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Abstract

Biological structures are extremely complex at the cel-
lular level. The MCell project has been highly success-
ful in simulating the microphysiology of systems of modest
size, but many larger problems require too much storage
and computation time to be simulated on a single worksta-
tion. MCell-K, a new parallel variant of MCell, has been
implemented using the KeLP framework and is running on
NPACI’s Blue Horizon. MCell-K not only produces vali-
dated results consistent with the serial version of MCell but
does so with unprecedented scalability. We have thus found
a level of description and a way to simulate cellular systems
that can approach the complexity of nature on its own terms.
At the heart of MCell is a 3D random walk that models diffu-
sion using a Monte Carlo method. We discuss two challeng-
ing issues that arose in parallelizing the diffusion process –
detecting time-step termination efficiently and performing
parallel diffusion of particles in a biophysically accurate
way. We explore the scalability limits of the present parallel
algorithm and discuss ways to improve upon these limits.

1 Introduction

The computational challenge of biological modeling
stems largely from the wide range of space- and time-scales
encompassed by molecular and cellular processes. To date,
a variety of theoretical and computational methods have
been developed independently for different problems at dif-
ferent scales. At the atomic/molecular level, quantum and

molecular mechanics (QM/MM) simulations require fem-
tosecond time resolution and massively parallel computa-
tion, and thus generally cannot be used at spatial and tem-
poral scales beyond small or partial protein structures and
nanosecond time frames. Cellular/multicellular studies, on
the other hand, have mostly focused on higher-level phys-
iological processes, e.g. biochemical signaling, that occur
on much longer timescales (milliseconds to days), and for
simplicity and computational efficiency have mostly used
methods based on systems of ordinary differential equa-
tions. With this approach, cell structure and spatial features
are limited or lacking, as are stochastic effects, which in-
vivo may contribute to the robust nature of the organism
and may also account for switching into disease states.

Much of functional cell physiology lies between these
two spatio-temporal extremes, i.e. at the microphysiologi-
cal level, where finite groups of molecules, subject to com-
plex structural and spatial arrangements, are coupled via
stochastic and/or directed interactions that drive cellular
biochemistry and machinery. A major challenge is to de-
velop modeling and simulation methods that allow integra-
tion of mechanisms, kinetics, and stochastic behaviors at the
molecular level with structural organization and function at
the cellular level.

A number of non-Monte Carlo simulators can be used
to study diffusion and computational biochemistry in cells
(e.g. FIDAP [8], Kaskade [4], Virtual Cell [21], E-Cell
[29]), but are not generally suitable for large-scale, high-
resolution three-dimensional simulation of realistic ultra-
structure. Furthermore, these simulators, which are based
on finite-difference or finite-element methods, do not re-
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alistically simulate cases where the number of active or
diffusing molecules within a subcellular compartment is
very small—which is often the case. For example, while
Smart and McCammon [22] present a simulation of a sim-
plified, planar, vertebrate neuromuscular junction (NMJ)
using Kaskade, it would be exceedingly difficult to use
such a finite-element simulator to study realistically recon-
structed synaptic architecture (see Fig. 1A) where symme-
tries in the reaction space do not exist and cannot be simpli-
fied. In addition, while programs like NEURON [14, 15]
or GENESIS [6] may be used to simulate some aspects
of the electrophysiological properties of cells, these tools
were not designed to simulate the chemical properties of
cells and do not explicitly consider three-dimensional prop-
erties of intra- and extracellular microdomains. Thus, they
cannot model local ion depletion or accumulation in re-
gions of densely packed ion channels. Finally, the nu-
merical methods used in these non-Monte Carlo simulators
do not cope well with fine structure and complex three-
dimensional boundary/initial conditions, and would con-
sume vast computational resources in the effort.

The need for spatially realistic models in simulations
of cellular microphysiology motivated development of a
general Monte Carlo simulator of cellular microphysiology
called MCell originally in the context of synaptic transmis-
sion [1, 27, 24, 26, 25]. In this setting, Monte Carlo (MC)
methods are superior to the methods discussed above and
are uniquely able to simulate realistic biological variability
and stochastic “noise”. The desire to simulate larger sys-
tems in shorter times has motivated a parallel version of
MCell. We give a brief overview of MCell here and report
on algorithms, run-time support, and software infrastruc-
ture for parallel, scalable, realistic cellular modeling based
on MCell and KeLP.

2 Simulating Cellular Microphysiology

2.1 Overview of MCell

MCell uses rigorously validated MC algorithms [3, 24,
23, 25] to track the evolution of biochemical events in space
and time for individual molecules called ligands and effec-
tors. Ligands move according to a 3D Brownian-dynamics
random walk and encounter cell membrane boundaries and
effector molecules as they diffuse. Encounters may result
in chemical reactions governed by user specified reaction
mechanisms; as described below, molecular transitions are
chosen using a random selection process using probabili-
ties derived from bulk solution rate constants [23]. The
diffusion algorithms are completely grid-free (i.e. no spa-
tial lattice) and the reaction algorithms are at the level of
interactions between individual molecules and thus do not
involve solving systems of differential equations in space

and time. Details about individual molecular structures
are ignored, which distinguishes MCell from quantum and
molecular mechanics (QM/MM) simulations. Since time-
steps are generally on the scale of microseconds, simula-
tions are feasible on the scale of milliseconds to seconds in
duration. Importantly, MCell simulations explicitly include
the functional impact of individual stochastic state transi-
tions, molecular positions, and density fluctuations within
realistic subcellular geometries.

MCell is very general because it includes a high-level
model description language (MDL) which allows the user
to build subcellular structures and signaling pathways of
virtually any configuration [23]. Membrane boundaries are
represented as triangle meshes and may be of arbitrary com-
plexity (Fig. 1A). The defined structure and diffusion space
is populated with molecules that interact probabilistically
(Fig. 1B, [25]).

2.2 Chemical Reaction Algorithms

MCell simulations can contain hundreds to thousands
of surface mesh objects, meshes composed of millions of
polygons, and millions of molecules. During each time-
step, the current list of molecules must be traversed and
the range of possible downstream events depends on each
molecule’s initial state. The chemical reaction algorithms
encompass both space-independent unimolecular transi-
tions and space-dependent bimolecular transitions. Uni-
molecular events are first order processes, in which a given
molecule simply changes state or gives rise to one or more
diffusing molecules, e.g. a conformational change, ligand
unbinding, or transmembrane ion flux.

MCell employs unimolecular transition methods similar
to the earlier Gillespie MC method [12, 13, 17]. The under-
lying computations for these transitions are relatively sim-
ple, inexpensive, and are readily parallelized. In contrast,
MCell’s unique algorithms for Brownian-dynamics random
walk and bimolecular events account for the bulk of com-
putational cost and are considerably more difficult to paral-
lelize, as will be discussed below. Thus, the Monte Carlo
algorithm used by MCell cannot be treated as if it were em-
barrassingly parallel.

The most common bimolecular event is binding, which
may occur whenever diffusing (dimensionless) molecules
encounter appropriate other molecules (e.g. receptor pro-
teins) on a surface. Each such receptor is actually repre-
sented by a discrete “tile” (Fig. 1B). During every time-
step each diffusing molecule must be traced along a random
walk trajectory (i.e. a ray) to find potential intersections
with mesh elements of surfaces (Fig. 1A). If no intersection
occurs, the molecule is simply placed at the endpoint of the
ray and remains there for the duration of the time-step. If
intersection does occur, the final result depends on the pres-
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Figure 1. A) Raytracing diffusion paths within a 3D reconstruction of nerve-muscle membrane rep-
resented as a triangle mesh. Model by J. Stiles and T. Bartol, with assistance from P. Davidson.
DReAMM visualization by J. Stiles. Serial electron micrographic sections for the reconstruction by
T. Deerinck in the laboratory of M. Ellisman (UCSD). B) Mapping of triangular effector tiles (A�� ) onto
a single triangle mesh element from A. Extruded volume above A�� represents the domain from
which diffusing molecules (shown as dots) may collide with and bind to an effector. C) Example of
spatial subvolumes. A spherical polygon mesh surface is shown with spatial partitions (transparent
planes) along the X, Y, and Z axes. Spatial subvolumes (cuboids) are created between the partitions.
Under optimal conditions each subvolume includes (wholly or partly) no more than a small number
of mesh elements. The search for collisions between diffusing ligand molecules and mesh elements
in A and B (ray tracing and marching) can then be restricted to individual subvolumes, dramatically
increasing execution speed. Partitions may be placed anywhere along each axis.

ence or absence of a reactive tile at the point of intersection,
and/or the properties of the mesh element (Fig. 1B). If the
molecule is neither absorbed by the surface nor retained at
the point of intersection because of binding, then its move-
ment must be continued. After passing through or reflecting
from the mesh element, the search for an intersection begins
again, and this process of ray marching continues until the
molecule is absorbed, binds, or travels the total original dif-
fusion distance.

2.3 Optimization and Scaling of Random Walk

To accelerate the search for intersections between mesh
elements and molecules, MCell employs a geographical
data structure to place the particles into bins, analogous
to the chaining mesh structure described by Hockney and
Eastwood [16]. The binning structure subdivides the com-
putational volume into spatial subvolumes called SSVs, as
shown in Fig. 1C. SSVs are constructed by forming a ten-
sor product of 1-D decompositions placed at irregular posi-
tions along the X, Y, and/or Z axes, resulting in a rectilinear
partitioning [18].1

The partitioning is adjusted so that each SSV contains
no more than a few mesh elements and the the search for

1This approach consumes memory inefficiently, and an improved im-
plementation that employs 3D tetrahedral meshes is under construction.

intersections during ray marching can be limited to the cur-
rent and neighboring SSVs. Execution time scales as O(N),
where N is the number of diffusing molecules. Whenever
a molecule passes through an SSV boundary, ray marching
simply continues in the adjacent SSV.2 Since SSVs influ-
ence only the simulation’s execution speed and do not affect
the random number stream, net molecule displacements, or
reaction decisions, simulation results are identical regard-
less of partitioning [23, 25].

3 Parallel Implementation: MCell-K

With the serial MCell simulator it is possible to han-
dle moderate size simulations such as those illustrated in
Figs. 2A and 2B as long as only a few release sites are ac-
tivated at time. Under these conditions there would be ��

�

to ��
� diffusing particles, and simulations on a single pro-

cessor workstation might last minutes to hours. However,
we are interested in larger scale simulations, for example
Fig. 2B under conditions where most of the 550 release
sites might be activated, releasing millions of diffusing par-
ticles, and where run-times on a single processor worksta-

2In the case of a parallel implementation some SSV boundaries coin-
cide with processor boundaries, and molecules that cross such boundaries
must be migrated accordingly.
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Figure 2. Simulations of typical complexity and size. A) Reconstruction of a rat diaphragm synapse
contains around 70000 polygons and 30 neurotransmitter release sites (large white spheres). Model
courtesy T. Bartol and J. Stiles. B) Serial EM tomographic reconstruction of a chick ciliary ganglion
synapse composed of 300000 triangles and 550 neurotransmitter release sites (white spheres). Model
courtesy J. Coggan, T. Bartol, E. Esquenazi, D. Berg, M. Ellisman, T. Sejnowski.

tion would range from days to months. Moreover, simu-
lations often must be conducted at a reduced resolution in
order to fit in the memory of a single processor.

The most costly portions of MCell’s computations are
the Brownian-dynamics random walk and binding events.
These introduce considerable complexity into the paral-
lelization process owing to the spatial and temporal dy-
namics of realistic microphysiological simulations which
cause molecules to become distributed unevenly in space
and time.

To enable MCell to scale to such large models under
these conditions, we have implemented a parallel vari-
ant, called MCell-K, using the KeLP infrastructure [9, 10].
KeLP manages distributed pointer-based data structures, in-
cluding molecule migration among processors, and facili-
tates load balancing.

We next discuss the major issues involved in paralleliz-
ing MCell, including data decomposition, detecting termi-
nation, ligand migration, and KeLP programming.

3.1 General Parallelization Strategy

The philosophy behind KeLP is to separate concerns
surrounding code correctness from optimizations that af-
fect performance. KeLP enabled us to work with a large
production code while confining most changes to small re-
gions of the code. We used existing data structures when-
ever possible and limited ourselves to a single parallel data
type. This data type provided an impedance match between
the data representation used in the MCell simulation algo-
rithms, which was hidden from KeLP, and the represen-
tation required by KeLP, which was hidden from MCell.

Given sufficient time, one might make more extensive and
comprehensive changes to MCell, but such an approach is
rarely realistic.

MCell-K divides the problem space into�� ��� ���

regions, assigning one region to each processor. Given an
input with �������������� spatial subvolumes and the
decomposition described above, each processor is assigned
��� �� � �� SSVs. All processors read the geometry data
from the input file, including surface and release site infor-
mation, constructing the parts of the simulation geometry
lying at least partially with the region of space defined by
the set of SSVs owned. A surface triangle which crosses
processor boundaries is instantiated on all processors con-
taining at least part of the triangle’s surface.

As the simulation progresses, each processor releases
ligands within its spatial subvolumes, updates ligand po-
sitions, checks for interactions between ligands and sur-
faces, and performs reactions as necessary. Any particles
that reach processor boundaries are communicated through
a special-purpose KeLP data structure, which is described
further below. The inner loop of MCell-K is the diffusion
step, which is called once per time-step. The parallel algo-
rithm for the diffusion step looks like this:

do until no processor has ligands to update:
while there are local ligands to update:
update next ligand
if ligand crosses processor boundary:

add ligand to communication list
communicate ligands in communication list

We refer to each pass through the “do until ...” loop
as one sub-iteration.
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In MCell-K, we implement processor boundaries as a
special type of wall, similar to the way MCell treats SSV
boundaries. Processor boundary walls are initialized at the
outset of the simulation along with all other wall types. Dur-
ing the course of an MCell-K simulation, if the ray tracing
algorithm detects that a ligand’s trajectory intersects a pro-
cessor boundary wall, the ligand is earmarked from migra-
tion.

3.2 Data Migration

The KeLP framework provides a distributed container
class called an XArray, representing a parallel array of con-
tainers. Each container within an XArray is owned by a
single processor, and all processors know the owners of
each container. The container is defined by the user. The
user need only define a few member functions to instantiate,
marshall, and unmarshall the data structure which KeLP in-
vokes to create an XArray and to move selected contents
among processors [2].

We developed a KeLP container class for MCell-K
to allow the standard MCell data structure, a ligand, to
be communicated among processors. The KeLP class,
kelp ligand list, is used only when dealing with ligands
crossing processor boundaries. Each processor owns an
array of kelp ligand lists containing one element for it-
self and one element for each of its neighbors. When lig-
ands cross processor boundaries, they are appended to the
kelp ligand list corresponding to the appropriate neighbor-
ing processor. When a KeLP data motion event is invoked,
the ligands within each kelp ligand list are migrated to the
respective neighboring process. Upon receipt, the ligands
are appended to the processor’s kelp ligand list element for
local ligands. KeLP uses a simple geometric region calculus
to determine relationships among neighbors from the infor-
mation used to construct the XArray. This information will
prove highly useful when we implement non-uniform parti-
tionings to handle load balancing, as the logic behind data
motion is the same in both the uniform and non-uniform
cases.

Communication events in MCell are frequent (on the or-
der of 5-15 times per second) but rather small, generally on
the order of a few thousand bytes. Under KeLP’s control,
communication buffers are packed and unpacked by vir-
tual functions defined by KeLP, which in turn invoke mem-
ber functions defined by the user’s container class. These
buffers are uniform in size over all processors for a sin-
gle communication event, but sizes are adaptively adjusted
according to run-time dynamics. We combine communica-
tion buffer adjustment with termination detection (described
below). We set the ligand buffer size to the maximum
requested size across all processors, rounded to the next
power of two. We found that our adaptive technique was

faster than any fixed buffer size. A more efficient scheme
might adjust buffer sizes according to the needs of individ-
ual pairs of communicating processors, but at present, com-
munication is not a significant bottleneck.

3.3 Detecting Termination

Every ligand needs to completely traverse its path dur-
ing each time-step. As a result, if any ligands cross proces-
sor boundaries, all processors need to pass through the “do
until ...” loop described above at least twice: once
for ligands originating on the processor and a second time
for any incoming ligands. Since ligands may bounce off
surfaces and return to their original processor or continue
to a third processor, the number of sub-iterations cannot be
known before run-time.

We detect termination of the “do until ...” loop
through an all-reduce call, taking a maximum across pro-
cessors. Processors report zero if they have no ligands left
to update after the communication step; they send a non-
zero value otherwise. If the result of the all-reduce is zero,
we exit the “do until ...” loop. A more efficient
approach might use nearest neighbors only, however, the
global call is currently not a bottleneck and is far simpler to
implement.

4 Experiments

As stated earlier, the goal of MCell-K is to offer im-
proved capabilities for engaging in scientific discovery by
solving problems more quickly and/or on a larger scale than
would be possible with the serial implementation. In this
section we will demonstrate that MCell-K produces results
that are in agreement with those produced by the serial code
and discuss scalability and performance.

4.1 Test Case

Our test case involves the simulation of a chick ciliary
ganglion (Fig. 2B). The input to this simulation is a realistic
structure reconstructed using serial electron microscopic to-
mography of a chick ciliary ganglion. The ciliary ganglion
has a total of 550 release sites. Previous simulations, using
the serial MCell code, have been able to compute a small
fraction of this problem, releasing ligands from a total of
only about 20 sites at a time. In our simulation we release
5000 ligands from each of 192 release sites, for a total of
960,000 ligands. The simulation runs for 2500 time-steps,
or 2.5 ms of real time. We perform the simulation on 16,
32, and 64 processors and examine speedup, load balance,
and communication requirements.

We have selected the 192 release sites (an average of 3
sites per processor in the 64-processor tests) at random, but
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we have limited the maximum number of sites per proces-
sor to 6 in the 64-processor case. We thereby limit the load
imbalance to a factor of 2 when running on 64 processors.
A simulation involving all 550 release sites would have an
average of 8.6 release sites per processor and a 25 release
sites on the most heavily loaded processor, resulting in a
load imbalance near 3. We note that, under our current
uniform decomposition of the space, several release sites
lie very near to processor boundaries. This situation is un-
avoidable without a more flexible decomposition method,
which is currently under investigation.

Over the course of the simulation, ligands diffuse, re-
act with receptors on the membrane, and are destroyed by
enzymes on the membrane. In a healthy chick ciliary gan-
glion, ligands are destroyed fairly rapidly. For our test case,
we reduce the rate at which ligands are destroyed by the en-
zyme on the membrane. We are thus able to simulate the
effect of drugs which inhibit the enzyme, thereby allowing
ligands to remain active for much longer periods of time,
and, in the course of laboratory experiments, allowing addi-
tional properties of the synapse to be studied. Since many
ligands survive throughout the the length of this simulation,
we expect that ligands will be able to diffuse deep into the
narrow crevices in the surface. Ligands trapped in these
crevices may bounce off several walls per time-step, some
crossing processor boundaries multiple times per time-step.
This “persistent ligand” test case represents near the maxi-
mum amount of ligand bouncing that we expect from a bi-
ologically realistic simulation.

4.2 Experimental Setup

We ran on NPACI’s Blue Horizon IBM SP system3, lo-
cated at the San Diego Supercomputer Center. Blue Hori-
zon contains 144 POWER3 SMP High Nodes (model num-
ber 9076-260) interconnected with a “Colony” switch. Each
node is an 8-way Symmetric Multiprocessor (SMP) based
on 375 MHz Power-3 processors4, sharing 4 Gigabytes of
memory, and running AIX 5L. Each processor has 8 MB of
4-way set associative L2 cache, and 64 KB of 128-way set
associative L1 cache. Both caches have a 128-byte line size.
Each CPU has 1.5 GB/sec bandwidth to memory.

We ran with KeLP version 1.45 and used the installed
IBM C++ compiler, mpCC. C++ code was compiled with
compiler options -O2 -qarch=pwr3 -qtune=pwr3.
We used the standard environment variable settings on
Blue Horizon, and collected timings in batch mode us-
ing loadleveler. KeLP invokes MPI to handle commu-
nication, and we used the native IBM installation. Tim-

3http://www.npaci.edu/BlueHorizon/
4http://www.rs6000.ibm.com/resource/technology-

/sppw3tec.html
5http://www-cse.ucsd.edu/groups/hpcl/scg/kelp/
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Figure 3. Ligands in existence throughout
the simulation on 16, 32, and 64 processors.
Each simulation releases 5000 ligands from
each of the 192 release sites at time-step 0.

ings reported are based on wall-clock times obtained with
MPI Wtime(). Each simulation was performed 3 times.
Variation among the runs was small. The times reported are
averages for the 3 runs.

4.3 Results

When the function of enzymes within the chick ciliary
ganglion is inhibited, most ligands survive for the 2500
time-steps of our simulation. The total number of ligands
in existence is nearly identical throughout the course of the
16, 32, and 64 processor runs (Fig. 3). The fact that the total
number of ligands in existence is so similar among the vari-
ous runs is an indication that the parallel algorithm provides
consistent results, independent of the number of processors.

In order to understand performance in greater detail, we
report observables like running times over epochs compris-
ing 100 time-steps. For each of the 16, 32, and 64 processor
cases, we recorded the running times for every 100 time-
steps during one simulation (Fig. 4). The total running times
of the 16, 32, and 64 processor cases are shown in Table 1.
The parallel efficiency in going from 16 to 64 processors is
85%. The table also shows both the number of ligand up-
dates per processor and maximum number of ligand updates
per second. (For the maximum number of ligand updates,
we use the sum of the maximum at each epoch.)

Even with persistent ligands given a fair amount of time
to diffuse, significant load imbalance remains throughout
the calculation. The ratio of the maximum to the average
number of ligands per processor is shown in Fig. 5. Since
enzymes, like ligands, are non-uniformly distributed in the
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Running Efficiency Ligand Updates Max. Lig. Updates
Processors Time vs. 16 vs. 32 Average Maximum per Second

16 4903 s — — ������ ��
�

������ ��
� 42900

32 2652 s 92% — ����� ��
�

������ ��
� 48000

64 1450 s 85% 91% ����� ��
�

����� ��
� 47900

Table 1. Running time, parallel efficiency, and ligand updates for the the chick ciliary ganglion
simulation. The maximum number of ligand updates per processor is determined by summing the
maximum per processor over all time-steps.
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Figure 4. Running times for every 100 time-
steps of the simulation on each of 16, 32, and
64 processors. Times are in wall-clock sec-
onds.
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Figure 5. Maximum and average ligands per
processor for every 100 time-steps of the sim-
ulation on each of 16, 32, and 64 processors.
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Figure 6. Ligands per processor for each of
the most heavily loaded processors of the 64-
processor simulation.

ciliary ganglion, the population of ligands decreases at dif-
ferent rates on different processors, as seen in Fig. 6. Since
no ligands are released after time-step 0, the increase in lig-
ands seen on processor 27 is due entirely to diffusion from
neighboring, heavily loaded processors.

Fig. 7 compares actual and predicted epoch running
times, using the estimate of 42900 ligand updates per sec-
ond (from Table 1). The predictions are in good agreement
with the actual running times, though it appears that the es-
timate is a little high. We are currently investigating refine-
ments to our model.

The number of ligands communicated in this simula-
tion is shown in Fig. 8. The maximum number of ligands
communicated appears to be inversely proportional to the
number of processors used, as expected, since the length
of each processor boundary is shorter as more processors
are added. The number of sub-iterations, shown in Fig. 9,
increases with the number of processors. We believe that
the increased number of sub-iterations required, as well as
some of the unevenness in the running time, may be due to
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Figure 7. Actual and predicted running times
for every 100 time-steps of the simulation on
each of 16, 32, and 64 processors. Predicted
running times are calculated by estimating
42900 ligand updates per second on the most
heavily loaded processor.
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communicated by a processor per 100 time-
steps for each of the 16, 32, and 64 processor
simulations.
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Figure 9. The number of sub-iterations re-
quired per 100 time-steps for each of the 16,
32, and 64 processor simulations.

frequent ligand bouncing, but we have not yet gathered suf-
ficiently fine-grained data to be certain. The aggregate ef-
fects of ligand bouncing appear not to be severe, however.

5 Discussion

Load imbalance is currently a performance bottleneck
and is costing us approximately a factor of two in running
time. We are implementing a non-uniform decomposition
(recursive coordinate bisection [5]) to ameliorate the prob-
lem and to make larger-scale runs feasible. We will report
on the outcome in the future.

At present we collected summary performance data over
epochs. We are in the process of collecting more detailed
performance information, on the level of individual sub-
iterations. This will help us learn more about communi-
cation costs, which are estimated to be small.

The added sub-iterations needed to detect termination
are modest, but we need more detailed statistics to deter-
mine if there are larger variations masked by the current
sampling technique. However, based on the current results,
the costs are small. An all-reduce operation on Blue Hori-
zon costs a few hundred microseconds on 64 processors.
Even if there were 10 such calls per time-step, the cost
would be on the order of a few milliseconds per time-step,
and no more than a few seconds over the total length of the
run. By comparison, runs take hundreds to thousands of
seconds to complete, so we do not anticipate termination
detection to be a problem even on thousands of processors.

The one remaining cost due to parallelization is ligand
migration. Measurements have shown that message lengths
progressively decrease over the course of a time-step. From
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our statistics, we know that the most costly communica-
tion steps transmit a few thousand ligands per time-step, at
roughly 50 bytes per ligand. Thus, a few hundred thousand
bytes are transmitted per time-step. We may safely ignore
message start time (about 20 microseconds averaging the
differing on-node and off-node transmission costs) since it
is small compared with the cost of the global synchroniza-
tion. What remains is bandwidth-limited communication.
Peak communication bandwidth is 450 MB/sec averaging
on-node and off-node communication rates. Total time per
time-step spent migrating ligands is therefore on the order
of 1 millisecond, which is small compared with running
times of 1/2 to 2 seconds per time-step, and is of the same
rough order of magnitude as synchronization. Thus, we do
not anticipate that communication will be an issue in even
the largest scale simulations anticipated to run on thousands
of processors.

Although our current scheme for estimating computation
costs appears reasonable, we will soon be adding a new
capability to MCell-K that permits bimolecular reactions
among ligands. The resulting non-linearities in workload
estimation will challenge our ability to balance workloads,
and we are investigating better methods to estimate work-
loads.

6 Conclusions

We have built a parallel implementation of MCell with
minimal modifications to the original serial code. We were
able to achieve this result by using the KeLP programming
system, which allowed us to manage distributed pointer-
based data structures.

By parallelizing MCell, we were able to run simulations
significantly more ambitious than could previously be per-
formed with the serial code. We have demonstrated good
parallel efficiency on up to 64 processors of NPACI’s Blue
Horizon system, and we plan to scale the application to
thousands of processors after we have installed dynamic
load balancing.

We believe that dynamic load balancing is critical to
obtaining the maximum performance since ligand popula-
tions and rates of reactions vary so widely in realistic bi-
ological simulations. A first step toward load balancing
MCell-K will be to use irregular decompositions, but we
ultimately plan to over-decompose the problem domain, as-
signing multiple problem subregions per processor. This
approach has previously been investigated in the context of
KeLP [20], and by others [19, 28, 11] as well.

We believe that as we achieve better load balance within
MCell-K, the importance of fast communication will in-
crease. We are beginning to investigate ways to communi-
cate ligands asynchronously, which we believe will reduce

the amount of time that processors are idle due to load im-
balance.

Planned enhancements to the MCell code, such as mov-
ing boundaries and ligand-ligand interactions, will further
complicate our parallelization efforts.

Owing to statistical variations in Monte Carlo simula-
tions, it is necessary to run multiple simulation invocations
to obtain statistically meaningful results. An interesting
possibility is to run MCell-K simulations on the grid as is
done with the serial implementation of MCell [7].
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