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Abstract—Multi-modal bio-sensing has recently been
used as effective research tools in affective computing,
autism, clinical disorders, and virtual reality among other
areas. However, none of the existing bio-sensing systems
support multi-modality in a wearable manner outside well-
controlled laboratory environments with research-grade
measurements. This paper attempts to bridge this gap by
developing a wearable multi-modal bio-sensing system ca-
pable of collecting, synchronizing, recording, and transmit-
ting data from multiple bio-sensors: PPG, EEG, eye-gaze
headset, body motion capture, GSR, etc., while also pro-
viding task modulation features including visual-stimulus
tagging. This study describes the development and integra-
tion of various components of our system. We evaluate the
developed sensors by comparing their measurements to
those obtained by a standard research-grade bio-sensors.
We first evaluate different sensor modalities of our head-
set, namely, earlobe-based PPG module with motion-noise
canceling for ECG during heart-beat calculation. We also
compare the steady-state visually evoked potentials mea-
sured by our shielded dry EEG sensors with the potentials
obtained by commercially available dry EEG sensors. We
also investigate the effect of head movements on the accu-
racy and precision of our wearable eye-gaze system. Fur-
thermore, we carry out two practical tasks to demonstrate
the applications of using multiple sensor modalities for ex-
ploring previously unanswerable questions in bio-sensing.
Specifically, utilizing bio-sensing, we show which strategy
works best for playing “Where is Waldo?” visual-search
game, changes in EEG corresponding to true vs. false tar-
get fixations in this game, and predicting the loss/draw/win
states through bio-sensing modalities while learning their
limitations in a “Rock-Paper-Scissors” game.

Index Terms—Brain-computer interface (BCI), bio-
sensing, EEG, pupillometry, multi-modality, PPG, eye-gaze,
stimulus tagging, gaming.
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I. INTRODUCTION

IN RECENT years, there have been many advances in the
field of wearable bio-sensing. This trend has led to the devel-

opment of multiple wearable bio-sensors capable of measuring
galvanic skin response (GSR), photoplethysmogram (PPG), etc.
integrated into portable form-factors such as smartwatches. The
use of bio-signals for various applications such as robotics [1],
[2], mental health [3], affective computing [4], human-computer
interaction [5], [6] etc. has been expanding throughout the past
decade. During the same time, the concept of using more than
one bio-sensing modality has also gained popularity. This is
primarily driven by the assumption that the limitations of a
bio-sensor can be compensated by using another for specific
applications. For example, since EEG provides good temporal
resolution but poor spatial resolution it might be possible to use
other modalities such as PPG and GSR to augment the perfor-
mance in an emotion classification task rather than using EEG
alone [7], [8].

Unfortunately, the integration of above-mentioned bio-
sensing modalities is usually overlooked for more naturalistic re-
search studies due to cost, bulk, and technical difficulty [9], [10].
A typical strategy used to measure multiple bio-signals in the
real-world is to buy various sensors and then extract data from
each of them separately. This setup, however, leads to unwieldy
subject preparation and increased post-processing synchroniza-
tion effort, both of which add sources of noise and inconve-
nience. Specifically, no integrated headset has been proposed to
measure multiple bio-signals simultaneously in a synchronized
manner. Without the possibility of simultaneous recordings from
multiple modalities, it is difficult, if not impossible, to explore
questions corresponding to changes in physiology while per-
forming actions in the real world.

The problem of not being able to collect data in real-world
environments is compounded by the lack of techniques to au-
tomatically recognize and tag real-life events or stimuli. The
standard process employed for stimulus tagging requires an in-
dividual (experimenter) to manually tag the various stimuli from
frame to frame in a video stream. This process is cumbersome,
time-consuming, and laborious. Furthermore, the stimulus on-
set is not measured with fine-resolution or is ill-defined in such
setups [11], [12]. A solution is to track eye-gaze to infer the stim-
ulus onsets [13]. This allows pinpointing of the visual region,
but still requires stimulus tagging.

Additionally, there is a design element associated with the
bio-sensors, which needs to be optimized for compactness and
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cost for any multi-modal bio-sensing system. Any such device
has to be capable of synchronizing multiple data streams and
should be packaged in a compact form factor for easy use. For
example, the use of wet electrodes for measuring EEG or elec-
trocardiogram (ECG), which may require placing sensors over
the chest, is undesirable for real-world setups. This study ad-
dresses the above limitations by designing novel research-grade
bio-sensors capable of measuring physiological measurements
in real-world environments with automatic visual tagging and
integrating the sensors in the form of a compact wearable head-
set. This research also presents evaluation on two “real-world”
experiment setups through the use of gaming towards utilizing
multiple sensor modalities. We show that previously unexplored
physiological questions can be addressed using multiple sensor
modalities.

II. PROPOSED SYSTEM AND RELATED WORK

We designed and evaluated a novel earlobe-based, high-
resolution PPG sensor that is capable of measuring heart rate
and heart-rate variability as well as providing raw PPG data
from the earlobe. Using adaptive noise cancellation and inten-
tional placement at the earlobe to minimize sensor movement,
the PPG sensor is capable of minimizing motion noise. We also
designed and evaluated novel dry EEG sensors capable of ac-
tively filtering the EEG signals by shielding themselves from
ambient electrostatic noise. These EEG sensors are used with
a high-sampling and ultra-low-noise analog to digital converter
(ADC) module. We also designed and evaluated a dual-camera-
based eyeglass capable of measuring eye-gaze (overlaid on the
subject’s field of view), pupillometry, fixations, and saccades.
Data acquisition and synchronization from all these sensors is
done using an embedded system. These data streams can then
be saved on the device or wirelessly transmitted in real-time
for visualization and analysis. The framework is designed to
automatically tag visual stimuli in real-world scenarios with
subject’s eye-gaze over the various bio-sensing modalities. Fi-
nally, the framework is scalable such that it can be expanded
to support other bio-sensing modalities from the market. To the
best of our knowledge, this is the only multi-modal bio-sensing
system capable of working with such a wide range of research-
grade sensors.

Table I compares our system with many existing state-of-the-
art bio-sensing systems. Clearly, we can see that in all categories
our system is more comprehensive and flexible than all the
existing bio-sensing systems. The lack of cost comparison in
the Table is because many of the systems including ours have
not been commercialized into products. Hence, it is not a fair
comparison to evaluate the retail prices of select systems with
the fabrication costs of others.

In real-world applications, PPG has been substituted for ECG
due to the ease it offers in measuring heart rate. It does not re-
quire using wet electrodes over the chest and can easily be inte-
grated onto watches or armbands [10], [19]. But, it has its own
limitations. First, most of the available PPG sensors do not have
sampling rate high enough and fine ADC resolution to measure
heart-rate variability (HRV) in addition to heart rate (HR). HRV

has been shown to be a good measure of emotional valence and
physiological activity. Secondly, PPG sensors over the arm or
wrist tend to be noisy because of the constant movements of
the limbs while performing real-world tasks. On the other hand,
PPG systems designed for the earlobe also suffer from noise due
to walking or other head/neck movements [19]. In the rare case
when noise filtering is used in PPG, the hardware design is bulky
due to the large size of the circuit board used in the setup [20].

EEG sensors come in dry or wet-electrode based configura-
tions. The wet electrodes either require the application of gel or
saline water during the experiment and hence are not ideal out-
side laboratory environments [21]. The dry electrodes usually
do not have a long service life since they are generally made
of Ag/AgCl or gold (Au) coating over a metal, plastic or poly-
mer, which tend to wear off [22], [23]. Furthermore, coating
Ag/AgCl is a costly electrochemical process.

Eye-gaze tracking systems tend to be bulky and may even
require the subject to place his/her face on a chin rest [24], [25].
Even when they are compact, these systems are not mobile and
the subject has to be constantly in its field of view [26]. These
limitations restrict their use outside well-controlled laboratories,
where illumination varies and the subject is mobile at all times.
Furthermore, all such systems only measure eye-gaze as being
pointed over a display monitor and not in the real world. They
are unable to overlay the gaze over the subject’s view if the
display screen is not in his/her field of view. The solution is
to use head-mounted eye-gaze systems but they tend to use a
laptop instead of a small embedded system for processing and
viewing the camera streams [27]. Thus, the laptop has to be
carried in a bag, restricting the subject’s freedom of movement.

To tag the stimuli with various bio-sensing modalities, the
norm has been to use a key/button press, fix the onset and order
of stimuli on a display, or time it with a particular event etc.
[11], [12] But, in real-world scenarios, such methods either
cannot be used due to the mobile nature of the setup or induce
a sense of uncertainty which has to be removed by manual
tagging. Such manual tagging is laborious and time-consuming.
The only viable solution is to tag stimuli automatically after
recognizing them in the subject’s field of view. However, it lacks
the knowledge of whether the subject was actually focusing on
the stimuli or rather was looking at some other areas in his/her
field of view.

The existing multi-modal experimental setups are tethered,
are not compact and tend to just attach various sensors on the
subject, which are then connected to one or more data acquisition
systems [4], [9]. This further reduces the mobility for experi-
ments outside laboratories. The use of independent clock for
each of the different modality complicates the issue of synchro-
nizing the various modalities. For real-time display, transmitting
data streams from these sensors over Wi-Fi or Bluetooth may
introduce varying latency. Thus, the only solution is to design
a closely packed hardware system [28], which synchronizes the
various data streams while acquiring them in a wired manner
and using only one clock (that of the embedded system itself).
The synchronized streams can then be either recorded or sent
to a display screen which does not affect either the compact
nature of hardware or synchronization in software framework.
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TABLE I
COMPARISON OF MULTI-MODAL BIO-SENSING SYSTEMS

Fig. 1. The miniaturized PPG sensor with a scale reference. (A) 3-axis
accelerometer. (B) 100 Hz 16-bit ADC. (C) IR emitter and receiver. (D)
A third-order filter bank.

In the next section, we present the various sensors and methods
developed by us to address the above limitations.

III. SYSTEM OVERVIEW

This section details the development of each of the sensor
modules incorporated in our system with its features and the
embedded system used for their integration.

A. Earlobe-Based PPG Sensor

We developed an earlobe-based PPG sensor. The PPG sensor
module is very compact (1.6 × 1.6 × 0.6 cm) and sandwiched
to the earlobe using two small neodymium magnets. The PPG
sensor module (Fig. 1) houses an Infrared (IR) emitter-detector
(Vishay TCRT 1000) for measuring PPG, a 3-axis accelerom-
eter (Analog Devices ADXL 335), a high-precision (16-bit)
and high-sampling rate (100 Hz.) ADC (Texas Instruments
ADS 1115), and a third-order analog high-gain band-pass fil-
ter (BPF, cutoff 0.8 - 4 Hz using three Microchip MCP6001
op-amps).

This PPG signal is then amplified using the high-gain band-
pass filter and a relevant frequency band is extracted. The filtered
PPG data along with accelerometer’s data are digitized using the

Fig. 2. The EEG sensor with a scale reference. (A) Silver (Ag) based
conductive element. (B) 3D printed case housing a conductive element
for shielding. (C) The amplifier circuitry.

ADC before transmission. Thus, the PPG module is capable of
filtering the signal on-board (despite being so minuscule in size)
and converting the signal to a digital format for the calculation of
heart rate and heart-rate variability. The onboard accelerometer
serves two purposes. First, it can be used to measure and monitor
head movements because the sensor is fixed on the earlobe
with reference to the position of the subject’s face. Secondly,
the accelerometer provides a measure of noise due to motion
and removes it from the PPG signal using an adaptive noise-
cancellation (ANC) filter. The filter [29] can be implemented
inside our embedded system (section E) in real-time. The filter
works by constructing a model of noise due to motion (such
as while walking) from the reading of the accelerometer and
reconstructing the noise-removed PPG signal.

B. EEG Sensors and Data Acquisition

We developed novel dry EEG sensors (Fig. 2) that can be
easily adjusted under the hairs to measure EEG signals from
the scalp. These EEG sensors consist of a highly conductive
element made from silver (Ag) epoxy (electrical resistivity
0.007 Ω·cm). This silver-epoxy-based conductive element
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Fig. 3. Visualization of our software. (A) Eye-gaze overlaid on world
view. (B) Detected pupil in IR eye camera image. (C) Object detection
network. (D) PPG and accelerometer signals with noise canceling and
heart-rate computation. (E) Human pose detection network. (F) EEG
signals and power spectral density of three EEG bands.

provides the sensor a long life since the silver does not wear
off as fast as it does on EEG sensors coated with Ag/AgCl. The
sensor also has an on-board OpAmp (Texas Instruments TLV
2211) in a voltage-follower configuration to shield the EEG sig-
nal from noise by increasing the signal-to-noise ratio (SNR) of
the EEG signal. Furthermore, the sensor is enclosed in a Faraday
cage made of conductive copper foil tape. This shielding is used
to remove external noise from the environment before the signal
is digitized. For subjects with dense hair, a drop of saline water
can be added to increase the conductance between the sensing
element and the subject’s scalp.

For converting the analog noise-removed EEG signal to a dig-
ital format, we designed an assembly for fine resolution (24-bit),
high-sampling rate (up to 16k samples/second), ultra-low input
referred noise (1 µV) ADC (Texas Instruments ADS 1299).
Our assembly is such that it employs a low-pass filter before
the signal goes into the ADC, whose parameters such as sam-
pling rate, bias calculation, internal source current amplitude for
impedance measurement etc. can be controlled by the software
[30], [31]. The assembly can support up to eight EEG channels
(Fig. 5F) whereas the design of the board is such that multiple
boards can be stacked to accommodate more EEG channels. We
use two such boards in our headset to support 16 EEG channels
(Fp1, Fp2, F7, F3, Fz, F4, F8, C3, Cz, C4, P3, Pz, P4, O1, Oz,
and O2 according to the International 10-20 EEG placement).
Continuous impedance monitoring is made for each electrode
in real-time to assess the quality of the EEG signal and elec-
trode placement. Furthermore, using Independent Component
Analysis (ICA) [32], [33], various independent components of
the signal can be separated to identify noise due to blink, eye
movement, EMG, etc.

C. Eye-Gaze and Pupillometry Sensors

We use two miniature cameras (Fig. 6) to assess the subject’s
eye-gaze location and pupillometry parameters such as the di-

ameter of the pupil, fixations, saccades etc. The eye camera con-
sists of two infrared (IR) LED’s (970 nm wavelength), which
are used to illuminate the region around the eye. Because the
LEDs are IR-based, the eye camera can detect the pupil under
a wide variety of illumination conditions. We modified PupilL-
abs’ pupil-detection and eye-gaze calibration software to detect
the pupil and calibrate subject’s gaze [27]. A display screen (i.e.
laptop) is needed only for the initial eye-gaze calibration step,
which is done using a manual selection of natural features in the
field of view. The gaze is then superimposed on the subject’s
view from the world camera. Both cameras stream at 30 frames-
per-second (fps) while the resolution can be adjusted as per the
need of study.

D. Stimulus Tagging

We use You Only Look Once (YOLO) deep-learning algo-
rithm to automatically tag various stimuli in the feed from the
world camera in real time [34]. The algorithm can be trained for
custom object classes using large image databases with multiple
classes depending on experimental needs (for example 80 object
categories in COCO dataset with 300 K images). Whenever the
subject’s gaze falls inside the bounding box of one of the object
classes (stimuli), the bio-sensing modalities are automatically
tagged. Therefore, instead of manually tagging the stimuli
during the experiment, our software automatically tags the
salient information. Thus, for example, if the subject is looking
at a person’s face, his/her EEG can be time-synchronized to the
gaze and analyzed to detect the level of arousal (Fig. 3). Due to
the significant computational requirements of using YOLO, the
stimulus tagging is done on a laptop (rather than the embedded
system) in real-time or processed post-hoc. OpenPose [36] is
used to automatically tag the human pose by detecting positions
of the body joints. Lab Streaming Layer (LSL) [37] library is
used to synchronize the data streams from the camera on the
embedded system and stimulus tagging on the laptop.

E. Embedded System Framework

Each of the above modalities is wired to a custom develop-
ment board (Fig. 5), which uses an embedded system containing
Broadcom BCM2837 processor. The board has the capability to
attach a world camera, eye camera, PPG module, and EEG
module. Additionally, the board houses a headphone jack which
can be used for playing audio recordings during experiments.
The clock on the embedded system is common for all modal-
ities helping to ensure data synchronization from independent
streams using LSL. This library allows for the spawning of a
global clock which takes into account the relative difference
between local clocks on the embedded system and laptop for
synchronizing various data streams from the two devices in real-
time. While sending the video streams wirelessly, we compress
them using MJPEG compression. Fig. 4 shows the block dia-
gram of the complete working architecture of our system, sensor
components, data processing and transmission by Wi-Fi (using
Realtek RTL 8723BS module). The system is powered using a
small Li-Ion battery (Panasonic NCR18650B 3400 mAh), which
lasts for approximately three hours when all sensor modalities
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Fig. 4. Overview of the integrated system architecture.

Fig. 5. Embedded system. (A) Power circuitry. (B) World camera con-
nector. (C) PPG connector. (D) Audio jack connector. (E) Eye camera
connector. (F) EEG sensors connector and ADC module. (G) Wi-Fi mod-
ule. (H) Microprocessor module.

are enabled. However, the system can also be powered by any
compact 5V-output mobile power bank for more than eight hours
of continuous use. In the future, we would explore increasing
the battery life further by using low-power cameras and system-
on-modules (SOMs).

IV. EVALUATION

To evaluate the efficacy of our integrated headset (Fig. 6),
we evaluated the individual components on multiple subjects.
Below we provide the evaluation results for each of the
components. We then designed two experiment scenarios using
commonly played games: “Where is Waldo?” and “Rock-Paper-
Scissors” during which we collect multi-modal data using the
evaluated sensor modalities. We then show how a fusion of in-

Fig. 6. Integrated headset. (A) World camera. (B) EEG sensors.
(C) Battery. (D) EEG reference electrode. (E) Eye camera. (F) Earlobe
PPG sensor. (G) Headphone/speaker connector. (H) Embedded system
(The subject gave consent to use his face for publication).

formation from individual modalities can provide new insights
into human physiology. The human trial portion of our study was
reviewed and approved by an IRB of University of California
San Diego, and all subjects provided informed consent.

A. The Evaluation of Sensor Modalities

We use multiple benchmarks to evaluate each of the sensors
developed in this study. The apparatus designed for evaluating
these sensors also include various types of head and body move-
ments to assess the effect of our noise-canceling techniques.

1) Earlobe PPG: The earlobe PPG module was evaluated
during rest and active conditions. In particular, the feature of
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Fig. 7. Comparison of the 10-second waveforms from the earlobe PPG
sensor before and after ANC during walking. (A) PPG without and after
noise-cancellation. (B) Vertical acceleration used as the noise measure.

interest, heart rate, was measured while subjects were sitting and
walking in place. The PPG sensor was placed on the earlobe as in
Fig. 6 and measured the changes in blood volume at the sampling
rate of 100 Hz. Simultaneously, the baseline was collected using
an EEG/ECG acquisition system sampled at 1 KHz from the
Institute of Neural Engineering, Tsinghua University, China.
Three electrodes were placed on the subjects’ chest over the
heart, and on either side of the ribs.

Six subjects participated in eight different trials: four sitting
and four walking, during which their ECG and PPG data were
simultaneously measured. In each trial, two minutes of data were
collected. For the walking condition, subjects were instructed
to walk-in-place at a regular rate and ANC was performed to
remove motion noise. We used a peak detection algorithm to
find the heart beats in both signals for counting the heart rate.

Fig. 7 shows the working of the 10th order ANC filter utilized
on a 10-second interval of PPG data while walking. The original
PPG data (in blue) in Fig. 7A are clipped at the top because a
third order high-gain band-pass filter was used thus amplifying
the signal and making it easier to distinguish the peaks in PPG.
As we can see from Fig. 7A, the number of peaks in the orig-
inal waveform is computed to be 20, which is incorrect as the
waveform is distorted. We then use the measure of the noise
from vertical acceleration (Fig. 7B) for the ANC filter. Noise-
removed PPG waveform with the use of ANC filter is shown
in Fig. 7A and as expected the erroneous peaks are eliminated,
giving the total number of peaks as 17.

We then performed Bland-Altman analysis [38], which is a
general and effective statistical method for assessing the agree-

Fig. 8. PPG vs. ECG Bland-Altman evaluation (blue- before ANC, red-
after using ANC). (A) While sitting. (B) While walking. Heart-rate com-
puted by ANC filtered PPG conforms more closely to the true heart-rate.

ment between two clinical measurements to compare the heart
rate obtained by our PPG module to the true heart rate computed
using the high-resolution ECG signal. Fifteen-second trials were
used to calculate the HR using the peak-detection algorithm.
Fig. 8A shows the result of the Bland-Altman analysis while
the subjects were sitting. As we can see from the figure, most
of the trials are between the Mean ± 1.96SD agreement thresh-
old for both, with and without using ANC. Further, we see that
using ANC decreases the agreement threshold, making the two
signals adhere to more conformity. We see similar results for
the trials when subjects were walking (Fig. 8B) and again us-
ing ANC makes the HR measures from the two signals more
agreeable. Furthermore, for both cases, the trials from the two
signals were almost always in agreement, indicating that our ear-
lobe PPG module is capable of measuring heart rate with high
accuracy.

2) Eye Gaze Evaluation: The performance of the paired
eye-pupil monitoring and world-view cameras in measuring eye
gaze were evaluated using a structured visual task to measure
precision and accuracy during use. We measured the gaze accu-
racy and precision for subjects following calibration (an ideal
setting) and after head movements (a real-world use). In this
task, we asked the subjects to calibrate their eye gaze using nine
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Fig. 9. (A) Gaze accuracy (average angular offset between fixation
locations and corresponding targets) evaluation. (B) Gaze precision
(root-mean-square of the angular distance between successive sam-
ples during fixation) evaluation. For both metrics, this system performs
as well or better than such existing ones.

targets which appeared on a screen 2.5 feet away from them
(such that >90% of the camera’s field of view was composed of
the task-screen). For six subjects, we used a series of 20 unique
targets randomly distributed on the screen to account for the
majority of their field of view. Thus, this composed the accu-
racy and precision measurements just after calibration. We then
asked the participants to move their head naturally for 30 sec-
onds without removing the headset. This action was designed to
simulate the active head-movement scenarios when wearing the
headset because usually the gaze performance is not reported
after the subject has moved from his/her position. Similar to the
above task, we asked the subjects to again gaze at 20 different
points appearing on the screen to assess the gaze performance
after head movements. The above process was repeated three
times for each subject. Importantly, we did not use any chin rest
during or after calibration so that gaze performance is measured
with natural head and body movements.

The accuracy is measured as the average angular offset - dis-
tance in degrees of the visual angle - between fixation locations
and the corresponding fixation targets. Fig. 9A shows the gaze
accuracy obtained before and after head movements. The mean
gaze accuracy over all the trials was found to be 1.21 degrees
without and 1.63 degrees after head movements. The decrease
in gaze accuracy after head movements is expected because the
headset’s position is displaced albeit by a small value. For all
the subjects, the mean gaze accuracy was mostly less than 2 de-

grees and the mean performance drifts only 0.42 degree, which
is significantly less than 1–2 degree drift in commercially avail-
able eye-gaze systems [24]. The precision is measured as the
root-mean-square of the angular distance between successive
samples during a fixation. Fig. 9B shows the results of the an-
gular precision for all the subjects. The mean angular precision
was found to be 0.16 and 0.14 before and after head movements
respectively. As is clear from the figure, the degree of visual
angle is almost always within the range of ±0.15. Furthermore,
the precision has a mean shift post head movement of only
0.2, indicating a minimal angular distance shift comparable to
existing systems.

3) EEG Sensors Evaluation: For the evaluation of our
EEG sensors, the comparison was two-fold. First, we compared
our EEG sensor with the state-of-the-art dry EEG sensors by
Cognionics [23] to evaluate the signal correlation achieved us-
ing the two types of sensors. This also proves to be a test of
whether our EEG sensors are actually acquiring EEG as op-
posed to just electromagnetic noise, and if they are able to
shield themselves from ambient noise in the environment. Sec-
ond, we evaluated our sensors on a steady-state visually evoked
potentials (SSVEP) BCI task to evaluate their performance in
measuring various frequencies during standard use.

For the SSVEP testing, we used five of our EEG sensors
placed at T5, O1, Oz, O2, and T6 sites according to the standard
EEG 10–20 system. The location over and near the occipital
lobe was chosen to evaluate the performance of our sensors
because the SSVEPs in response to repetitive visual stimuli of
different frequencies are strongest over the occipital lobe. Ten
subjects participated in this experiment constituting three trials
of ten random numbers each to be typed using an SSVEP-based
keypad on a mobile tablet (Samsung Galaxy S2) with an EEG
sampling rate of 500 Hz. The frequencies of the 12 stimuli on
the keypad (BCI speller) varied between 9 11.75 Hz with incre-
ments of 0.25 Hz. This fine resolution in increment was chosen
to assess the capability of sensors in distinguishing between
minutely varying frequencies. The stimulus presentation time
was 4 seconds with an interval of 1 second of a blank screen
between two consecutive stimuli. We only used the middle 2
seconds of data from each trial for SSVEP analysis. To com-
pare the signal quality obtained from the two types of sensors,
we used Cognionics sleep headband to acquire EEG from one
Cognionics sensor at the temporal lobe and one of our sensors
next to it. The location was chosen so that hairs on the scalp are
present around the sensors.

Fig. 10A plots 4-second of EEG data acquired by the two
sensors where a high correlation between the two signals is evi-
dent and almost always they follow a pattern. Fig. 10B plots the
correlation of a subset of 12 of the total trials. The correlations
between the EEG signals acquired by the two different sensors
were very high (the mean correlation reached 0.901), indicating
that the dry EEG sensor developed in this study is capable of
measuring EEG signals from the hair-covered scalp areas.

As mentioned above, each subject needed to ‘type’ ten digits
in each of the three trials. We computed the SSVEP classification
performance (Fig. 11) using the filter-bank correlation analysis
[39], [40]. This method does not require any training and is
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Fig. 10. (A) A comparison of 4-second EEG signals acquired by the
proposed and Cognionics dry EEG sensors. (B) Correlation score be-
tween the EEG recorded from the two sensors. Recordings from both
the sensors show very high correlation.

Fig. 11. SSVEP accuracy plot for 0.25Hz increments in stimulus fre-
quencies. Even for small increments of 0.25 Hz we see high SSVEP
accuracy across subjects.

capable of working in real time. As mentioned above, we only
used the middle two seconds of EEG data during the 4-second
stimulus presentation for evaluation. For almost all the subjects,
the performance of SSVEP accuracy was very good (∼80% ac-
curacy). There were some expected variations because it is well
known that the signal-to-noise ratio of SSVEPs varies among
individuals. The mean performance across all the subjects was
74.23%.

B. Multi-modal Evaluation in “Real-World” Scenarios

We designed two experiments in which ten subjects partici-
pated to play two games. For the “Where is Waldo?” game, the
30th anniversary book of the series was used which contains
thirteen different scenes (trials) in which the target (“Waldo”)
has to be searched for. This experiment scenario was chosen be-
cause it allows for analyzing gaze-related fixations and patterns.
While searching for the target, many non-targets are present and
hence target vs. non-target event-related potential (ERP) can
also be assessed. The book was placed at a distance of about 20
inches from the subjects who were seated and equipped with the
sensor modalities mentioned above. The subjects were asked to

search for the target without any time constraints. The researcher
pressed a button before each trial and asked the subjects to start
searching for the target. The subject conveyed that s/he has found
the target verbally by saying “Found”. Between each trial, the
researcher flipped the page of the book to the next scene.

In the “Rock-Paper-Scissors” game, the researcher was seated
in front of the subject (see Fig. 3A). A sound beep every 17 sec-
onds signaled the start of a trial. For each subject, the game
was played for 50 trials. The first two seconds after the sound
beep were used to play the game whereas next fifteen seconds
the subject was asked to rest. The subject was instructed to
only play the game from his/her wrist and not twist the whole
arm to avoid any headset movement. During the game-play,
motivational phrases such as “Come on! You can still win.”,
“Watch out! I will now make a comeback”, etc. were utilized
to ensure continual subject motivation. After each trial, the re-
searcher marked the outcome (win/loss/draw) for the subject by
pressing a button. The choice of this game was made to analyze
the changes in human physiology, particularly EEG and cardiac
signals during the perception of winning/losing a game. These
changes might be closer to positive/negative valence in emo-
tional states but much more reliable since winning/losing are
independent of one’s likes and dislikes that influences his/her
emotions.

1) Gaze-fixation Pattern vs. Time Taken in Finding
the Target: Different subjects used different strategies while
searching for the target and hence we aim to study that which
strategy works best for this type of gaming paradigm by inves-
tigating the subjects’ eye-gaze fixations across the trials. We
plot (in ascending order) the average time taken by the sub-
jects to find the target across the thirteen trials for the first
visual-search experiment in Fig. 12A. Clearly, we can see three
distinct groups of subject strategies marked by different colors
based on the average time taken by them. These groups were
formed statistically taking 33rd and 66th percentile of the data
as boundaries. Such a wide distribution is understandable since
subjects use different strategies to find the visual target. Some
subjects start looking for the target in small portions of the whole
page while moving slowly towards previously unexplored parts
whereas others tend to randomly scan the available page with
longer distances between successive fixations.

To exclude the data associated with eye blinks (i.e. eye clo-
sures) we imposed a confidence threshold of 70% in our pupil
detection algorithm. Then, we used the Euclidean distance of
25 pixels as the maximum inter-sample distance and 500 mil-
liseconds as the minimum fixation duration to find all the fixa-
tions associated with the trials for all the subjects. We then com-
puted the median (more robust than mean since a single large
distance between successive fixations would skew the mean)
distance between successive fixations for the three groups of
subjects and plot it in Fig. 12B. The median distance between
successive fixations tends to increase in the same manner for
the three groups as the average time taken by them increases.
Fig. 12C shows an example of 30-seconds of gaze data of one
subject each from the three groups. As is clear from these fig-
ures, the subjects in Group 1 tend to search for the target in small
sections of the page whereas the subjects in Group 3 search for
the target randomly across the whole page. Because subjects in
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Fig. 12. (A) Average time taken by subjects across trials. (B) Median
distance between fixations for the three subject groups. (C) Example of
30-seconds of gaze fixation data from one subject in each group (red,
blue and yellow colors each represent 10-seconds of successive gaze
data while target is marked with a box in the background). Subjects who
traverse the page in small steps (as can be seen from the gaze fixation
locations) are able to find the target faster.

Group 1 were able to find the target in the least time (on average),
we believe that for “Where is Waldo?” game the best strategy is
to focus on small portions of the page rather than searching for
the target randomly across the whole page. It was impossible to
gauge this insight without the use of eye-gaze tracker in which
the subjects’ gaze can be overlaid on the image from the world
camera in addition to detecting the pupil’s location with another
camera.

2) Fixation-related Potentials (FRP) Analysis: EEG cor-
responding to fixations to the targets and non-targets while
searching for the target in the “Where is Waldo?” game should
represent distinct FRPs associated with the change in physiol-
ogy. To discover this relationship, for each trial, we band-pass-
filtered the EEG data within the trial between 1–30 Hz. We
take the mean of 200 ms of data before each fixation as the
baseline and subtract it from one-second of post-fixation EEG
data to remove the variations in amplitude. We then calculated
the FRP by averaging the data across the trials and subjects for
all fixations greater than or equal to one second. We expect to
see distinct FRPs for targets and non-targets. Fig. 13 plots the
averaged FRPs for Fz and Oz EEG channels. The FRPs show
distinct variations after the onset of the fixations at zero seconds;
the characteristic large peak at 200 ms i.e. VPP and the trough
between 200 and 400 ms i.e. N2 are consistent with the earlier

Fig. 13. FRP plot of two EEG channel locations. (A) Fz. (B) Oz. Target-
fixated gaze FRP has much clear response than false-fixated gaze FRP.

Fig. 14. Mean HRV variation across subjects arranged in ascending
order of number of trials won.

findings that VPP and N2 components are associated with the
face stimuli [41], [42]. Furthermore, a large P3 response almost
at the rightmost part of the plot is associated with decision mak-
ing and is clearly much larger for the target than the non-targets
[43]. This is understandable because while searching for the
target’s face, there are many non-targets with the similar face
and clothing as the true target. When the subject first fixated on
the true target, it takes time for him/her to assure it is indeed the
true target. The slightly smeared nature of the P3 response is
likely due to the fact that the latency of the P3 can vary across
trials and individuals and the FPRs are time-locked to the onset
of fixation, which is dependent on at what instant the fixation
is detected by the algorithm since the pupil is continuously in
motion. Our results show that combining eye-gaze and EEG
provides insight into the search patterns and their effects on the
EEG in a visual-search task. Another significant aspect of our
apparatus was to use the book in a naturalistic setup, which
allows unconstrained head/body movements rather than asking
the subjects search the face in front of a computer screen with
their head positioned on a chin-rest.

3) Variation Across HRV During Win/Loss: HRV can be
a reliable indicator of human emotions and mental states [8]
and we wanted to see the variation across the subjects for the
trials they won versus the ones they lost in the “Rock-Paper-
Scissors” game. We computed HRV using the pNN50 algorithm
[44] from 15-seconds of data for each trial. Fig. 14 shows the
variation in HRV for all the subjects arranged by the number
of trials won by them in ascending order. Based on the final
score where Loss/Draw/Win corresponded to −1/0/1 points,
subjects 4 and 5 lost the game, subject 8 tied the game and the
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TABLE II
MODALITY PERFORMANCE FOR MULTI-MODAL CLASSIFICATION

remaining subjects won the game from the researcher. Fig. 14
shows that for all the subjects except one (subject 2) there is an
unmistakable difference between the values of averaged HRV
for winning and for losing the trials, indicating that cardiac
measures such as HRV can be helpful in distinguishing between
physiological states corresponding to win vs. loss situations.
Additionally, we see that different subjects respond differently
to win/loss. For example, subjects 1, 5 and 10 show increase in
averaged HRV for the trials they won whereas others show a
decrease in HRV. This might mean that different subjects react
differently to the situation when they are winning or losing the
game i.e. some might be enjoying the experience of the game
whereas others might be under stress to come up with techniques
to win the game.

4) Using Machine Learning to Predict the Results of the
Gaming: The aims of this evaluation are twofold. First, we
are interested in studying how well the bio-sensing modali-
ties can predict i.e. classify the result of a game trial utilizing
changes in physiology for a new subject, and what are their
limitations in temporal frequency domain i.e. for how long the
data from a modality is required. Second, we want to see the
potential benefits of combining features from different modal-
ities in terms of accuracy and consistency. We used EEG and
PPG to predict the outcome of a trial through these bio-sensing
modalities. From the 500 total trials (50 each for 10 subjects),
there were 137/183/180 trials for loss/draw/win respectively.
We divided the result of each trial into two- (win/loss) and three
(win/draw/loss) classes. We computed conditional entropy fea-
tures [45] between each possible pairs of eight EEG electrodes.
Hence, 28 EEG features were computed which were reduced to
20 components using Principal Component Analysis [46]. These
features have been shown to work well for emotional valence
and arousal classification [8]. We tried with various durations
for the EEG data and found that 1-second of EEG data post-
trial gives the best performance results. For PPG, in addition to
the HRV features described above, we computed six statistical
features [47]. The resultant seven features computed from 15
seconds of the PPG data were used for training the classifier.
We performed leave-one-subject-out validation i.e. training data
from 9 subjects and testing it for the remaining subject. Hence,
since there are 50 game trials for each subject, 450 samples were
used for training and 50 samples were used for testing. We used
extreme learning machines (ELM) with a single hidden layer
for training the classification model [48].

Table II shows the results for 2-class and 3-class classifica-
tion performance for each subject and both the sensor modal-
ities. For all cases and subjects, we see that the classification
performance i.e. mean accuracy is well above the chance accu-
racy level. The maximum accuracy goes up to 62% for three
classes (loss/draw/win) and 87.88% for two classes (loss/win).
Interestingly, PPG works as well as EEG for three classes and
even better than EEG for two-class classification despite being
only a single-channel signal with fewer features. However, PPG
changes were slow (here 15 seconds of data being used) and thus
do not provide as good temporal resolution as EEG. Hence, if the
trials would have been spaced closer in time (say only 5 seconds
apart), it would not have been possible to classify the trial result
using PPG because of the inability to compute HRV and other
cardiac features in such a short time window. Whereas, EEG can
perform well on a shorter timescale but needs more channels.
When we used both modalities (by taking 15-seconds of EEG
data), we found that the performance is not that much affected
but the standard deviation significantly decreases. This means
that using multiple modalities can help in producing consistent
results across subjects because the fusion of features is able
to compensate for the limitations of a single modality. Hence,
using multiple modalities is good in both ways i.e. it gives the
advantage to choose the modality as per the temporal resolu-
tion requirement or multiple modalities can be used together for
more consistent performance across subjects.

V. CONCLUSION

Bio-sensing technology is advancing rapidly both as a
clinical research tool and applications in real-world settings.
The existing bio-sensing systems are numerous and capable
of measuring various physiological metrics in well-controlled
laboratories. But, they are not practical for routine use by
users in unconstrained real-world environments. Repeatedly,
it has been shown that using multiple bio-sensing modalities
improves performance and robustness of decoding brain states
and responses to cognitively meaningful real-life events. Hence,
developing a research-grade wearable multi-modal bio-sensing
system would allow us to study a wide range of previously
unexplored research problems in real-world settings similar to
the two gaming paradigms we presented in this research work.
Finally, this work presented a novel use of multiple bio-sensing
modalities on “real-world” data while exploring previously
unanswered questions in this area.
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