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Abstract. The Nernst-Planck equation for electro- 
diffusion was applied to axons, dendrites and spines. 
For thick processes (1 Ixm) the results of computer 
simulation agreed accurately with the cable model for 
passive conduction and for propagating action poten- 
tials. For thin processes (0.1 ~tm) and spines, however, 
the cable model may fail during transient events such 
as synaptic potentials. First, ionic concentrations can 
rapidly change in small compartments, altering ionic 
equilibrium potentials and the driving forces for 
movement of ions across the membrane. Second, 
longitudinal diffusion may dominate over electrical 
forces when ionic concentration gradients become 
large. We compare predictions of the cable model and 
the electro-diffusion model for excitatory postsynaptic 
potentials on spines and show that there are significant 
discrepancies for large conductance changes. The 
electro-diffusion model also predicts that inhibition on 
small structures such as spines and thin processes is 
ineffective. We suggest a modified cable model that 
gives better agreement with the electro-diffusion 
model. 

1 Introduction 

The cable model of electrical conduction is central to 
our understanding of information processing in 
neurons. The conduction of action potentials in axons 
has been modeled as a nonlinear excitable cable 
(Hodgkin and Huxley 1952) and the integration of 
postsynaptic signals in dendrites has been studied with 
analytic solutions to passive cables (Rail 1977). Re- 
cently, several groups have used the cable model to 
examine the possibility of more complex signal pro- 
cessing in dendrites with complex morphologies, mul- 
tiple synaptic inputs, and passive or excitable mem- 

branes (Shepherd et al. 1985; Koch and Poggio 1983; 
Koch et al. 1983; Rail and Segev 1987; Perkel and 
Perkel 1985; Wathey et al. 1989). 

The resting membrane potential is maintained by 
ionic concentration differences across the membrane. 
In the cable model, the equilibrium potential of each 
ion is represented by a battery whose electromotive 
force is given by the Nernst potential. Changes in the 
membrane permeability are modeled by changes to 
conductances in series with the batteries. The ionic 
concentrations are usually not significantly altered by 
these conductance changes, so the equilibrium poten- 
tials are not altered and the potentials of the batteries 
can be considered fixed. However, there are circum- 
stances when this is n o t  a good assumption. If the 
intracellular volume is relatively small, as in dendritic 
spines, then ionic concentrations can change rapidly 
following a transient change in ionic conductances. 
Moreover, a sudden change in concentration at one 
location can lead to gradients of ionic concentration 
within a thin process, which violates another funda- 
mental assumption of the cable model. Under these 
circumstances, it is necessary to consider the funda- 
mental laws governing the movements of ions, as given 
by the Nernst-Planck equations for electro-diffusion 
(Jack et al. 1975). 

There is another motivation for carefully treating 
the ionic concentrations and the diffusion of ions 
within neurons. Many intracellular functions are regu- 
lated by concentrations of particular ions. For 
example, the release of neurotransmitter depends on 
the concentration of Ca 2§ inside presynaptic ter- 
minals, which can change by an order of magnitude in 
milliseconds (Stockbridge and Moore 1984; Fogelson 
and Zucker 1985; Simon and Llinas 1985). The inflow 
of Ca 2§ into postsynaptic dendrites precedes the 
induction long-term potentiation in hippocampal pyr- 
amidal cells (Malenka et al. 1988). Thus, it is important 
to predict accurately the concentration changes of 
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Fig. 1. a Electrical circuit for one compartment in cable model for 
a neuronal process and b an equivalent circuit. Only K + and Na § 
are considered in this model 

Ca 2 + in small compartments such as synaptic boutons 
and dendritic spines. 

In this paper we introduce an electro-diffusion 
model for small compartments and thin processes that 
is based on the Nernst-Planck equation. The electro- 
diffusion model provides a unified framework for the 
computation of both the membrane potentials and the 
intracellular ionic concentrations during synaptic ac- 
tivation. Some preliminary results for excitatory post- 
synaptic potentials have already been reported (Qian 
and Sejnowski 1988). We extend the model to in- 
hibitory postsynaptic potentials and show that inhi- 
bition is not effective on spines and thin dendrites 
(Qian and Sejnowski 1989). 

2 Limitations of the Cable Model 

In the cable model, the membrane potential, V(z, t), at 
distance z and time t along a cable obeys the equation 
(Jack et al. 1975): 

d 02V OV 
4R i Oz 2 = era --~- -F lot, (1) 

where d is the diameter of the cable, R~ (f~ cm) is the 
total intracellular cytoplasmic resistivity, Cot (gF/cm 2) 
is the membrane capacitance per unit area, and lot 
(mA/cm 2) represents the total non-capacitative mem- 
brane current density which is the summation of all 
non-capacitative membrane current densities for each 
ionic species, lot.k. If we assume that the movement of 
ionic species k across the membrane can be described 
by a membrane resistance of unit area Rm.k (f~ cm 2) in 
series with a battery whose electromotive force E k is 
equal to the ionic equilibrium potential as shown 
schematically in Fig. 1 a, then 

lot.k =(v-/~D/R. .k,  (2) 

and 

Im= Z I,.,k =(V-- K=st)/Rot. (3) 
k 

where the resting membrane potential, Vre~t, and the 
total membrane resistance, Rot, are given by: 

V~t = g, ,  F. (Ek/Rot, k) 
k 

1/R,, = E (1~Rot.k). 
k 

Through these definitions, the electrical circuit in 
Fig. la can be reduced to the equivalent circuit shown 
in Fig. lb. The standard equation for the cable model is 
obtained by substituting (3) into (1), assuming that V is 
measured from the resting potential V~es, (Rall 1977): 

22 c~2V c?V 
= zot ~ -  + V, (4) 

where the space and time constants are defined as 

2=(dR,~4R~) 1/2 , 

zot = RotCot. 

The electromotive forces of the membrane batteries 
(equilibrium potentials) in the cable model are usually 
obtained from the Nernst equation and are considered 
constants. This is a good approximation in the squid 
giant axon or other large neurons, but may introduce 
errors if the concentrations of some ions change 
significantly with time. This applies to Ca 2+ con- 
centrations in many situations and to synaptic events 
in small structures such as dendritic spines (Rail 1978; 
Koch and Poggio 1983). Restricted extracellular 
spaces may also result in significant extracellular ionic 
concentration changes (see Discussion). 

A second limitation of the cable model is in the 
treatment of longitudinal spread of current within 
neurons. In the cable model, the gradient of the 
electrical potential in the cytoplasm is the driving force 
for the ionic current, but there is no provision for the 
driving forces due to concentration gradients. This is 
usually a good assumption, but it may not be valid for 
ions like Ca 2 + and for small structures like dendritic 
spines where the spatial concentration gradients can be 
very large. 

Finally, different ions may have different 
concentration-dependent cytoplasmic resistivities [see 
(13)], but the cable model only incorporates the total 
cytoplasmic resistivity. This may not be a valid 
approximation when the concentrations of ions are 
changing differentially. In summary, one expects that 
the cable model may not be appropriate when spatial 
and/or temporal ionic concentrations changes are 
large and especially when ionic concentration changes 
need to be determined. 

In the following sections we will first derive a set of 
equations that govern the electrodiffusion of ions in 
neuronal processes and discuss their relationship with 
the cable model. We will then present numerical 



solutions to these equations for a propagating action 
potential in a long axon and for postsynaptic poten- 
tials in a dendritic spine. A modifield cable model is 
proposed which agrees well with the electrodiffusion 
model when the ionic concentration are not changing 
too quickly. Finally, we discuss the origin of the 
differences between the electro-diffusion model and the 
cable model and the effects of restricted extracellular 
space, ionic pumps and ionic exchangers in the 
membrane. 

3 Electro-Diffusion Model 

The movement of ions in neurons is governed by the 
Nernst-Planck equation (Jack et al. 1975): 

Ji, = -- Dk( ff nk + (nk/~k) VV), (5) 

where V is the potential, Jk is the flux of ionic species k 
(number of particles per unit area), D k is the diffusion 
constant, nk is the concentration, and the constant a k is 
defined as 

tXk= R T/Fzk, 

where z, is the valence of ionic species k, R is the gas 
constant, F is the Faraday constant, and T is the 
absolute temperature. The ionic concentrations and 
ionic currents must additionally satisfy the continuity 
equation: 

ank 
V- Jk + -~- = 0. (6) 

Consider a cylinder of diameter d and assume that 
the longitudinal current and ionic concentrations are 
uniform across the transverse cross-section of the 
cylinder. Assume also that transverse currents occur 
only at the surface of the cylinder and are independent 
of angle around the axis of the cylinder. These assump- 
tions reduce the problem of electro-diffusion to a one- 
dimensional problem along the axis of the cylinder. 
The equations can be written in cylindrical coordinates 
and reduced to a single equation for the concentration 
as a function of the distance along the z-axis of a 
cylinder: 

On k 02nk Dk(~ ( O V )  4 
dt = Dk ~z  2 + Ot-k -~Z nk ~Z -- -d Jm.k, (7) 

where Jm, k is the membrane flux of ionic species k, 
positive for outgoing flux (see the Appendix for details 
of the derivation). An expression for the membrane 
fluxes can be obtained by making the constant-field 
approximation for the O component of (5) (Goldman 
1943): 

Jm k = PkV Fn~Ut--nkeXp(V/O~k)] ' j (8) 

The Eq. (7) becomes: 

63II k ~2n k D k 

4PkV [nZ~'-nk exp(V/~tk!] 
etkd [. 1--exp(V/ak) 1 '  (9) 

where Pk is the permeability of the membrane and n~ u' 
is the concentration of ionic species k outside the 
membrane, which was considered constant for all 
simulations reported in this paper. The three terms on 
the right-hand side of this equation are, respectively, 
the contributions from pure diffusion, the potential 
gradient, and the membrane current. In applying (9) to 
some problems, the last term may be replaced by an 
experimentally-determined expression for the mem- 
brane current to eliminate the error introduced by the 
constant-field approximation. 

Equation (2) has been found to be a good approx- 
imation for squid giant axons Hodgkin and Huxley 
1952) while (8) better describes the membrane currents 
in the myelinated nerve fibers of Xenopus laevis 
(Frankenhaeuser and Huxley 1964). It is not clear 
whether (8) or (2) is a better approximation for 
dendritic spines, especially when changes in ionic 
concentrations are large. The expressions for the 
membrane currents of ionic species k in (2) and (8) 
cannot be made equivalent even when the ionic 
concentrations are almost constant. An additional 
requirement is that the membrane potential V should 
be very close to the equilibrium potential ofions, which 
obviously cannot be satisfied for all ions at the same 
time. The constant-field approximation in (8) was used 
in our model because it at least takes concentrations 
explicitly into account. In a later section we show that 
if the ionic concentrations change and the equilibrium 
Ek in (2) are updated according to the Nernst equation, 
then the modified cable model based on (2) gives results 
similar to the electro-diffusion model based on (8). 

Equation (9) must be supplemented by an ad- 
ditional constraint between the membrane potential 
and the ionic concentrations. We adopt the same 
capacitative model of the membrane used in the cable 
model; that is, we assume that the potential change in a 
short segment of a process is equal to the change of the 
total charge in the segment divided by its membrane 
capacitance: 

V(z,t)= V~cst +(Fd/4Cm) ~ [nk(z,t)--nk.rest]Zk, (10) 
k 

where V~est is the initial potential and nk.re~t is the initial 
ionic concentration of species k. 

Neuronal processes often branch and change their 
diameters. If branches are allowed, then these equa- 
tions must be solved on a tree rather than a line. 
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Fig. 2. A branch point of a neuronal process with diameter jumps. 
The three sample points are labeled 1, 2, and 3 around the branch 
point 0. The diameters for the three branches are dr, d2, and d~ 
respectively. Azt, /17,2, and /17,3 represent the spatial distances 
between point 0 and points 1, 2, and 3 respectively 

Continuous diameter changes can be approximated by 
segments having piecewise constant diameters. At 
points where the diameter jumps and/or  branches 
occur, the solutions can be matched using the continu- 
ity of flux at that point. The continuity constraint at a 
branch point can be derived from (5). For  the geometry 
illustrated in Fig. 2 where both branching and diame- 
ter jumps occur, the continuity constraint at point 0 is: 

Oz + "" [x =d2 Oz + ~k ~ Oz ,/12 

\ Oz + - -  (11) 
O[k 3" 

The square of the diameter enters into this equation 
because the flux through the areas of each branch must 
be matched. There is an analytic solution of the cable 
model for branching dendrites having passive mem- 
branes if Rail's "3/2 power law" (Rail 1977) is satisfied. 
This law for an equivalent cylinder does not  hold for 
our  electro-diffusion model except in the limit when the 
concentration gradients go to zero and (2) rather than 
(8) is used to compute the membrane currents. A 
compartment  approximation for the solution of (9) is 
inaccurate for large ionic fluxes if the continuity 

constraint in (11) is not used to match solutions on the 
two sides of a diameter jump or at a branch point. 

Note that (9) requires that both the potentials and 
the ionic concentrations be continuous with respect to 
z (otherwise the derivatives would become infinite). 
However, by (10) the potential is not continuous at a 
diameter jump if the ionic concentrations are con- 
tinuous. This is the artifact of assuming a sudden 
diameter change and can be resolved by setting the 
voltage at the jump to the average of the voltages on 
either side (see Appendix). 

The differential equations in (9) coupled through 
(10) were converted to finite difference equations and 
were integrated by a first-order forward Euler approx- 
imation (Mascagni 1989). The solutions at diameter 
jumps and/or branching points were obtained by 
solving the coupled nonlinear algebraic equations 
derived from the matching conditions in (11). The 
details of these numerical methods are described in the 
Appendix. 

4 Relationship Between the Electro-Diffusion Model 
and the Cable Model 

In large neuronal processes the internal and external 
ionic concentrations are likely to remain approx- 
imately constant during a transient membrane conduc- 
tance change. If the concentration gradients are small, 
the contribution due to the diffusion of ions within the 
neuron becomes negligible and the longitudinal cur- 
rent is purely resistive. It can be shown (see Appendix) 
that (7) and (10) then reduce to the form in (1). Thus, the 
electro-diffusion model in the limiting case is identical 
to cable model in calculating the membrane potential 
V if the same membrane currents are used. 

Table 1. Parameters used in the electro-diffusion model. The diffusion constants were taken 
from Hille (1984). The membrance capacitance follows Koch and Poggio (1983) to facilitate 
comparisons. The determination of the other parameters is discussed in the text 

Symbol Value Parameter 

Dg 1.96 x 10 -s cmZ/s 
Ds. 1.33 x 10 -5 cmZ/s 
PK, rest 3.64 • 10 -6  cm/s 
PNa, rest 6.07 x 10 -s cm/s 
[K]i. (0) 140 mM 
[Na]i,, (0) 12 mM 
[K]out 4 mM 
[Na]out 145 mM 
PNa. u 6.07 x 10- 3 cm/s 
tp 1 ms 
T 20 ~ 
C,. 2 pF/cm 2 

Diffusion coefficient for K + 
Diffusion coefficient for Na + 
Resting permeability of K + 
Resting permeability of Na + 
Initial internal K + concentration 
Initial Na + concentration 
External K + concentration 
External Na + concentration 
Maximum Na + permeability of spine 
Time to reach peak permeability 
Temperature 
Membrane capacitance per unit area 



Table 2. Parameters used in the cable model. R~ was calculated from (8) and (9), EK and EN~ were calculated 
from the intracellular and extracellular [K +1 and [Na +] respectively according to Nernst equation, and R=. K 
and Rm.N~ were determined from PK and PN= by setting the resting K § and Na + currents equal to those in the 
electro-diffusion model. This automatically made the resting potentials the same in two models. There were no 
free parameters left in the cable model 

Symbol Value Parameter 

R~ 89.9 f~ cm 
R,.K 4.33 • 10  3 f2cm 2 
R,..N= 5.15 x 104 f~cm 2 
EK -- 89.8 mV 
EN, 62.9 mV 
GNu. ~ 1.94 S/cm 2 
t r 1 ms 
C,. 2 I.t F/cm 2 

Total cytoplasmic resistivity 
Resting membrane resistance of K + of unit area 
Resting membrane resistance of Na § of unit area 
K § equilibrium potential 
Na + equilibrium potential 
Maximum Na § conductance of spine head per unit area 
Time to reach peak conductance 
Membrane capacitance per unit area 

A relationship can be derived between parameters  
in two models (see Appendix): 

1/R~ = ~ (1/Ri.k), 
k 

(12) I~176 
E 8 o  

1/Ri, k = (F2/R T) DknkZ ~ , (13) _~ 

where Ri is the total resistivity of the cytoplasm and ~ eo 
R~. k are the ionic resistivities for each species of  ion. For  
the squid cytoplasm, [ K + ] = 4 0 0 m M ,  [Na  § ~ ,o 
= 50 mM, and for the T and D k given in Table 1, the ~ eo 
estimated resistivities are R i . x =  33.4 Q cm and R~.Na 
= 267 f~ cm. There is a significant difference between o 
the resistivities of the individual ionic species. The total 
cytoplasmic resistivity is R~ = 29.7 Q cm. The change of -ze 
Ri with concentration during a synaptic potential  in a 
dendritic spine can be large and are shown in Fig. 8. 
When Ca 2+ concentrations change by several orders 
of magnitude following the influx of Ca 2 § into a cell, 
R~,ca can change dramatically because it is inversely 
related to the Ca 2 § concentration by (13). 

5 Model ing Action Potentials  

The cable model has been successful in modeling 
action potentials when the appropr ia te  expressions for 
the membrane  currents are used. We tested our  
numerical solution of the electro-diffusion model by 
generating an action potential  for the squid giant axon 
using the active membrane  currents given by Hodgkin  
and Huxley (1952) [These are based on (2) and 
accurately describe the experimental data. We did not 
use a constant field approximat ion because the corre- 
sponding parameters  for the experimental data  were 
not available]. The results, shown in Fig. 3, are indis- 
tinguishable from those of the electrical conductance 
model (Cooley and Dodge 1966) because the ionic 
concentrations changes are extremely small during the 
process. When an axon with a diameter of  1 Ilm was 
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Fig. 3. Electro,diffusion model of a propagating action potentials 
in the squid giant axon. Membrane currents were based on those 
given by Hodgkin and Huxley (1952). The results are indistingui- 
shable from the predictions of the cable model (Cooley and 
Dodge 1966). DK=5.11 x 10 -s em2/s and DN,=3.47 
x 1 O-s em2/s so that (12) is satisfied. All of the other parameters 
are the same as those used by Cooley and Dodge (1966) 

used, the max imum relative concentration change was 
only about  1.4%. We expect that  even a high- 
frequency train of action potentials (300 Hz) will not 
cause significant concentrat ion changes if ionic pumps  
and exchange mechanisms are working (see Dis- 
cussion). However,  for axons as small as 0.1 0m, the 
electro-diffusion model departs significantly from the 
cable model. 

6 Model ing  an Excitatory Postsynaptic  Potential  
in a Dendritic  Spine 

Many vertebrate and invertebrate neurons receive 
synaptic inputs on spines (Coss and Perkel 1985). 
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Fig. 4. Geometry of a model dendritic spine. The spine was 
located in the center of a dendrite with total length 300 pm and 
diameter 1 pm; the spine neck was 1 ~tm long and 0.1 pm in 
diameter; the spine head was 0.69 pm long and 0.3 pm in 
diameter 
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Because of the small size of dendritic spines, postsynap- 
tic potentials can be accompanied by significant 
changes in the internal ionic concentrations. In this 
section we simulate an excitatory postsynaptic poten- 
tial on a spine using the electro-diffusion model and 
compare the results with the conventional cable model. 
For simplicity, only two types of ions, K + and Na +, 
will be considered in this paper. 

The morphology of the dendritic spine used in the 
simulations is shown in Fig. 4 (adapted from Koch and 
Poggio 1983). The total surface area of the spine head 
was 0.65 pm 2, neglecting the area at the ends of the 
cylinders. The synaptic input was modeled by adding a 
transient change in the resting Na + permeability of the 
membrane (Koch and Poggio 1983): 

PN,(t) = PN.. M(etltp)" e-~'/',, (14) 

where Psa . ,  is the maximum change in Na + permea- 
bility, tp is the time to reach peak, and e is the base of 
the natural logarithms. We follow the convention in 
Koch and Poggio (1983) and choose ct=4, which is 
smooth at t=0.  For ~= 1 this function has a positive 
slope at t = 0 and is called the ~t-function by Rall (1967). 

Table 1 summarizes the parameters used in our 
simulations of spines using the electro-diffusion model. 
We chose the membrane parameters so that the resting 
membrane potentials and resting membrane currents 
were the same as those in the cable model. The ionic 
membrane resistances for K + and Na + in cable model 
were determined from the total membrane resistance of 
about 4000 fl cm 2 and the resting membrane potential 
of about - 7 8  inV. Permeabilities were determined 
from membrane resistances by equating the resting 
currents of K + and Na + in two models. 

The membrane potential change from the resting 
level during a simulated excitatory postsynaptic poten- 
tial is shown in Fig. 5. At the peak of the response the 
Na + permeability increased by 10 s over the resting 
membrane Na + permeability. The concomitant 
changes in the ionic concentration of K + are shown in 
Fig. 6. The changes of the Na + concentration (not 
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Fig. 5a--c. Excitatory postsynaptic potential from the resting level 
( -  78 mY) as a function of time at a the middle of the spine head, b 
the middle of the spine neck, and e the dendritic shaft at the base 
of the spine, modeled by the electro-diffusion model (solid line), 
the standard cable model (dashed line) and the modified cable 
model (dotted line). The parameters in these models are given in 
Tables t and 2 

shown) were almost mirror images of those for K+; 
that is, they had about the same amplitude but 
opposite sign. A small change in the total con- 
centration ofK + and Na + causes a very large potential 
change because the membrane capacitance is quite 
small. 



-20 

-40 

o - 6 0  

- 8 0  

-100 

\ 

\ .  

o ; 2 3 ,~ 
Time (ms) 

0 . 3  

0 . 2  

0 .1  

~- -0.1 
~ o 
Q 

a - 1 0  
, ,C  

.~. - 2 0  

-30 

-40 

-50 

! 

o i 2 3 :~ 
Time (ms) 

0 

& -2  
r162 

Jr -3  
0 

-5  

-6  
o ; 2 3 4 

c Time (ms) 

Fig. 6a--e. Changes of the intracellular K + concentration from 
the resting level (140 raM) during an excitatory postsynaptic 
potential at a the middle of the spine head, b the middle of spine 
neck, and e the dendritic shaft at the base of the spine as predicted 
by three models: The electro-diffusion model (solid line), the 
standard cable model (dashed line) and the modified cable model 
(dotted line). The parameters in these models are given in Tables 1 
and 2 
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Fig. 7. Maximum response of an excitatory postsynaptic poten- 
tial from the resting level ( -78 mV) at the spine head and the 
dendritic shaft at the base of the spine as predicted by three 
models: The cable model (dashed line) and the modified cable 
model (dotted line) as functions of the maximum conductance 
change relative to the resting Na + conductance, and the electro- 
diffusion model (solid line) as a function of the maximum 
permeability change relative to the resting Na + permeability. 
GNa,,csl is the resting membrane conductance per unit area and is 
equal to the inverse of Rm, N a in Table 2 

There are indeed significant concentrat ion changes 
in the spine compared to the resting concentration 
values and it is therefore incorrect to assume that  the 
Nernst  potentials remain constant,  as in the cable 
model. In Fig. 7, the max imum excitatory postsynaptic 
potentials in the spine head and in the dendritic shaft at 
the base of spine are shown as functions of the 
max imum sodium permeabili ty over its resting value. 
The present model does not take into account the 
effects of  limited extracellular space, such as extra- 
cellular K § accumulation. The consequences of in- 
eluding these effects is pointed out in the Discussion. 

The results of  the electro-diffusion model  were 
compared  with an equivalent cable model of  the spine. 
The parameters  given in Table 2 for the cable model 
were chosen to match  those in Table 1 for the electro- 
diffusion model. The transient change in the mem- 
brane conductance per unit area of  Na  + from its 
resting values at the spine head dur ing the synaptic 
input was modeled by 

GN,(t) = GN,, ~ e t / t o )  ~ e -  =1, , ,  , (15) 

where we chose a = 4 to match  the functional form of 
the permeabili ty changes in (14). GN,, M is the max imum 
N a  § conductance per unit area and was chosen by 
setting its ratio to the resting N a  + conductance per 
unit area GNa ' rest(l/Rm. Na) equal to PNa, M/PNa, rest in the 
electro-diffusion model. The tp and Cm were same as 
those in the electro-diffusion model. 

The ionic concentrations are normally assumed to 
remain constant in the cable model. However,  it is 



possible to compute the concentrations that are im- 
plicit in the cable model by integrating the currents 
flowing into each compartment for each ionic species: 

Ank= i Ikdt, (16) 
0 

where I k is the total current of species k entering a 
compartment. Figures 5 and 6 show the time course of 
the membrane potential and K § concentration 
changes predicted by the cable model together with the 
results of electro-diffusion model. The maximum re- 
sponse of the membrane potential as a function of the 
maximum Na § conductance is plotted in Fig. 7 in 
comparison with electro-diffusion model. For small 
conductance changes the two models predicted similar 
potential responses. However, for large conductance 
changes there were significant differences between the 
responses predicted by the cable model and the electro- 
diffusion model, especially at the base of the dendritic 
spine. 

The responses predicted by the cable model satu- 
rated as the membrane potential approached the Na § 
equilibrium potential. This saturation occurred at a 
lower membrane potential in the electro-diffusion 
model because of the increase in the internal Na § 
concentration and concomitant decrease of the Na + 
equilibrium potential. The longer the duration of the 
excitatory synaptic potential, the larger the change in 
the Na + equilibrium potential. 

The discrepancies between the ionic concentration 
changes predicted by the two models are larger than 
what one might have expected from the differences 
between the membrane potentials. This is best seen by 
comparing the calculated K § concentration changes 
in the spine neck based on the two models (Fig. 6b). 
There is a dramatic decrease of K § concentration in 
the spine neck according to the electro-dhTusion 
model, while the cable model predicts that there should 
be a small increase. This difference can be attributed to 
the neglect of ionic diffusion in the cable model. 

The membrane potential in the spine head is always 
higher than that of spine neck, so the potential gradient 
tends to drive ions from the head to the neck. However, 
the K § concentration in the spine head is much lower 
than that of spine neck due to the outflow o f K  § ions to 
the extracellular space; therefore, the concentration 
gradient tends to drive K + ions from the neck to the 
head. The concentration gradient is so large that it 
dominates the process and results in a net K + flow 
from neck to head. 

The other major factor that influences the con- 
centration changes in the cable model is cytoplasmic 
resistivity Ri. Figure 8 shows how Ri, K and R~,N~ 
change in the spine head according to (13) based on the 
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Fig. 8. Cytoplasmic resistivities for K + (solid line) and Na + 
(dashed line) in the spine head during the synaptic response 
shown in Figs. 5a and 6a 

concentration changes at the spine head in Fig. 6a. 
These R~'s are constant in the cable model. 

Varying the Time-To-Peak 

The results in Figs. 5-8 were calculated with a time-to- 
peak, tp, of 1 ms. We also studied the discrepancies 
between the two models as a function of tp, with all the 
other variables fixed to the values given in Tables 1 and 
2. The maximum responses of the membrane poten- 
tials from their resting levels are shown in Fig. 9 for the 
spine head and the dendritic shaft at the base of the 
spine. As tp was increased, the concentration changes 
in the spine were larger and lasted longer, which lead to 
larger differences between the two models. The max- 
imum concentration changes for the electro-diffusion 
model are plotted as a function of tp in the spine head in 
Fig. 10 in comparison with the maximum changes 
predicted by the cable model. (The concentration 
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Fig. 9. Maximum excitatory postsynaptic potentials predicted by 
the cable model (dashed line), the modified cable model (dotted 
line), and the electro-diffusion model (solid line) at the spine head 
and the dendritic shaft at the base of the spine as functions of tp, 
the time-to-peak, defined in (14) and (15) 
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changes shown in Fig. 6a predicted by the cable model 
appear to be reaching a maximum asymptotically, so 
we used the values at 5 tz) When tp was greater than 
about 1.7 ms, the decrease predicted by the cable 
model was, unrealistically, larger than the initial K § 
concentration, which was 140 raM. 

Temporal Summation 

In the simulations of a dendritic spine presented above, 
a single synaptic activation was modeled as a transient 
Na + conductance or permeability change. A synapse 
on a spine may, however, receive multiple synaptic 
activations in close succession in response to a train of 
action potentials arriving at the presynaptic terminal 
(Gamble and Koch 1987). Temporal  summation will 
occur when tp is comparable to the time interval 
between two successive postsynaptic potentials. The 
ionic concentration changes in a spine during multiple 
synaptic activations will be larger than a single acti- 
vation because of the prolonged opening of Na + 
channels, so one expects there to be a larger discrep- 
ancy between the cable model and the electro-diffusion 
model. 

We simulated a synaptic tetanus with tp equal to 
1 ms and 10 synaptic inputs in 30 ms, with all other 
parameters in Tables 1 and 2 fixed. The results are 
shown in Fig. 11 for both the electro-diffusion model 
and the cable model. The discrepancy between the two 
models after 10 inputs is indeed much more significant 
than that after the first input. The magnitude of 
temporal summation at the dendritic shaft predicted 
by the cable model is much larger than that predicted 
by the electro-diffusion model. 
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Fig. 11. Responses to a tetanus of 10 synaptic inputs in 30 ms 
from a resting level of - 78 mV at a, the middle of spine head, and 
b, the dendritic shaft at the base of the spine, predicted by the 
electro-diffusion model (solid line), the conventional cable model 
(dashed line) and the modified cable model (dotted line) 

7 I n h i b i t o r y  S y n a p t i c  I n p u t  o n  D e n d r i t i c  S p i n e s  

A transient conductance change with a reversal poten- 
tial equal to the resting membrane potential is called 
silent inhibition because, according to the cable model, 
such a synaptic input by itself will not change the 
membrane potential at all; however, if the inhibition 
occurs during an excitatory synaptic response, the 
current will be shunted and the excitation will be less 
effective in depolarizing the membrane. If such a silent 
synaptic input is large and on a small structures such as 
a spine, the  conductance may be large enough to 
significantly change ionic concentrations and the re- 
versal potential of the inhibitory synapse. Thus, the 
silent inhibition may no longer be silent�9 

We applied the electro-diffusion model to this 
problem and modeled the silent inhibitory input with 
simultaneous K + and Na § permeability increases 
having a ratio that was the same as the resting 
permeabilities. The comparable combination of con- 
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Fig. 12. Responses to silent inhibitory synaptic input at the spine 
head (solid line) predicted by the electro-diffusion model. The K + 
and Na + permeabilities changes had a ratio equal to that of their 
resting permeabilities so that in the standard cable model there 
was no response at the resting potential. The peak K + permea- 
bility change, Pr.ta, was 6.07 x-2cm/s. This apparently ex- 
citatory response is caused by a shift of the synaptic reversal 
potential (dotted line) from its resting level 
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Fig. 13. Membrane potential responses to simultaneous ex- 
citatory and silent inhibitory synaptic inputs on the same spine at 
the middle of spine head, and the dendritic shaft at the base of the 
spine, predicted by three models: The electro-diffusion model 
(solid line), the conventional cable model (dashed line) and the 
modified cable model (dotted line). The amplitude of inhibition 
(the same as in Fig. 12) was 10 times larger than the amplitude of 
excitation. All other parameters are given in Tables I and 2. The 
responses at the spine head and the dendritic shaft in the absence 
of inhibition is given in Fig. 5a and b 

ductance changes produces no change in potential in 
the cable model. Figure 12 shows that the response in 
the spine head predicted by the electro-diffusion 
simulation is excitatory, not silent as expected from the 
cable model. This is a consequence of the decrease in 
the concentration of K + during the response, which 
leads to an increase of the equilibrium potential for 
K § If the silent inhibitory input is carried exclusively 
by CI- ,  a third ion whose equilibrium potential is close 
to the resting potential, there should be no response. As 
the concentration of C1- inside the cell rises, the 
driving force for the C1- becomes zero and there is no 
net current. 

Interaction Between Inhibitory 
and Excitatory Synaptic Inputs 

In their study of nonlinear interactions between exci- 
tation and inhibition using the cable model Koch and 
Poggio (1983) and Koch et al. (1983) conclude that a 
strong silent inhibitory input can effectively veto the 
effect of an excitatory input provided that they have the 
appropriate temporal and spatial relationships. We 
studied this type of interaction at the spine head by 
modeling a silent inhibitory input as described above 
together with an excitatory input. As shown in Fig. 13, 
the veto effect predicted by the electro-diffusion model 
is much weaker than predicted by the cable model 
based on comparable conductances changes. 

The reduction in the effectiveness of shunting 
inhibition on the excitatory synapse is brought about  

mainly because the large K § outflow makes the Nernst 
potential of K § much more positive and therefore less 
inhibitory. Although we did not simulate the case when 
C1- is the source of inhibition, we would expect to 
obtain similar results since the depolarization and 
increase of C1- permeability would also produce a C1 - 
current that would in turn make the C1- Nernst 
potential less negative. According to the electro- 
diffusion model, it is impossible to have a truly silent 
inhibition on a spine. 

For  an inhibitory input on a large dendrite or cell 
body (or for a combination of excitation and inhi- 
bition), the change in concentration at the site of 
inhibition is almost negligible and the veto effect 
predicted by the cable model remains valid. However, 
for thin dendrites (around 0.1 lain in diameter) the 
changes in concentration can be very large, and the 
conclusions reached for the spine are equally valid for 
the dendrite. We have also studied the effect of silent 
inhibition as a function of the relative timing between 
excitation and inhibition on spines and have found 
that the veto effect predicted from the cable model 
(Koch and Poggio 1983) does not occur. 

8 Modifications to the Cable Model  

The electro-diffusion model is highly computation 
intensive and cannot be used routinely for large-scale 
simulations of complex dendritic trees (Wathey et  al. 
1989). However, we found that the following modifica- 



tions of the cable model allowed it to more accurately 
approximate the predictions of the electro-diffusion 
model. At each time step: 

i)  Calculate the intracellular concentration of 
each ionic species explicitly in each compartment from 
the membrane currents and the ionic currents flowing 
between compartments [see (16)]. 

ii) Compute the new membrane equilibrium po- 
tentials for each compartment using the intracellular 
and extracellular ionic concentrations according to 
Nernst equation and update the membrane batteries: 

El, = (RT/Fzk)  In nk(out) 
nk(in) ' 

where nk(out) is the ionic concentration of species k 
outside the membrane and nk(in) is the ionic con- 
centration inside the membrane. 

iii) Replace the single longitudinal resistance be- 
tween compartments with parallel resistances R~, k in 
series with batteries for each ionic species [-see (13)]. [In 
an earlier report (Qian and Sejnowski 1988), we did not 
update the cytoplasmic resistances; the update of these 
resistances significantly improves the modified cable 
model, especially for tp > 1 ms.] 

iv) Determine the longitudinal batteries by the 
Nernst potential from ionic concentrations of the two 
compartments they connect and update in the same 
way as the membrane batteries. The potential of the 
battery for species k between compartments j and j + 1 
is: 

nk(J) 
Ei,k = (R T/Zzk)  In n~,q + 1------) ' 

where a positive value for E~. k means that the positive 
terminal of the battery is pointing to the j + l  
compartment. 

A schematic view of the modified cable model is 
represented in Fig. 14. This model was applied to the 
dendritic spine model in Fig. 4 and the results are 
shown in comparison with the electro-diffusion and 
cable models in Figs. 5-7, 9-11, and 13. 

The agreement between the modified cable model 
and electro-diffusion model for predicting membrane 
potentials was good except for the interaction between 
excitatory and inhibitory inputs shown in Fig. 13. The 
comparisons between the predicted concentration 
changes was good at the spine head but less satis- 
factory at the spine neck and dendrite. However, note 
in Fig. 6b that the K + concentration change in the 
spine neck had at least the right sign. The discrepancy 
between the electro-diffusion model and the modified 
cable model is larger when tp is smaller, a condition in 
which concentrations are changing more quickly and 
are farther from equilibrium. The Nernst potential 
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Fig. 14. Electrical circuit for a single compartment of the modified 
cable model. The batteries in the membrane and between 
compartments are calculated from the Nernst potentials and 
change value during a response as concentrations change. The 
resistivities in the cytoplasm are also updated at each time step 

represents the driving force due to concentration 
gradient only in an equilibrium state. 

9 Discussion 

In most circumstances, the cable model of electrical 
conduction in neurons gives accurate predictions for 
membrane potentials during transient electrical events. 
A tiny amount of charge is enough t o  cause a 
substantial change in the membrane potential because 
the membrane capacitance is small, and as a conse- 
quence the ionic concentrations usually are nearly 
constant. However, the individual concentrations of 
certain ions could change significantly as long as 
changes in the total charge are nearly balanced out. 
This is more likely to happen in very small structures 
such as dendritic spines and for an ion such as Ca 2 +, 
which is normally maintained at a very low con- 
centration inside a cell. Thus, the predictions from the 
cable model should not be used without a careful 
analysis. 

In this paper, we have developed a one- 
dimensional electro-diffusion model of electrical con- 
duction which reduces to the cable model when ionic 
concentrations are approximately constant. This 
model was used to study changes in ion concentrations 
and membrane potentials in dendritic spines in re- 
sponses to synaptic inputs. We found that ionic 
concentrations changed considerably in many circum- 
stances. Thus, significant errors can be made in 
estimating membrane potentials and concentration 
changes using the cable model if the effects of diffusion 
and the changes in the driving forces for membrane 
currents are not taken into account. 

On dendritic spines, these effects reduce the ampli- 
tude of excitatory postsynaptic potentials generated by 
Na + currents, and they make inhibitory inputs gen- 
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erated by K § and CI- currents nearly ineffective. The 
temporal summation of synaptic potentials is much 
weaker according to electro-diffusion model so multi- 
ple synaptic inputs in close succession will only make 
the response at the cell soma longer but not much 
larger. The cable model also exaggerates the veto effect 
of inhibition on an excitatory input when both occur 
on the same spine. 

All these results can be understood as a conse- 
quence of changing ionic concentrations and shifting 
equilibrium potentials. The postsynaptic responses are 
mainly determined by the ionic species with the largest 
transient membrane permeability. Regardless of the 
equilibrium potential for this species (excitatory or 
inhibitory), the opening of channels with sufficient 
duration will shift the equilibrium potential of the 
synapse toward zero because of the large concen- 
tration changes. Therefore, if the equilibrium potential 
of the ionic species is greater than zero (Na § and Ca 2 +) 
the cable model will overestimate the response. For 
ions whose equilibrium potential is less than zero (K § 
and C1-), the cable model makes predictions that can 
be qualitatively incorrect. For example, under certain 
conditions an inhibitory synaptic input that causes a 
K § conductance increase may in fact produce a 
postsynaptic depolarization. 

Several authors have suggested that active currents 
in spines could enhance the transmission of signals 
down dendrites to the cell body (Shepherd et al. 1985; 
Perkel and Perkel 1985; Segev and Rail 1988). Their 
conclusion is still valid except that the amplitude of an 
action potential on a spine would be reduced (see 
Fig. 7) and active spines would have to be closer 
together to maintain transmission. 

For synapses on large dendrites rather than on 
spines, we do not expect any significant difference 
between the electro-diffusion model and the cable 
model because the ionic concentration changes are" 
negligible. Synaptic inputs on thick dendrites should 
not suffer the saturation caused by shifts of the Nernst 
potential, the absence of temporal summation, and 
lack of an inhibitory veto effect that we have demon- 
strated for synapses on spines. This raises the interest- 
ing possibility that otherwise identical synapses could 
have different functions depending on their location. It 
has been reported that during learning and develop- 
ment, the spine neck shortens and merges into the 
dendrite (Rausch and Scheich 1982; Coss and Globus 
1978; Brandon and Coss 1982; Cosset al. 1980). The 
concentration changes in spines is caused not just by 
the small volume of the spine head but as well by the 
long, narrow spine neck which helps to maintain the 
large concentration changes that occur in the spine 
head. Thus, synapses on spines with long necks could 
switch to a different functional state if the neck were to 

shorten sufficiently for the spine to merge with the 
dendritic shaft. 

Ionic concentration changes are usually not ex- 
plicitly considered in the cable model. Although ionic 
currents in the cable model can be integrated to yield 
concentration changes, this usually gives erroneous 
results (Figs. 6b and 10) even when the membrane 
potentials are predicted fairly well. Often, the cable 
model is solved first to find the membrane potentials 
and then diffusion processes are introduced to deter- 
mine the ionic concentration changes (Gamble and 
Koch 1987; Yamada et al. 1989). Our model, however, 
considers the membrane potential and the ionic con- 
centrations changes at the same time and thus provides 
a more natural and accurate way for solving the 
problem. 

Ionic pumps and ionic exchange across the mem- 
brane could affect the predictions made by our simu- 
lations. The influence of these slow membrane pro- 
cesses can be estimated as follows. Assume that at rest 
the pump current for Na § or K § balances the resting 
Na + or K + membrane current. The pump current 
density in our model should be around 2.7 IxA/cm 2 
based on the data in Tables 1 and 2, which is consistent 
with experimentally-determined pump current dens- 
ities in the i.tA/cm 2 range (Weer and Rakowski 1984). A 
single excitatory postsynaptic potential lasting about 
1.0ms would produce Na § and K § concentration 
changes of 50 mM in the spine head. In contrast, Na-K 
pumps would take about 200 ms to change the ionic 
concentrations by a comparable amount. Since our 
results were based on the first few ms of the response, 
the inclusion of pumps will not affect our conclusions 
significantly. 

We have also assumed that extracellular ionic 
concentrations were constant to simplify our calcu- 
lations. Assume that the extracellular space around a 
spine head that is effectively available for exchange in 
0.5 ms is about same as the volume of spine. Then a 
change of concentration in the spine head would cause 
an equal change with opposite sign outside the spine 
head. For tp = 0.25 ms, the extracellular [Na +] would 
change from 140mM to about l l 0 m M  and [K § 
from 4 mM to about 34 mM in about 0.5 ms. [See 
Yamada et al. (1989) for a similar estimate.] Although 
the extracellular K § concentration would increase by 
a larger factor, the maximum value of an excitatory 
synaptic response is mainly determined by the Nernst 
potential of Na § because the Na § permeability is 
much larger during an excitatory synaptic input. Also, 
glial cells are very effective in maintaining K § 
homeostasis on a longer time scale so that the actual 
change during maintained activity is probably less. 

Thus the main effect of a limited extracellular space 
is on the Nernst potential of Na +. Based on the above 



estimates, this would reduce the peak response of the 
postsynaptic potential by about  6 mV at the spine 
head. For  large tp and multiple synaptic inputs, the 
Na  + concentration change is greater but is achieved 
over a longer period of time. The corresponding 
effective extracellular space around the spine head 
would then be larger because more time allows ions to 
diffuse farther. Thus, the modification would not be 
much greater. For  an excitatory input driven by a Na  § 
current, the effects of restricted extracellular space 
always reduce the amplitude of response and thus will 
tend to make the differences with the cable model even 
greater. 

For  interactions between excitation and inhibition 
on a spine or a thin dendrite, the change in con- 
centration of extracellular K § can no longer be 
neglected because of the large K § permeability caused 
by the inhibition. However,  extracellular K + accumu- 
lation further reduces the veto effect of inhibition. In 
general, extracellular concentration changes always 
produce effects in the same direction as the intra- 
cellular concentration changes, as discussed at the 
beginning of this section. 

The effects of restricted extracellular space, ionic 
pumps,  and ionic buffers can be easily included in our 
model when the ionic concentrations are updated, but 
only if the relevant parameters  are available from 
experiments. These factors are essential for models that 
treat the diffusion of intracellular Ca 2 § ions (Fogelson 
and Zucker  1985; Simon and Llinas 1985; Stockbridge 
and Moore  1984; Yamada  et al. 1989). 

We used an explicit method to solve the electro- 
diffusion equations. Very small time step had to be 
used to make the calculation stable and therefore the 
simulation was much slower than cable model. This 
problem can be partly alleviated by using an implicit 
method of integration (Mascagni 1989). The modified 
cable model introduced in the last section was much 
faster (see Appendix). However,  the modified cable 
model may  not be able to accurately predict the 
concentration changes in the spine neck and the 
dendrite, and its predictions of interactions between 
excitation and inhibition may also be seriously in error 
in some circumstances. The electro-diffusion model 
should be used whenever accurate estimates are 
needed. 

A p p e n d i x  

Derivation of (7)  

In cylindrical coordinates (Q, ~b, z), (6) becomes: 

O J4.  + 1 0J4,r ~gnk 1 O(eJ4,e) + , =0.  (A1) 

For a cylindrically-symmetric neuronal process, J4.~ = 0, and all 
the variables are independent of ~b. Integrate both sides of (A 1) 
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over the cross sectional area of the process, assuming that J4.z 
and n k are independent of ~: 

4 OJk. One 
(A 2) 

where J4,~l~ = nt2 is the membrane flux of ionic species k, J,.,~. The Q 
and z components of (5) can be written as: 

_ :0.4 0 v ) ,  

_ /'dn4 nk dV'] 
J~,, = --D4 ~x~Z- + ~ ~-z ]" (A4) 

Equation (7) is obtained by inserting (A4) into (A27. Equation 
(A37 can be integrated under the constant field approximation 
(Goldman 1943) to obtain (87. 

Membrane Potential at a Diameter Jump or Branch Point 

Consider Fig. 15 in which the diameter of a process changes from 
dl to d2 within a short distance e. As ~--*0, there is a discontinuity, 
or diameter jump at z=0. The potential at the jump is: 

I 
V(0,t)= lim - S V(z, t)dz. (A6) 

�9 ~ 0  s 0 

From (10), this becomes: 

V(O, t) = V~.,t + (F/4C..) 

xl l im(1/e)  i d(z )dz lY ,[n , (z , t ) -n  k ..... ]z,,  (A77 
- _ l k  L,~O 0 

where the spatial variable z should not be confused with valence 
z 4. For small z we can use a linear approximation for d(z): 

d(z)=dl +(d2-dOz/n.  

This expression can be substituted into (A7) to obtain: 

V(O,t)=V,~.t+(F/4C,,)[(dt+d27/2]Y.[nk(z,t)-nk ..... ]z~, (A8) 
k 

which is the average of the potentials on both sides of diameter 
jump. This result can be generalized to the branching ease shown 
in Fig. 2: The branching point is then the average of the 
potentials in all three branches. 

Numerical Methods 

We used an explicit method to integrate the electro-diffusion 
equations. For a small time step At and spatial sample points 
separated by Az, the one-dimensional electro-diffusion (9) re- 

d 2  

! 
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Fig. 15. Jump in dendritic diameter from dl to d 2 over distance 



14 

duces to the following difference equation: 

( DAt 
njlt= i n s +  ~ (nj+, + n j - i  --2n i) 

DAt (n j+ l + n.j) (V/+ l --  V j ) -  (nj + n j_  I ) ( V j - -  Vj_ 1) 
+ 

2(Az) 2 

I-,:.,- L- ] ~  .JJl,-,,," (A9) 

The subscript k for different ionic species has been omitted for 
clarity. The subscript j refers to spatial sample points along the 
neuronal process. Assume at the boundaries of the process that 
the flux of each ion is zero. Using (10), the matching condition, 
(11), for the branch point in Fig. 2 can be written as: 

(d121Azl) [(nl,.o-n,,O+ Azknk.o ~ Zk(n~,.o--n~,,,) ] 

+(d221Az2) [(n~,.o--n,.2)+ Az~n,.o ~ Zk(n~.o--n,.z)] 

+(d32/dz3) [(n~.o--nk.3)+ Azknk. o ~ zk(nk.o--nk.3) ] =0,(A 10) 

where Az s (j = 1, 2, 3) is the length of the spatial compartments, zk 
is the valence of ionic species k, nk,s is the concentration of ionic 
species k at spatial location j (see Fig. 2), A = F2Z[/4RTCm and 
aa= (dl +d2 + d3)/3. 

Equation (A10) is a set of coupled nonlinear algebraic 
equations that can be solved using Newton's method. The 
solution at the previous time step can be used as the initial guess. 
For the special case in which all the ionic species considered have 
the same charge, zi, the closed form solution can be obtained 
easily by first adding all the equations together and defining 

n i ~--- ,~ nk. 
k 
A Ridge 32 (equivalent to a VAX 780 FPA) was used to solve 

these finite difference equations. The calculations were performed 
for space and time steps of successively smaller size and the values 
reported were ones for which further decrease to the step sizes 
made less than 2% difference to the solution. In our simulation of 
dendritic spines, sample points in the dendrite were 10 ~tm apart 
and the integration time step w a s  10  - 7  S; in the spine head and 
neck the spacing was 0.173 tam and 0.167 ttm respectively and the 
time steps were 2 x 10 -9 S. The model had a total of 41 sample 
points: 31 in the dendrite, 6 in the spine neck, and 4 in the spine 
head. About 30 min was required to integrate I ms of real time. In 
the standard and modified cable models, only 33 lumped 
compartments were used (1 for head, 1 for neck, and 31 for 
dendrite) due to the large space constant. The time step for the 
spine head and neck was 10 -7 s and that for the dendrite was 
10 -6 s. The standard cable model took 26 s to integrate 1 ms of 
real time and the modified cable model required 1 rain. 

Relationship Between the Cable Model 
and the Electro-Diffusion Model 

We show here that (7) and (10) are equivalent to (1) in the limit of 
small concentration gradients. When the cytoplasmic ionic 
concentration gradients are small, OnUdz is approximately zero. 
The first term on the right side of (7) can then be neglected, so 
that: 

ank Dk 02V 4 
= ~-k nk~-z2 -- ~ J,,.l- (Al l )  

Multiply both sides of (Al l )  by zkFd/4C,,, sum over all i, and 
apply (10) to obtain: 

d F 2 2 02V 0V 
R-T D~nkzk az ~ = C,, ~-~ + ~ zkFJ,, k . (A 12) 

Notice that ~ z~F.l,,, k is exactly the total membrane current per 
k 

unit area Ira, so that Equation (A12) and (1) are identical if we let 

1/R, = (F2/R T) Y~ Dknkz 2 . (A 13) 
k 

Equations (12) and (13) are obtained by assuming that the total 
cytoplasmic resistivity Ri in the electrical conductance model is 
due to the contribution from each type of ionic species k. 
Equation (A 13) can be also obtained, more easily, by considering 
the longitudinal current expressions in the two models. 
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