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The study of natural images and how our brain processes them has
been an area of intense research in neuroscience, psychology, and
computer science. We introduced a unique approach to studying
natural images by decomposing images into a hierarchy of layers at
different logarithmic intensity scales and mapping them to a quasi-
2D magnet. The layers were in different phases: “cold” and ordered
at large-intensity scales, “hot” and disordered at small-intensity
scales, and going through a second-order phase transition at inter-
mediate scales. There was a single “critical” layer in the hierarchy
that exhibited long-range correlation similar to that found in the 2D
Ising model of ferromagnetism at the critical temperature. We also
determined the interactions between layers mapped from natural
images and found mutual inhibition that generated locally “frus-
trated” antiferromagnetic states. Almost all information in natural
images was concentrated in a few layers near the phase transition,
which has biological implications and also points to the hierarchical
origin of scale invariance in natural images.

critical point | vision | generative models

Our visual system evolved to survive in nature with scenes of
mountains, rivers, trees, and other animals (1). The neural

representations of visual inputs are related to their statistical
structure (1–3). Structures in nature come in a hierarchy of sizes
that cannot be separated, a signature of scale invariance, which also
occurs near a critical point in many physical systems. The classic
example of a critical point is a uniaxial ferromagnetic system going
through a second-order phase transition in a zero magnetic field by
increasing temperature. At the critical point, the system loses its
magnetization due to thermal fluctuations. There are large regions
(“islands”) that aremagnetized in one direction but are surrounded
by large regions (“seas”) that are magnetized in the opposite di-
rection. The seas themselves are embedded in bigger islands, ad
infinitum. The total magnetization is zero, but the correlation
length diverges, which is visualized by growth of the sizes of seas and
islands with the system size. At the critical point, the system is free
of a length scale because fluctuations occur at scales of all lengths.
The infinite correlation length is thus intricately linked with scale
invariance. The scale invariance in natural images was first char-
acterized by the 1/f2 spatial power spectrum of pixel intensities (2).
Here, we study scaling properties of natural images at a deeper level
by finding a hierarchy of statistical structures, in which the scale
invariance emerges near a second-order phase transition.
Images are preprocessed in the retina by a complex network

with ∼55 distinct cell types in mammals (5). The cerebral cortex
receives a spatiotemporal stream of spikes that contain all the
information in the visual inputs that has been coded by the retina.
Understanding the hierarchies of statistical structures in natural
images is essential for better understanding how that information
is efficiently encoded by the retina. This might also yield insights
into how the cortex represents scale-invariant visual scenes.
Mental imagery suggests that the brain has developed genera-

tive models of sensory experiences. Generative models, such as the
Boltzmann machine, have been used to represent the statistical
structure of images (6–8). Here we develop a unique input rep-
resentation for images in which the lateral interactions in the input

representation of the Boltzmann machine are learned from
natural images.

Results
Image Representation. For simplicity, consider gray-scaled images,
and with no loss of generality, assume the image intensities are
nonnegative integers, represented by the matrix I . The intensity
matrix therefore can be written uniquely as the weighted sum of
matrices Bλ:

I =
XL

λ= 1

bL−λBλ; [1]

where the integer b > 1 is the base of the representation, Bλ are
nonnegative integer matrices with values between 0 and b − 1,
and L is the length of the representation. Bλ is found iteratively
by calculating bðI −

Pλ−1
l=1 b

L−lBlÞ=bL−λc starting from λ = 1,
where b·c is the floor function. Similar to base representation
of integers, we can think of the ordered collection of matrices
(B1B2. . .BL) as the base b representation of the matrix I . This
generalizes the attempts made in studying sounds and natural
images by binarizing them according to their median intensities
(9, 10). We call layers Bλ intensity layers in general, and binary
layers for b = 2.

Phase Transition in Natural Images. An example of an image in the
van Hateren database (11) (Fig. 1A) and its binary (b = 2) de-
composition (Fig. 1C) is given in Fig. 1. In that database, the
maximum intensity is 215 − 1, so L = 15 for the binary repre-
sentation. Fluctuations in B1 (BL) code the largest (smallest)
intensity variation, and we call it the top (bottom) layer to
highlight the intensity dimension visualized in Fig. 1B. Looking at
this example, one immediately notices the qualitative change
moving down from the top layer to the bottom one. In physical
systems, the top layer is called an ordered phase and the bottom
one is called a disordered phase. The same behavior is seen for all
images in the ensemble, as well as for images in other databases,
including color and compressed JPEG (Joint Photographic
Experts Group) images.
The ordered and disordered phases are easily explained. In

a binary representation, the intensity needs to be at least 214 for
a pixel in the top layer to be active, and this occurs in only 0.02% of
pixels in the van Hateren database. The origin of the disorder in
the bottom layer (which codes the smallest intensity variation) can
be traced back to the stochastic nature of the detection process.
The theory of second-order phase transition is well established

in physics, starting with the simple and elegant Landau–Ginzburg
theory (12) that led to the comprehensive machinery of the
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renormalization group (4). The Landau–Ginzburg theory of
critical phenomena starts with a mean field formulation by in-
troducing a macroscopic “order parameter” M, which is the av-
erage of a microscopic variable. M is the average magnetization
for a uniaxial ferromagnet in a zero magnetic field, and the free
energy must respect the symmetry M → −M. The first two terms
in the free energy (up to a scaling factor) are given by F = rM2 +
M4 +O(M6). At the phase transition, r changes sign from positive
to negative and the minimum solution goes from zero to a non-
zero value. There are two degenerate nonzero solutions, which
are mapped to each other by a sign flip. However, the system has
to pick one of the solutions, what is known as spontaneous
symmetry breaking: The free energy is symmetrical, but the
equilibrated state breaks the symmetry. In the following, we
define an order parameter for layers Bλ (Eq. 1 and Fig. 1). The
order parameter is zero for the bottom layers, and it develops
a nonzero value at an intermediate “critical” layer, becoming
fully ordered at the top layer (Fig. 1B).

Mapping Images to Magnets. Define the following “spin” variable
at pixel i = (i1, i2) on layer λ:

σλi =
Bλ
i − ðb− 1Þ=2
ðb− 1Þ=2 :

The normalization is done to limit −1≤ σλi ≤ 1 in all bases. The
“magnetization” order parameter Mλ for the layer λ is then
obtained by averaging σλi over image pixels: Mλ = hσλi i. Looking
at natural images as a statistical ensemble, the quantity of in-
terest is 〈Mλ〉, which is the average of Mλ over the ensemble,
plotted in Fig. 2B for different bases. If we assume λ is the tuning
parameter for the phase transition, just below the critical value
λc, the average order parameter is given by 〈M〉 = (λc − λ)β/C.
The best fit was obtained for λc = 6.00, β = 0.12, and C = −1.50
(Fig. 2B). The exponent β is close to the critical exponent β = 1/8
of the 2D Ising model. One might object that the tuning pa-
rameter, λ, is not continuous here. However, this is only a prac-
tical issue because it can be made asymptotically continuous by
constructing databases with a large L. We “translated” λ in dif-
ferent bases back to the binary b = 2 (Fig. 2), thus creating
a limited continuity (away from integer values) in λ.

Intensity Layers and the Information Hierarchy. Next, we con-
structed two dimensionless measures to characterize the in-
formation content of each isolated layer and the accumulated
information moving from the top layer to the bottom layer. They
are denoted by S and A, respectively:

SðλÞ= 1−

��I−I λ
��2
2

kIk22

AðλÞ= 1−

����I−
Pλ

λ= 1I λ

����
2

2

kIk22
;

where I λ = bL−λBλ is the contribution of layer λ to image I given
in Eq. 1, and kIk2 is the Frobenius norm of the matrix I . We
used these measures to determine whether the most informative
layers are the ones near the phase transition. The curve S(λ) (not
shown here) is unimodal, peaks at λ = 5, and is less than 0.2 for λ
outside the interval (3, 6). In addition, the accumulated informa-
tion A(λ) for different bases (Fig. 2B) was best fit by the sigmoid
function 1/(1 + exp(λA − λ)), with λA = 4.

A C

B

D

Fig. 1. Visualization of the base representation of images. (A) Example of
an image in the van Hateren database of natural images. It consists of 4,167
images, 1,024 × 1,536 pixels in size, ranging from 0 to 215 − 1 in the pixel in-
tensity. (B) In the base representation, the 2D image is isomorphic to a quasi-2D
system by stacking layers Bλ from top λ = 1 to bottom λ = L. Numbers denote λ,
with phases for λ = 1, 6, and 15 identified. (C) Layers 4:8 from top to bottom
in the binary decomposition are shown separately. The pixel intensity on each
layer is either 0 (black) or 1 (white). Traces of a second-order phase transition
near λ = 6 are also visualized here. Layers 1:3 and 9:15 are not shown because
of space; they are indistinguishable from ordered and disordered layers 1 and
15 (shown in B), respectively. (D) This image is the “negative” representation of
A, equivalent to flipping pixel values 0 ↔ 1 of the binary planes.

A B

Fig. 2. Second-order phase transition, the information hidden near phase
transition, and the exponent β. (A) Plot of〈M〉 for b = 2–5 as a function of
λ*, obtained from 215−λ*=bL−λ. The SD is indicated by the error bars. The
black curve is the best fit to the points near the phase transition (λc = 6), with
the critical exponent β = 0.12. (B) Ensemble average 〈A〉 for b = 2–5 with
the same procedure as in A for representing λ in base 2 denoted by λ*. It is
best fit by the sigmoid function centered at λA = 4.
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Power Spectrum of Binary Layers. Natural images are scale-in-
variant (2, 13), with a correlation length of the order of the
image size and with structures over a wide range of sizes. Long,
smooth edges of objects induce correlation lengths on the order
of the object size, and objects come in variety of sizes, which is
a problem with many scales of length (4). Scale invariance and
the large correlation length are quantified by studying the in-
tensity correlation function, which shows a power law behavior
in the limit of large D(i, j): 〈I iI j〉 ∼ 1/D(i, j)η, where Dði; jÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði1 − j1Þ2 + ði2 − j2Þ2

q
is the distance between pixels i and j in

units of pixels. In Fourier space, the scaling takes the form jI(k)j2
∼ 1/jkj2−η as jkj→ 0. For natural images, η ’ 0 (14) (Fig. 3A). For
a system with finite correlation length ξ, the correlation function
decays exponentially with the characteristic length ξ. For natural
images, the decay is power-law, free of a length scale, and the
correlation length is “infinite.” In the framework introduced
here, neither the top nor bottom layer has a large correlation
length, and the infinite correlation length emerges at the phase
transition. Furthermore, the exponent η for layer λ = 6 is 0.21,
a substantial departure from η ’ 0 for natural images and close
to the Ising critical exponent η = 0.25. We should point out that
in contrast, binarizing images by their median intensity leads to
approximately the same exponent as the original image (10). The
log power spectrum of layers logjIλ(k)j2 plotted in Fig. 3B com-
pares the spectral power of each layer in isolation. Layers near
the critical point contribute substantially to the power spectrum
despite the fact that they have exponentially less intensity than
the ordered phase. The lowest spatial frequencies are cut off
because they are dominated by size effects below the cutoff.
Furthermore, the power spectrum for layers away from the phase

transition plateau out below the cutoff (logjkj < −4), indicating
finite correlation length.

Ising Model for Isolated Binary Layers. The more direct evidence
for Ising criticality is given by learning a generative model for
layer λ = 6. There is a rich history for solving such a learning
problem, starting with Boltzmann machines (6) and extending
through recent advancements in deep belief networks (7). We
used minimum probability flow learning (15) and applied it to
more than 106 samples (20 × 20 patches) taken from isolated
layers in the binary decomposition. The program learned the Ising
interactions of the fully connected network for each layer:

E= −
1
2

X
i;j

Jijσiσj −
X
i

Hiσi; [2]

by assigning probability weights P({σi}) = exp(−E)/Z, where Z is
the partition function and the temperature is absorbed in the
interactions. The mean and SD of interactions with a fixed
D(i, j) for layers 5, 6, and 7 are given in Table 1. For the near-
est-neighbor interaction, J1, D(i, j) = 1; for the next-nearest-
neighbor interaction, J2, Dði; jÞ=

ffiffiffi
2

p
(Fig. 4). We assumed trans-

lation and rotation symmetry in averaging interactions with
a fixed D(i, j), consistent with the isotropy of natural images.
Ignoring Jij beyond next-nearest neighbors, the (J1, J2) model
for layer λ = 6 is close to the phase transition of the 2D (J1,
J2) Ising model reported in the literature: Fixing J1 = 0.242,
the estimated phase transition happens for J2 = 0.144 (16, 17).
The interactions for layers 5 and 7 correspond to the ordered
and disordered phases of the Ising model, respectively. The small
effective magnetic field H suggests that layer λ = 6 is slightly
above the phase transition; this is due to the fact that the training
was done over only positive images (Fig. 1A). If, instead, we train
the network over both positive and negative (Fig. 1D) images,
the same interactions (within the significant digits shown) are
obtained, except for the magnetic field, which vanishes.
The other advantage of symmetrical interactions is that we

could sample smaller patches and get close to the true Ising
interactions. For example, sampling 10 × 10 patches of layer 6
yields J1 = 0.253 ± 0.044, J2 = 0.112 ± 0.005, J3 = 0.058 ± 0.015,
and J4 = 0.006 ± 0.003, all within the SD of the Ising interactions
given in Table 1. We exploit this property in the next section.
Finding similar interactions by sampling different patch sizes is
a nontrivial check on the validity of minimum probability flow
learning for this system. Including higher order interactions will
change these numbers. However, our hypothesis is that these
changes are “irrelevant” for the critical layer because inter-
actions are coarse-grained in the renormalization group pro-
cedure (4). This is beyond the scope of the present study.

Ising Model for Connected Binary Layers. The interactions given in
Table 1 are effective interactions for each layer, that is, “effec-
tive” because each layer is sampled in isolation from other layers.
We investigated interactions between layers by sampling them

A B

Fig. 3. Power spectrum of binary layers, natural images, and scrambled
natural images. (A) Power spectrum of natural images in black and
scrambled natural images in gray. The purple dashed line is the result for
the critical point of the 2D ferromagnetic Ising model. (B) Power spectrum
of binary layers of natural images weighted by 215−λ (Iλ(k) is the Fourier
transform of I λ = 215−λBλ), from the top cold layer represented by dark
blue to the hot bottom layer represented by red. The inner average is
over different k orientations, and the outer average is over the ensemble
of images.

Table 1. Ising interactions learned by sampling 20 × 20 patches
from layers 5, 6, and 7

λ = 5 λ = 6 λ = 7 D(i, j)

H −0.017 ± 0.006 −0.049 ± 0.002 −0.006 ± 0.001 0
J1 0.34 ± 0.04 0.24 ± 0.04 0.16 ± 0.03 1
J2 0.14 ± 0.01 0.11 ± 0.004 0.09 ± 0.004 √2
J3 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 2
J4 0.000 ± 0.007 0.004 ± 0.003 0.013 ± 0.003 √5

Ising interactions used in Eq. 2 are averaged over pairs (i, j) subjected to
the distance D(i, j) given in the last column.
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simultaneously and learning the Ising interactions for the fully
connected network. The interactions were organized by their
symmetries as in the previous section. We performed this anal-
ysis for different stack layers and patch sizes. Here, we report the
results by sampling seven layers 3:9; noting that, on average, 97%
of information of an image is inside layers 3:9. The learning al-
gorithm was trained over both positive and negative images. We
comment on the symmetry breaking and Monte Carlo samples
elsewhere in this study (Discussion).
The learned Ising interactions were organized by their pro-

jection distance D⊥(i, j) between the units i and j. The projection
distance D⊥(i, j) is related to D(i, j) through the relation

Dði; jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D⊥ði; jÞ2 +Δλ2

q
, where Δλ is the vertical distance be-

tween the two sites. For example, J0 is a 7 × 7 matrix, where the
element (λ1, λ2) (3 ≤ λ ≤ 9) is the direct vertical interaction
between layers λ1 and λ2, which is calculated by averaging the
Ising interactions between units i and j on layers λ1 and λ2 sub-
jected to D⊥(i, j) = 0 (blue links in Fig. 4). The same procedure is
performed by restricting D⊥(i, j) = 1 (red links in Fig. 4) to obtain
J1. The Ising interactions were learned by sampling 10 × 10
patches, with 100 samples per image (416,700 samples in total).
The upper triangular part of the symmetrical 7 × 7 matrices J0, J1
and the corresponding SD of the averaged interactions δJ0, δJ1
are given below:

J0 =

2
666666664

0 −1:85 −1:44 −1:01 −0:58 −0:29 −0:14
0 −1:07 −0:77 −0:45 −0:22 −0:11

0 −0:78 −0:49 −0:26 −0:13
0 −0:40 −0:24 −0:13

0 −0:09 −0:06
0 −0:02

0

3
777777775
;

δJ0 =

2
666666664

0 0:25 0:16 0:11 0:08 0:06 0:07
0 0:09 0:06 0:04 0:03 0:03

0 0:03 0:02 0:01 0:01
0 0:01 0:01 0:01

0 0 0
0 0

0

3
777777775
;

J1 =

2
666666664

1:37 0:74 0:44 0:26 0:14 0:07 0:03
0:75 0:32 0:17 0:08 0:04 0:02

0:46 0:10 0:06 0:04 0:02
0:28 0:02 0:03 0:02

0:17 0 0
0:09 0

0:04

3
777777775
;

δJ1 =

2
666666664

0:29 0:19 0:13 0:08 0:06 0:06 0:06
0:13 0:09 0:05 0:04 0:03 0:03

0:08 0:03 0:02 0:01 0:01
0:05 0:01 0:01 0:01

0:03 0 0
0:01 0

0

3
777777775
;

where interactions smaller than 0.01 are set to 0. The significant
nontrivial observation is the antiferromagnetic (inhibitory) inter-
actions between units with vertical connections between different
layers, given by J0. The antiferromagnetic interactions are nontriv-
ial because they are “frustrated,” a term used in magnetism liter-
ature to describe Ising interactions in which the simultaneous
minimization of the interaction energies for all connections is
impossible. Implications of the frustrated antiferromagnetic inter-
actions between layers will be the subject of further studies.

Scrambled Natural Images. We also studied the power spectrum
for a unique class of images that are easily constructed from the
base decomposition. We call this class scrambled natural images.
It is constructed by pooling Bλ values at random from different
images and combining them using Eq. 1. The layers in scrambled
images are therefore independent. An example is shown in Fig.
5, with layer 6 taken from the example of Fig. 1. The linear fit to

Fig. 4. Organization of Jij by D⊥(i, j). The distances D⊥(i, j) within layer λ and
between λ and λ′ are ranked after fixing i on layer λ. The site labeled 0 is
the site with D⊥(i, j ) = 0, the sites labeled 1 are the sites with D⊥(i, j ) = 1,
and the sites labeled 2 are the sites with D⊥ði; jÞ=

ffiffiffi
2

p
, etc. The site i is

chosen at the center for the sake of presentation. The interaction on the
blue link contributes to J0 between layers λ and λ′, and the interactions
on the red links contribute to J1 between these two layers. The rest of the
links (not shown here) are obtained by varying the site i and repeating the
procedure.

Fig. 5. Scrambled natural images. The scrambled image (Upper) and the
layers 4, 5, and 6 used for its construction are shown. Layer 6 is taken from
the example of Fig. 1, and other layers are taken randomly from the binary
decomposition of different images in the database. Layers 1:3 and 7:15 are
not shown because of space; altogether, they contain only 5% of the in-
formation in this example.
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the log power spectrum of scrambled natural images yields
ηscrambled = 0.14 (Fig. 3A). A general property of scrambled
images, displayed in Fig. 5, is that they show structures of the
informative layers at different intensity scales. The exponent η is
defined by the behavior of the correlation function at large dis-
tances (small spatial frequencies). However, as is seen in Fig. 3,
in the intermediate regimes, the correlation function of scram-
bled images matches the Ising critical system. This is due to the
fact that most of the information in these images is captured by
layers near the phase transition. Scrambled natural images iso-
late the effect of correlation between layers present in natural
images. This interlayer correlation, quantified by the Ising inter-
actions in the previous section, is the reason for the change in the
slope of the power spectrum of natural images from the scrambled
images. Quantifying this effect by relating it to the interlayer Ising
interactions is an interesting future direction.

Discussion
A previous analysis of natural images approximated images with
a single-layer Ising model by thresholding and binarizing the pixels
based on the median intensity (10). In the images we analyzed, the
median intensity lies, on average, between layers 5 and 6 (5.7 ±
0.46). The binary image obtained by thresholding based on the
median intensity is approximately equal to the disjunction of
layers above the median layer (by applying the logical OR oper-
ator). This is approximate because the median “layer” obtained
from L − log2(median(I)) is not necessarily an integer. It is likely
that the criticality reported by Stephens et al. (10) has its roots
in the critical “region” reported here. The change in scaling of
the spectral power is due to mixing the layers with the disjunction
operator. As we have shown here, extending the Ising model to
multiple layers of intensities explains the scaling of natural images,
can be extended to generalized (nonbinary) Ising models, and may
lead to a generative model of natural images. Finding such a lay-
ered Ising model will be of major value for physics and computer
science. It may also be relevant in neuroscience because it suggests
a neural architecture in the brain for generating images (6, 18).

Symmetry Breaking. A hallmark of second-order phase transitions
is spontaneous symmetry breaking. There is no apparent physical
symmetry between positive and negative images (Fig. 1 A and D).
However, from the perspective of generative models, the question
is whether positive images can be generated from an Ising model
with a zero magnetic field. In such a model, once the system
spontaneously equilibrates as a positive image, it is very unlikely
(impossible in the infinite system) to “walk” (in the Monte Carlo
sense) to a negative image. In this respect, spontaneous symmetry
breaking occurs in representations rather than in the physical
world. A similar duality in representing photon intensity hap-
pened during the evolution of biological systems. In vertebrate
photoreceptors, increasing light intensity progressively decreases
the membrane potential, thus representing the negative of images
to the brain; in contrast, the membrane potential of invertebrate
photoreceptors increases with light intensity, which is the positive
image (19).

Scale Invariance of Natural Images. We have introduced a unique
intensity hierarchy for studying signals, finding traces of Ising scaling
in natural images and suggesting spontaneous symmetry breaking
in representing natural images. The magnetic phase mapped from
natural images is also unique, with interacting layers in equilibrium
at different “temperatures,” accompanied by the second-order
phase transition inside the magnet, making it an exotic quasi-2D
ferromagnet. This would also imply that the critical point is what
makes natural images scale-invariant. Although we examined the
layers Bλ from the perspective of magnetism, other systems, such as
percolation or cellular automata, might also yield new insights.

Implications for the Retina.The systematic way of studying images in
the intensity hierarchy introduced here has biological implications.
It explains the experimental observation that the linear regime in
photoreceptor response is only limited to one order of magnitude
in logarithmic scale (20), because in our decomposition, 89% of
information, on average, is captured in binary layers 3:6, repre-
senting an intensity range of 23. The concentration of spectral
power near the critical layer (Fig. 3B) may also explain the critical
structure of spikes from retinal ganglion cells responding to natural
images (21). The spatiotemporal pattern of spikes arising from the
retina may preserve some of the statistical properties found in
natural images, particularly the long-range correlations found at
the critical point, which may be useful at higher levels of visual
processing. More generally, a notion of statistical hierarchy is in-
troduced here because different layers in the image decomposition
have different statistical structures. It would be useful to formalize
“statistical hierarchy” more generally because the decomposition
introduced here is only one possibility. The many cell types in the
retina could be an example of a biological system extracting sta-
tistical hierarchies in the data.

Future Directions. The issue of higher order interactions in natural
images is not fully understood. A recent study quantified higher
order interactions for binarized images and demonstrated their
importance for recognizing textures (22). Alternatively, higher
order interactions can be modeled by hidden units, which induce
interactions between visible units. We are currently adding hid-
den units to the present fully visible Boltzmann machine to model
higher order interactions. This is a different paradigm in training
deep networks because we start with fully connected symmetrical
visible units. The challenge is that lateral connections make in-
ference difficult. The advantage gained by having lateral con-
nections is capturing second-order statistics, which will provide
a good foundation for the deep network. This is a more intuitive
way of approaching generative models, which could be more bi-
ologically relevant. It is also possible that (because of the non-
linear nature of the base decomposition) the Boltzmann machine
here captures higher order statistics approximately; however, that
would be a topic that should be investigated in the future.
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