )e−iηi j . (A3)

We define W as

W = εe−iη ◦ A, (A4)

where ◦ represents the Hadamard product (or elementwise
product) and ηi j = ωτi j . This results in the following matrix
form of Eq. (A3):

ψ̇(t ) = ω + 1

i
diag[e−iψ(t )]Weiψ(t ), (A5)

where we note explicitly that ψ = [ψ1, . . . , ψN ]T , ψ̇ =
[ψ̇1, . . . , ψ̇N ]T , and ω = [ω, . . . , ω]T . Furthermore, we can
write the previous equation as

d

dt
eiψ(t ) = (diag[iω] + W )eiψ(t ). (A6)

Lastly, letting x(t ) = eiψ(t ), we have

ẋ(t ) = (diag[iω] + W )x(t ), (A7)

whose general solution is

x(t ) = eiωt etW x(0). (A8)

In this paper, the dynamics of the complex-valued approach is
studied by considering the elementwise argument of x(t ), i.e.,
Arg[xi(t )] ∀ i ∈ [1, N]. As shown in Ref. [28], when |x j |

|xi| ≈ 1,
the dynamics of Arg[x(t )] precisely matches the trajectories
of the Kuramoto model given by Eq. (A1). This allows us
to use the eigenspectrum of W to understand and predict the
dynamics of the Kuramoto model with heterogeneous time
delays.

APPENDIX B: CIRCULANT NETWORKS
AND HADAMARD PRODUCT

The definition of the Hadamard product can be described
as follows.

Definition 1. Let A, B be two n × n matrices. The
Hadamard product A ◦ B is a matrix of dimension n × n with
elements given by

(A ◦ B)i j = (A)i j (B)i j .

For a complex number λ, we also define e◦(λA) to be the
matrix of dimension n × n with elements given by

(e◦λA)i j = eλAi j .

We have the following observation.
Proposition 1. Let A, B be two circulant matrices. Then (1)

A ◦ B is a circulant matrix and (2) eλ◦A is a circulant matrix.
Proof. Assume that A = circ(a), B = circ(b) with a =

(a1, a2, . . . , an) and b = (b1, b2, . . . , bn). Then we can see

FIG. 5. A graphical representation of the matrix with the phase
configuration of the eigenvectors of W . The kth column is the color-
coded argument (elementwise) of the kth eigenvector.

that

A ◦ B = circ((a1b1, a2b2, . . . , anbn))

and

e◦λA = circ((eλa1 , eλa2 , . . . , eλan )).

Therefore we conclude that both A ◦ B and eλ◦A are
circulant. �

APPENDIX C: THE CIRCULANT
DIAGONALIZATION THEOREM

In the case of circulant networks, we can use the circulant
diagonalization theorem (CDT) to obtain the eigenspectrum
of the adjacency matrix analytically [37]. In this paper, both
the nondelayed network εA and the delayed one W are cir-
culant (see Proposition 1). The CDT states that all circulant
matrices, say, H = circ(h), where circ(h) is the circulant ma-
trix constructed from the generating vector h = (h1, . . . , hN ),
are diagonalized by the same unitary matrix U with
components

Uks = 1√
N

exp

[
−2π i

N
(k − 1)(s − 1)

]
, (C1)

where k, s ∈ [1, N], and that the N eigenvalues are given by

Ek (H ) =
N∑

j=1

h j exp

[
−2π i

N
(k − 1)( j − 1)

]
. (C2)

We let Eq. (C2) determine the ordering of the eigenvalues
throughout this paper. The argument of the eigenvectors as-
sociated with these eigenvalues corresponds to the columns
of the discrete Fourier transform (DFT) matrix, which range
from low to high spatial frequencies.

Figure 5 shows the argument of the eigenvectors using
color coding. Here, Arg[(v1)i] = 0 ∀ i ∈ [1, N] (as shown in
Fig. 2), which represents zero phase difference across os-
cillators, or phase synchronization. The other eigenvectors
represent Fourier modes (waves) with different spatial fre-
quencies. Figure 2 shows the cases of the eigenvectors v3

and v99.
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