ARTIFICIAL INTELLIGENCE 357

A Parallel Network that Learns to
Play Backgammon

G. Tesauro*

Center for Complex Systems Research, University of lllinois
at Urbana-Champaign, 508 S. Sixth St., Champaign,

IL 61820, U.S. A.

T.J. Sejnowski** ~
Biophysics Department, The Johns Hopkins University,
Baltimore, MD 21218, U.S. A.

ABSTRACT

A class of connectionist networks is described that has learmed to play backgammon at an
intermediate-to-advanced level. The networks were trained by back-propagation learning on a large
set of sample positions evaluated by a human expert. In actual match play against humans and
conventional computer programs, the networks have demonstrated substantial ability to generalize on
the basis of expert knowledge of the game. This is possibly the most complex domain yet studied with
connectionist learning. New techniques were needed to overcome problems due to the scale and
complexity of the task. These include techniques for intelligent design of training set examples and
efficient coding schemes, and procedures for escaping from local minima. We suggest how these
techniques might be used in applications of network learning to general large-scale, difficuit
“real-world™ problem domains.

1. Introduction

There has been a tremendous resurgence of interest in computing with'
massively parallel fine-grain architectures, particularly with “connectionist” or
“neural” networks. This is to a large extent due to several recent learning
algorithins [2, 17, 22, 32, 38, 39] which have overcome some of the problems of
earlier architectures [29, 36, 46]. These learning algorithms have demonstrated
considerable success at general-purpose learning of small-scale computational
tasks, and there are several reasons to believe that they might prove useful for

* To whom reprint requests should be addressed. Present address: IBM Watson Labs., P.O. Box
704, Yorktown Hcights, NY 10598, U.S.A.
** Present address: The Salk Institute, P.O. Box 85800, San Diego, CA 92138, U.S.A.

Artificial Intelligence 39 (1989) 357-390
0004-3702/89/$3.50 © 1989, Elscvier Science Publishers B.V. (North-Holland)

358 G. TESAURO AND T.J. SEINOWSKI

certain classes of larger-scale problems that are encountered in the real W()r!(i.
Problem domains which are currently being studied include English pronuncia-
tion [41], speech recognition [7, 33], protein folding [31]', medical diz}gnosns
[23]. sonar target identification [13], and 3-D shape analysis of shaded images
[24]. .

Connectionist learning procedures show particular promise in dommn:s where
there are many graded features that collectively contribute to the soll.m(m of a
problem. In the connectionist approach, learning proceeds by making small
numerical adjustments to a large number of parameters ratl}cr lhn.n a few
discrete changes to the relationships between Boolean categories. ThIS. al_lo‘ws
efficient techniques from numerical analysis to be employt?d in optimizing
performance. In contrast, methods based on symbolic inductl‘vc inference are
more appropriate for domains where categories are well defined and knowl-
edge is highly structured [28]. '

A useful testing ground for studying issues of knowledge representation and
lcarning in networks can be found in the domain of game playing. Bnu!'d games
such as chess, po, backgammon, and Othello entail considerable sophistication
and complexity at the advanced level. Mastery of expert concepts and
strategies often takes years of intense study and practice.. Furthcrm_ore., a
myriad variety of skills is often called upon, including extensive merrmn.zz}tmn
of opening variations, intricate calculation of tactical exchangcs. intuitively
sensing the long-range potential of a current board conﬁgurzlll(?n', :|]1(I cven
assessing the psychological state of one’s opponent. The complexitics in lmu'rd
games, however, are cmbedded in relatively “clean™ structured tasks wn.h
well-defined rules of play, and well-defined criteria for success and failure. This
makes them amenable to automated play, and in fact most of these games
(particularly chess) have been extensively studied with conventional computer
science techniques [11, 25]. Thus, direct comparisons of the results of network
Icarning can be made with more conventional approaches.)

The choice of a particular game of study should depend on the particular
types of skills required for successful play. We make a distinction between two
fundamentally different kinds of skills. First, there is the ability to “look
ahead,” i.e., to work out the future consequences of a current state, cither by
cxhaustive tree search, or by more symbolic, deductive reasoning. Sccondly,
there is “judgmental™ ability to accurately estimate the valuc of a current
board state based on the patterns or features present, without cxplicitly
calculating the future outcome. The game of backgammon is unusual amongst
‘pames because the judgmental aspects predominate, in comparison with other
games like chess that often require look ahead to great depth. The principal
reason for this is the probabilistic element in backgammon: cach move depends
on a rtoll of the dice. There are 21 distinct dice rolls and around 20 possible
legal moves for each roll. Tree search algorithms would thus be inappropriate,
since the average branching factor at each ply of the search would be about

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 359

400. As a conscquence most backgammon programs and most humans do not
scarch more than one or two ply, but rather rely on pattern recognition and
judgmental skills.

In simple terms, backgammon is a one-dimensional race to the finish,
involving both skill and luck. Play proceeds by rolling the dice and moving
picces forward according to the dice roll. The full complexity of the game
cmerges in “cngaged” positions, i.e., positions in which it is necessary to cross
over some of thc opponent’s pieces in order to reach the finish. In such
positions it is possible to “hit” an opponent’s piece and send it back to the -
starting position, and to form a “blockade” which impedes the forward
progress of the opponent’s pieces. These possibilities lead the expert to
develop a number of advanced concepts and strategies of considerable com-
plexity. In contrast, in “racing,” or disengaged positions, hitting and blocking
are not possible, and the computation of correct moves is much simpler.
Additional complications are introduced through a “doubling cube” which a
player can usc to force his opponent to either resign or accept a doubling of the
stakes of the game. A glossary of backgammon terminology is provided in an
appendix. For a more detailed description of the rules, strategies, etc., we refer
the reader to [26].

Of particular interest to the present study is Hans Berliner’s backgammon
program BKG {1, 4-6], which has reached an advanced level of performance.
BKG uscs an cvaluation function containing a large number of hand-crafted
fcaturcs which were devised based on the knowledge of human experts. The
features measure quantities such as mobility and the probability of being hit.
The contribution of cach feature to the total evaluation is weighted by an
“application cocfficient™ which measures the degree of relevance of the feature
in the particular situation. These application coefficients vary smoothly as the
position is changed, and depend themselves on the hand-crafted features, so
the overall evaluation function is a nonlinear function of the features. BKG
provides an existence proof that a static evaluation function capturing much of
human expert knowledge can be produced. However, since machine learning
techniques did not contibute to the evolution of BKG, the question of whether
such a sophisticated evaluation function could be learned was not addressed.

Onc of the first demonstrations of machine learning in a games environment
was Samucl’s checkers program [40]. This program’s evaluation function was
simply a lincar combination of a set of hand-crafted features, with constant
cocfficients adjusted in learning. Learning was based on a comparison of the
cvaluation function for a particular position with the value of the expected
future position a certain number of moves ahead obtained by following the
most plausible line of play. If the expected future value was greater than the
current valuc, then the coefficients of the features contributing positively to the
cvaluation function were increased, and the coefficients of the negatively
contributing features were decreased. Conversely, if the expected future vatue

’ i

360 G. TESAURO AND T.J. SEINOWSKI

was less than the current value, the coefficients were changed in the opposite
fashion. In addition to gradual changes in the coefficients, abrupt changes
could also occur when one feature was replaced with another. One fundam.en-
tal limitation of this approach is that all of the features ~used in the evaluation
function came from a list drawn up by the human programmer; the more
difficult problem of discovering and defining new features was not‘addrcsscd in
this study. o)

Relatively little work has been done to explore leafmn.g in games since
Samuel’s pioneering efforts in checkers. A notable exception is t.he recent work
of Frey et al. on Othello [12, 30], which uses modern comptftatlonal resources
to study learning in very much the same spirit as in Sarquel s approach. O.nc.e
again, a linear evaluation function was constructed using f\‘set of heuristic
hand-crafted features. A large set of late middle game positions taken from
tournament play was used to fit the heuristic evaluation functmn to the exact
values obtained by exhaustively searching the tree of possthlc. moves from cach
position to the end of the game. While this is an effective Pruccd‘urc for
developing an accurate evaluation function, Frey expresses dlsuppmn(mcvft
that, more than two and a half decades after Samuel’s original work. there is
still no known procedure for automating the definition of features. o

We have used a connectionist approach to study learning of a SOphlSFlC.atf:d
backgammon evaluation function. Specifically, we have used a deterministic,
fced-forward network with an input layer, an output layer, and either onc or
two layers of hidden units. The algorithm used to train the nct'work is the
so-called ““back-propagation” algorithm {22, 32, 38, 39]. Our choice of hack-
pammon was motivated by the considerations of judgment versus look-ahcad
discussed previously. Connectionist networks are 'believed to be much better at
judgmental tasks than at tasks involving sequential reasoning, and t!lUS would
appear to be well-suited to the domain of backgammon: .Our fearning proce-
dure is a supervised one that requires a database of positions and moves }hat
have been evaluated by an expert “‘teacher.” In contrast, in an unsupervilsed
procedure {18, 40, 42}, learning would be based on _the consequences of a given
move (e.g., whether it led to a won or lost position, as in [3]),‘ and expl!mt
teacher instructions would not be required. However, unsupervised learning
procedures thus far have been much less efficient at reaching high levels of
performance than supervised learning procedures. In part, this advantz.lgc of
supervised learning can be traced to the higher quantity an(! (]l{illlty of
information available from the teacher. (Of course, when learning is based
solely on teacher instructions, then the student cannot surpass the t?n?‘h(‘l’,
cxcept perhaps in thoroughness and endurance. The best onc cnuk-l rCZl‘]S\IC:I“y
hope for is a network which plays as well as the teacher that trained it.)

Some of the issues that are explored in this study are important general
issues in connectionist learning, and have also been discussed by other fm(l_mrs
|16, 23, 27, 43]. Amongst the most important are scaling and gencralization.

A PARALLEL NETWORK THAT LEARNS BACKGAMMON . 361

Most of the problems that have been examined with connectionist learning
algorithms are relatively small-scale and it is not known how well they will
perform on much larger problems. Generalization is a key issue in learning to
play backgammon since it is estimated that there are 10?° possible board
positions, which is far in excess of the number of examples that can be
provided during training. In terms of both the ratio of training set size to total
sct size, and the predicate order of the computational task (more will be said
about this later), we believe that our study is the most severe test of
generalization in any connectionist nétwork to date.

We have also identified in this study a novel sct of special techniques for
training the network which were necessary to achieve good performance. A
training sct based on naturally occurring or random examples was not sufficient
to bring the network to an advanced level of performance. Intelligent database
design was nccessary. Performance also improved when noise was added to the
training procedure under some circumstances. Perhaps the most important
factor in the success of the network was the method of encoding the input
information. The best performance was achieved when the raw input informa-
tion was encoded in a conceptually significant way, and a certain number of
pre-computed features were added to the raw information. These lessons may
also be useful when connectionist learning algorithms are applied to other
difficult large-scale problems. :

2. Operational Paradigm

The first step in designing any connectionist system is to decide what input-
output function it is to compute. In general, it is not necessary for a single
network to handle all aspects of game play. A complete game-playing system
might use several networks, each specialized for a particular aspect of the
problem. In the present study, we have focused solely on move-making
decisions, and have not considered the problem of making doubling decisions.
Furthermore, we have only trained the network on engaged positions, since the
decisions for racing positions are much easier and can be handled very
effectively by a simple algorithm.

For many problems, such as text-to-speech conversion, the network inputs
and outputs can be identical to the inputs and outputs in the formal statement
of the computational task. In backgammon the formal input is a description of
a board position and roll, and the desired output is a move (or equivalently a
final board position). We would expect it to be extremely difficult to teach a
network this input-output function, primarily because an enormous amount of
cffort would have to be expended in teaching the network the constraint of
move legality. (This is due to two factors: the computation of legal moves, if
cxpressed as a Boolcan predicate, would be of very high order, and the
constraint of legality is severe, i.e. the output must be exactly legal, whereas
conncctionist nctworks tend to find only approximate solutions for hard

62 G. TESAURO AND T.1. SEINOWSKI

problems.) Additional problems would be expected in situations in which there
i« no clear best move. Competing moves of approximately equal value could
cause serious interference.

These problems can be surmounted by teaching the netwgrk to select moves,
rather than generate them. We envision our network operating in ta_ndcm with
a pre-processor which would take the board position and 'roll as input, and
produce all legal moves as output. The network would be trained to score each
move, and the system would choose the move with the highest network scorc.

There are two possible ways of training the network to score moves. Qne
would be to present each final board position to the network, and train .It‘ to
produce a numerical output corresponding to the absolute value of the position
(c.g.. the expected payoff at the end of the game). Th.e problem with this
approach is that the network is to be trained on the judgment of human
experts, and it is very difficult for human beings to assign absolute numbers for
the overall value of a given position. The other approach would be to present
hoth the initial and final positions to the network, and train it to produce a
relative “strength of move™ output. This approach would have greater sen-
sitivity in distinguishing between close alternatives, and corresponds more
closely to the way humans actually evalvate moves. For these reasons we have
chosen the latter operational paradigm. These competing alternatives are
summarized in Table 1.

3. Construction of the Training Set

We now discuss the construction of a training set conforming to the operational
paradigm discussed previously. Each line in the database contains a board
position, a roll, a suggested move, and a human expert’s judgmcnt (')f the
strength of that move. The expert judgment is expressed as an intcger in the
range [—100, +100], with +100 representing the best possible move and —100
representing the worst possible move.

Table t
A summary of three different types of operational paradigms
for backgammon. In each the input includes dice rol! infor-
mation. () The input is the initial board state, and the
desired output is a move, or equivalently a final board statc.
(b) The input is a final board state, and the desired output is
a score indicating the absolute value of that state. (c) Thc
input contains bath the initial and final board states, and the
. output is a score indicating the relative strength of the move.

Input Output

(a) Initial position Move
(b) Final position Absolute score
(c) Initial and final position Relative score

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 363

Example 3.1. Consider the following sample entry in the 3200-position training
sct. :

1-2, 6-(—5), 8-(—3), 12-5, 13-(—5), 17-3, 19-5, 24-(-2); W65
11-7,7-12=100

1=-7,12-17=0

11-7,17-22=0

/12-18.12-17 = 60

/12-18,17-22=0

/12-18,18-23=0

/17-22,17-23 = ~100

The first line contains integers describing the initial board position in the
format x-n, wherc x is the board location and n is the number of men at the
location (with positive n indicating White men and negative » indicating Black
men). Each of the 7 subsequent lines lists a legal move of the particular dice
roll (Whitc to play 6-5), followed by the score assigned by the human expert.
The human cxpert has said that the move 1-7,7-12 is the best possible move,
12-18,12-17 is a moderately strong alternative, and 17-23,17-22 is a horrible
blunder. The other legal moves have not been judged by the expert, so they
are assigned a score of zero.

In general. it is not feasible for a human expert to comment on all possible

" moves, so our approach is to record the expert’s comments on only the few

moves he considers relevant, and to leave the remaining moves unscored. (Our
database thus consists primarily of unscored lines of data. The handling of
these unscored lines in the training procedure will be discussed in Section 5.) In
addition, it is important to have examples of bad moves in the database, which
are not usually mentioned in expert commentary. The bad moves are necessary
because otherwise the network would tend to score all moves as good moves.
We have tricd to arrange our database so that for each group of moves
gencrated from a given position, there is at least one example of a bad move.

Our current database contains a total of 3202 board positions. All of these
positions involved some degree of engagement or contact between the forces,
and only a handful of positions involved bear-off situations. One of us (G.T.) is
a strong backgammon player, and played the role of human expert in entering
scores for the moves in each of these positions. Several different sources were
used for the positions in our training set. Approximately 1250 positions were
taken from various backgammon textbooks [8~10, 19, 20, 26]. The scores for
these moves tend to reflect the opinions of the respective authors, although
some effort was made to impose overall consistency on the resulting data.
About 1000 positions came from games in which G.T. played both sides. 500
positions were from games in which G.T. played against the network, and 300

04 G. TESAURO AND T.J. SEINOWSK1

positions came from games in which the network played against itsclf. In the
Intter two cases, the positions selected were positions in which the network was
judged to have handled the position incorrectly. Finally, a total of about I‘S(l
hand-crafted positions were included in an attempt to correct specific
categories of mistakes that the network had made previously.

As an example of the use of intelligently designed positions to correct
<pecific problems, we illustrate in Fig. 1 a position in which Whitc is to play
6-5. This is a late holding game position in which White is substantially
hehind. The correct move is 4-10,12-17, hitting the Black blot and sending it
back behind White’s blockade. The network does in fact give this move a score
of 0.95 on a scale from 0 to 1. The problem is that the network prefers the
alternative move 16-22,17-22, a move which does not hit, but which makes an
additional point in White’s inner board. This move is scored 0.98 by the
network. This problem demonstrates in a nutshell the basic strengths and
weaknesses of our supervised learning approach. The network appcears to have
learned to judge moves based on a weighted summation of visually appealing
{catures. Such analysis can be of considerable sophistication, but the nctwork
suffers from an inability to reason logically about the consequences of its

19 20 21 22 23 24

13 14 15 16 17 18

Fig. 1. A sample position taken from [26] illustrating a characteristic defect of the network whic.h

i« remedied by hand-crafted examples in the training set. White is to play 6-5. The correet move is

4-10,12-17. The network prefers 16-22,17-22. The graphic display was gencrated on a Sun
Microsystems workstation using the Gammontool program.

LT

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 365

actions, and to simultancously consider two competing moves. Humans have
little trouble with this position because we can foresee that White is not likely
to get another chance to hit, and can deduce that without hitting, the game will
evolve after several moves into a pure racing situation in which White has
virtually no chance to win. Therefore a hit is imperative, even if the resulting
position is somcewhat awkward or vulnerable. The network has no such
reasoning capability, and thus has trouble finding the right move. Humans are
also able to consider the hitting and nonhitting moves together, and to reject
the nonhitting move because of the availability of the hitting alternative. The
network, however, can only consider one move at a time, and thus does not
realize that 16-22,17-22, which would ordinarily be the correct move if no hit
were possible, is actually wrong here because of the hitting alternative.

It is also instructive to examine the steps needed to correct this particular
deficiency of the nctwork. If one simply includes a large negative score for
16-22,17-22 in the training set, one finds that the network refuses to learn this
judgment. There are so many other examples in the training set in which this
type of move has been scored extremely high that the network does not learn
to produce a low score in this particular instance. Instead, it is necessary to add
a set of about 20 hand-crafted examples of positions of this characteristic type
(i.e. late game holding positions in which there is a choice between hitting and
making a very good point in one’s inner board) to the training data. After this
number of cxamples, the network finally catches on to the general idea that

- hitting takes prccedence over filling the inner board in late holding game

situations.

In summary, we cmphasize the necessity of intelligently hand-crafting exam-
ple positions to include in the training set which illustrate particular points. It
would not be possible, we claim, for the network to obtain this information
simply from a training set consisting of a large number of randomly accumu-
lated, undesigned positions. This is because the particular situation in question
occurs extremely infrequently during the course of regular game play. In most
holding game positions, there is no hit available, so the correct move is to fill in
one’s inncr board while waiting. A small fraction of the time, a hit will be
possiblc, but the alternative filling move will not be particularly attractive. In
only an extremely smalt fraction of positions will there be a choice between a
hitting move and a very good filling move. Thus the network is not likely to
lcarn this particular principle from random positions alone.

4. Network Design

As stated previously, we use either a three-layer or four-layer network of
deterministic analog units. The networks are fully connected between adjacent
layers of units. (We have tried a number of experiments with restricted
receptive ficlds, and generally have not found them to be useful.) Since the
desired output of the network is a single real value, only one output unit is
required.

366 G. TESAURO AND T.J. SEINOWSKI

The coding of the input patterns is probably the most difficult and most
important design issue. We have experimented with a large number of coding
schemes, and expect our representation scheme to continue to cvolve as we
gain more experience with the network. In its current configuration the input
layer contains 459 input units. A location-based represcntation scheme is used,
in which a certain number of input units are assigned to cach of the 26
locations’ on the board. The information in the databasc is inverted if
necessary so that the network always sees a problem in which White is to play.

An example of the coding scheme used until very recently is shown in Fig. 2.
This is essentially a unary encoding of the number of men at each board
location, with the following exceptions: First of all, the units representing 5
men at a given location can take on multiple values to encode those rare cascs
when there are more than 5 men present. (Specifically, if x is thc number of
men and x =5, we set the value of the unit to x —4.) Sccondly, the unit
representing two men is set to 1 whenever two or more men arc present. (This
is becausc all of these cases share the common property of being a “point™ that
the opponent cannot land on.) Finally, the units representing the final position
are turned on only if there has been a change in the number of mcn at the
given location. This was implemented to give the network added sensitivity in

5 -4 3 <2 - | 223 425 | 01 223 425
() OODODOCO | ORODOD | 0DORROD0

1 23 45 | 67 8910 | 11213141516

5 -4 352 -l I 22 3 425 | O 1t w22t24 3 425
() DDOODO0D |DR0OO0O0 [00000NR0O0

i 2345 | 6789110 | nirRi31aII6I17I8

Fig. 2. Two schemes used to encode the raw position information in the nctwork’s input.
Iustrated in both cases is the encoding of two White men present before the move, and three
White men present after the move. (a) An essentially unary coding of the number of men at a
particular board location. Units 1-10 encode the initial position, units 11-16 cncode the final
position if there has been a change from the initial position. Units are turncd on in the cascs
indicated on top of each unit, e.g., unit 1 is turned on if 5 or more Black men are present initially,
_cte. (b) A superior coding scheme with more units used to characterize the type of transition from
initial to final position. An up arrow indicates an increase in the number of men. a down arrow
indicates a decrease. Units 11-15 have conceptual interpretations: H = “clearing.” 12 - “slotting,”
13 = “breaking,” 14 = “‘making,” 15 = “stripping” a point.

'There are 24 basic board locations, plus White bar and Black bar. We have not included an
explicit representation of the number of men taken off the board.

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 367

distinguishing between competing moves, arid has the further advantage of
reducing the number of input units required. If the final position is different
from the initial position, it must be either zero or positive, because the network
only sees cases in which White moves.

The representation scheme of Fig. 2(a) worked fairly well, but had one
peculiar problem in that, after training, the network tended to prefer piling
large numbers of men on certain points, in particular White’s 5 point (the 20
point in the 1-24 numbering scheme). Figure 3 illustrates an example of this
peculiar behavior. In this position White is to play 5-1. Most humans would
play 4-5,4-9 in this position; however, the network chose the move 4-9,19-
20. This is actually a bad move, because it reduces White’s chances of making
further points in his inner board. The fault lies not with the database used to
train the network, but rather with the representation scheme used. In Fig. 2(a),
notice that unit 13 is turned on whenever the final position is a point, and the
number of men is different from the initial position. For the 20 point in
particular, this unit will develop strong excitatory weights due to cases in which
the initial position is not a point (i.e., the move makes the point). The 20 point

12 11 10 9 8 7 6 5 4 3 2 1

13 14 15 16 17 18

19 20 21 22 23 24

Fig. 3. A samplc position illustrating a defect of the coding scheme of Fig. 2(a). White is to play
5~1. With the coding scheme of Fig. 2(a), the network prefers 4-9,19-20. With the coding scheme
of Fig. 2(b), the network prefers 4-9,4-5.

368 G. TESAURO AND T.J. SETNOWSKI

is such a valuable point to make that the excitation produced by turning unit 13
on might overwhelm the inhibition produced by the poor distribution of
builders.

In conceptual terms, humans would say that unit 13 participates in the
representation of two different concepts: the concept of making a point, and
the concept of changing the number of men occupying a made point. These
two concepts are unrelated, and there is no point in representing them with a
common input unit. A superior representation scheme in which these concepts
are separated is shown in Fig. 2(b): In this representation unit 14 is turned on
only for moves which make the point. Other moves which change the number
of men on an already-made point do not activate unit 14, and thus do not
receive any undeserved excitation. Similarly, units 12, 13 and 15 represent the
important concepts of “slotting,” “breaking,” and “stripping” a point. With
this representation scheme the network no longer tends to pilc large numbers
of men on certain points, and its overall performance is significantly better.

In addition to this representation of the raw board position, we also utilize a
number of input units to represent certain “pre-computcd™ fcatures of the raw
input. The principal goal of this study has been to investigatc nctwork Icarning,
rather than simply to obtain high performance, and thus we have resisted the
temptation of including sophisticated hand-crafted features in the input encod-
ing. However, we have found that a few simple features are needed in practice
to obtain minimal standards of competent play. With only “raw” board
information, the order of the desired computation (as defined by Minsky and
Papert [29]) is undoubtedly quite high, since the computation of relcvant
fcatures requires information to be integrated from over most of the board
area. (See e.g. the discussion below concerning blot exposure.) The number of
examples needed to learn such a difficult computation might bc intractably
large {14, 15, 21, 45]. By giving the network ‘“hints” in thc form of pre-
computed features, this reduces the order of the computation. and thus might
make more of the problem learnable in a tractable number of examples.

Our current coding scheme uses the following eight features: (1) pip count,
(2) degree of contact, (3) number of points occupied in the inner board, (4)
number of points occupied in the opponent’s inner board, (5) total number of
men in the opponent’s inner board, (6) the prescnce of a “prime”™ formation,
(7) blot exposure (the probability that a blot can be hit), and (8) strength of
blockade (the probability that a man trapped behind an cnemy blockade can
escape). Readers famifiar with the game will recognize that these arc all
conceptually simple features, which provide an elementary basis for describing,
board positions in a way that humans find relevant. However, the information
provided by the features is still far removed from the actual computation of
which move to make. Thus we are not ‘“‘cheating” by cxplicitly giving the
network information very close to the final answer in the input encoding. (We
might add that we do not know how to “cheat” even if we wanted to.) The first

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 369

six featurcs are trivial to calculate. The last two features, while conceptually
simple, requirc a somewhat intricate sequential calculation. The blot exposure
in particular, as described in the appendix, would be a very high-order Boolean
predicate (a predicate order of 30 or more would not be surprising), and we
suspect that the network might have trouble learning such computations. One
should also note that the final two features involve real-valued probabilities
between (/36 and 36/36; thus we use analog coding in both the input and
output layers.

An example of the importance of the pre-computed feature is presented in
Fig. 4. In this position, White is to play 3-2 after Black started the game with a
5-1 by moving out to White’s bar point. Without the blot exposure as a
pre-computed feature, the network tends to play 12-15,12-14. This would be
the correct move in the opening position, and undoubtedly the network’s
choice is duc to the close similarity (in terms of Hamming distance) between
this position and the opening position. In this position, 'however, the move is
incorrect. because the blots on 14 and 15 are exposed to direct shots of 3 and 4.
With the blot exposure explicitly calculated and presented to the network as a

12 1110 9 8 7 6 5 4 3 2 1

13 14 15 16 17 18 19 20 21 22 23 24

.l'"ig. 4. A sample position illustrating the utility of pre-computed features in the input layer. Whitc
is to play 3-2. A network without features prefers 12-15,12-14 as in the dpening. A network with
a blot exposure feature prefers 12-14,17-20.

370 G. TESAURO AND T.J. SEINOWSKI

pre-computed feature, the network then prefers the move 12—14,17—2({. 'I’his
move surprised and impressed us: not only is it the best move by far in this
situation, but we did not even think of it ourselves. There arc two rcasons w.hy
this is such a strong move: it gives excellent chances of making Whit.e‘s 5 po}nt
on the next turn, and it uses the principle of “duplication” to minimizc the risk
of a blot being hit. Note that the blot on 14 would be hit by a roll _“f 4, and the
blot on 20 would also be hit by a roll of 4. Thus the total probability of at lcast
one blot being hit is substantially smaller than other positions in which two
different numbers hit the blots. It is quite interesting that the network acts as if
it understands the principle of duplication; more likehly, it probably is just
trying to minimize the total blot exposure. (While not rigorously provable, this
notion is supported by the large negative weights of the total blot exposure
feature, and by the network’s overall style of play.)

5. Training Procedure

‘To train the network, we have used the standard “back-propagation™ learning
algorithm |22, 32, 38, 39] for modifying the connections in a mullihlycr
feed-forward network. Typical networks contained between 12 and 48 .hlddcn
units. Typical learning runs lasted for about 50 cycles through the trai'mng set,
taking approximately 100-200 hours of CPU time on a Sun 3/160 with FPA.
Following thc notation of [41], typical learning paramcter valucs- were as
follows: the momentum coefficient & was 0.9, the initial random wcight scalc
was 0.1, the margin was 0.01, and the learning rate & was 2.0 cxcept for
nctworks without hidden units, for which it was reduced to 0.5. As in the
standard back-propagation training procedure, we cycle repcatcdly through the
database, presenting the patterns in order and changing the w.cights aflcr cvery
fcw presentations. However, our procedure differs in that it contains a f(':w
sources of noise which are not ordinarily present. The primary sourcc of noisc
arises from the necessity of dealing with the large number of uncommented
moves in the database. One solution would be simply to avoid presenting these
moves to the network. However, this would limit the varicty of input pattcrns
presented to the nctwork in training, and certain types of inputs probably
would be eliminated completely. The alternative procedure which we have
adopted is to skip the uncommented moves most of the time (75% for ordinary
rolls and 92% for double rolls), and the remainder of the time present the
pattern to the network and generate a random tcacher signal with a slight
‘negative bias. This makes sense, because if a move has not reccived a cmnn’u:nl
by the human expert, it is more likely to be a bad move than a good move. 'I‘hc
random tecacher signal is chosen uniformly from the interval [65, +35]. I.hc
other source of noise is that we do not average over a fixed number of training
patterns before updating the weights. Instead, the dccision to update the
weights is made randomly after every input with a 25% probability.

A PARALLEL NETWORK THAT LEARNS BACKGAMMON : 37

The sources of noise used in our training procedure are expected to give the
network the benefit of experiencing a wider variety of input patterns during
training, and to provide a mechanism for escaping from local minima. The
potential disadvantage of this procedure is that the noise in the teacher signal
could misicad the network about the actual value of certain patterns. To some
extent, we cxpect this to be diminished by presenting the uncommented moves
much less frequently than the commented moves. However, if the tré‘ining
continucs for a very long time, the network might sce the uncommented moves
a sufficicnt number of times to draw false conclusions about their scores. We
will discuss these issues in more quantitative terms below.

6. Measures of Performance

There arc many different ways of assessing a network’s performance once it
has been traincd. We have used the following four measures: (i) performance
on the training data, (ii) performance on a set of test data which was not used
to train the nctwork, (iii) performance in actvual game play against a conven-
tional computer program (the program Gammontool of Sun Microsystcms
Inc., which is a competent intermediate-level program and the best commercial
program that we have seen), and (iv) performance in game play against a
human expert (G.T.). In the first two measures, we define the performance as
the fraction of positions in which the network picks the correct move, i.e..
those positions for which the move scored highest by the network agrees with
the choice of the human expert. This is expected to be a more useful measure
of performance than, for example, the fraction of patterns for which the
network score is within a specified margin of the teacher score. In the latter
two measures. the performance is defined simply as the fraction of games won:’
without considering the complications of counting gammons or backgammons.

The first measure gives very little indication of the network’s ability to
generalize, and we shall not discuss it in detail. The remaining three measures
each have their own merits. Performance against a human expert probably
provides the most accurate assessment of the network’s strength as a player, as
well as an opportunity for detailed qualitative description of the network's
play. However, this method is extremely time-consuming, and thus results for
only a small number of games can be achieved. The understanding which ariscs
through this method is primarily qualitative, and hence we postpone further
discussion to Scction 8. With automated game-playing against a conventional

"In the pames against Gammontool, the network evaluation was used until lhc_gam? became a
pure race, at which point the Gammontool evaluation function was used for both sides. For the
games against GUT. play proceeded until the point of cither race or bear-off, after which best
possible pliay (in the opinion of G.T.) was taken for both sides. These schema were necessary
because the network received very little training on bear-off, and no training at all on racing
situations.

372 G. TESAURO AND T.J. SEINOWSKI

program, more games can be played out, and accurate statistics can be
obtained for a single, static network. However, if we wish to observe‘th-c
performance over the entire time-course of a learning run, this method again is
too time-consuming. Performance on a test set is the fastest testing method,
but is not necessarily related to the network’s actual game-playing strength.

In the discussion that follows, we examine questions such as how the
network’s performance depends on the number of hidden units, the number of
hidden layers, the size of the training set, the noise in the training procedure,
and the use of various pre-coded features in the input patterns. Some of these
effects are discussed primarily in terms of performance on a test sct, others are
discussed in terms of performance versus Gammontool. In cach casc, the
choice is based on the available data, and on the magnitude of the observed
cffect. It is interesting that some effects are more noticeable in the test sct
measure, while others are more noticeable in terms of number of games won.
In each case, when results are presented only for one mcasurc, we state
qualitatively the results according to the other measure.

7. Quantitative Results

In Fig. 5, we present sample learning curves for a particular network as a
function of the number of cycles through the training data, as measured by two
indicators of performance: performance on the training data, and performance
on a set of test data not used in training. (The training set was thc 3202-
position set described in Section 3, while the test set containcd 1000 nonracing

08
0.7
06

05 (b)

Performance

04

PESEER WU NN TN SN AN TN NN N SN SR SN SR S |
03 24 36 48 60

Training Cycles

o
o

Fig. 5. Sample learning curves for a network trained on the 3200-position database with two layers

of 24 hidden units each plotted versus number of cycles of training. (a) Performance on the training

set (fraction of positions in which the network gives the highest score to the best mave). (b)
Performance on a test set (1000 positions) not used in training.

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 373

positions taken from games played by G.T. against Gammontool.) A number
of important gencral points are illustrated in this figure. First, the'learning of
the training data appears to increase constantly as long as the training
continues, with no sign of asymptoting. Secondly, performance on the test data
does not continue to improve with more and more training. Instead, a
maximum level of performance appears to be reached around 10-20 cycles
through the training set, after which the performance either remains constant,
or perhaps decreases slightly, with further training. This may be indicative of
“overtraining” the network. Finally, the learning curves are not smooth;
fluctuations are present. We expect that these fluctuations are due to our noisy
training procedure, and do not indicate any repeatable effects.

7.1. Dependence on number of hidden units

In Fig. 6, we plot performance on the 1000-position test set versis number of
cycles of training for networks with 0, 12, 24 and 48 hidden units in a single
layer. Again we note that the networks do not always continue to improve with
morc and morc training; for the networks with hidden units, a maximum
performance generally appears to be reached somewhere around 20 cycles
through the training set. The performance does generally increase as more
hidden units are added, although the difference between the networks with 12
and 24 hidden units is very small and in fact the 12-hidden unit network seems
to reach a slightly higher maximal performance. The most important point
regarding this figure, however, is that the overall scale of variation is quite

054

0.52

0.50

A RNLANLE e tae

Performance

048

0.46

ARamse

PR N O U N N R |

1 i t
12 24 36 48 60
Training Cycles

Q

Fig. 6. Learning curves illustrating performance on the test set version cycles of training for
networks with varying numbers of hidden units in a single layer, as indicated.

. 374 G. TESAURO AND T.J. SEINOWSKI

small. Adding more hidden units appears to give only a few percentage points
improvement in performance, according to this measure. Even for the network
without any hidden units, the performance is only about 5 percentage points
lower than the optimal performance of the 48-hidden unit network. Similar
results are found in terms of the percentage of games won against Gammon-
tool, except that the network without hidden units appears to do noticcably
worse according to this measure (about 8 to 10 percentage points worse than
the 48-hidden unit network).

7.2. Dependence on number of hidden layers

Figure 7 shows the performance on the test set versus cycles of training for
networks which have varying numbers of hidden layers. A fcw percentage
point improvement is seen going from no hidden layers to a single layer, and a
further smaller improvement is obtained with two hidden layers (which in this
casc have the samec number of hidden units in each layer). We mention in
passing, however, that a network with three layers of hidden units had lower
performance than the one with two hidden layers, and in fact was slightly lower
in performance than the network with a single hidden layer. Results in terms of
games won show a similar behavior, except that there is a greater difference
between the network without hidden units and the others, as described
previously.

0.54

0.52

L s et e et

0.50

Performance
Sy

048

oas|'

TS S0 NN RN T N TR SRNU JUUY TN M SN S S |
0 12 24 36 48 60

. Training Cycles

Fig. 7. Learning curves illustrating performance on the test sct versus cycles of training for

nctworks with varying numbers of layers of hidden units (24 units in cach laycr), as indicated.

Maximal performance is obtained with two hidden layers. Performance of a network with three
hidden layers falls slightly below the curve for a single fayer.

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 375

7.3. Dependence on training set size

Figiire 8 demonstrates the performance of three identical networks trained with
training scts of different sizes. The smaller training sets were obtained by
random sclection of positions from. the original training $et. We find that the
performance docs decrease when a smaller training set is used, although once

-again the overall size of the effect is quite small. {The effect is also small in

terms of game performance.) This provides evidence that simply adding more
examples to the training set will not produce substantial improvements in
performance if the choice of examples is not made intelligently. Instead, -
intelligent hand-crafting of particular examples to reinforce particular con-
ceptual points is required.

We also mention in passing that if one simply observes the amount of
training time nccded to memorize the training set to a certain level of
performance, onc finds that the training time scales roughly quadratically with
the size of the training sct. This exponent is substantially larger than the valuc
of 473 found for networks trained on 32-bit parity with a fixed training set [43].
which was thought to be an upper bound on the value of this scaling exponent.
The discrepancy might be due to the noise in the training procedure, or to the
unusual measure of performance for this particular application.

7.4. Other effects

We have also examined the effects of eliminating the noise in the training
procedure, and of changing the pre-computed features used in the input coding
scheme. Thesc effects are much larger than the effects discussed so far. The

Performance
- o

n

e}

Q
>
@

046

Training Cycles

Fig. & Learning curves illustrating performance on the test set vérsus cycles of training for
networks trained with different sized training sets (number of positions as indicated).

376 G. TESAURO AND T.J. SEINOWSKI

most dramatic effect is seen by removing entirely all the precomputed features
from the input coding, and using instead only “raw” information describing the
board position and move. This produces a dramatic decreasc of around 15- to
20 percentage points in the number of games won by the network against
Gammontool, although the performance on the test set is not affected so
significantly. Eliminating the noise also has a large effect: when the uncom-
mented moves in the training set are never seen by the network. the percen-
tage of games won against Gammontool falls by approximz|t(5|y 10 to 15
percentage points. (Removal of the random score noise and leaving the other
sources of randomness produces a less severe performance drop of only 7-8
percentage points.) Once again, the performance on the test set. does not drop
so much (this measure changes by only about 5 percentage points). .

A summary of these various effects as measured by performance against
Gammontool is presented in Table 2. The best network that we hm.fc pm‘duccd
so far appears to defeat Gammontool nearly 60% of the time. Using this as a
benchmark, we find that the most serious decrease in performance occurs by
removing all pre-computed features from the input coding. This p!-nduccs a
network which wins at most about 41% of the time. The next most important
effect is the removal of noise from the training procedure; this results in a
network which wins 45% of the time. Next in importance is the presence of
hidden units; a network without hidden units wins about 50% of the games
against Gammontool. In contrast, the other effects we have discussed, su_ch as
varying the exact number of hidden units, the number of layers, or the size of
the training set, results in only a few (1-3) percentage point decrcase in the
number of games won.

Table 2

Summary of performance statistics for various networks. (a) The best network we hm{c produced,
containing two layers of hidden units, with 24 units in each layer. (b) A network with (mlyl one
layer of 24 hidden units. (c) A network with 24 hidden units in a single layer, trained on a training
sct half the normal size. (d) A network with half the number of hidden units as in (b). (c) A
network with features from the Gammontool evaluation function substituted for the normal
features. (f) A network without hidden units. (g) A network trained with no noise in the training
procedure. (h) A network with only a raw board description as input.

Network Training Performance on Performance vs.
size cycles test set Gammontool Comments
(a) 459-24-24-1 20 0.540 0.59 £ 0.03
(b) 459-24-1 22 0.542 0.57+0.05
(c) 459-24-1 24 0.518 0.58 £0.05 1600-position database
(d) 459-12-1 10 0.538 0.54 £ 0.05
(c) 410-24-12-1 16 0.493 0.54 +0.03 Gammontool features
(f) 459-1 22 0.485 0.50 +0.03 No hidden units
(g) 459-24-12-1 10 0.499 0.450.03 No training noise
(h) 393-24-12-1 12 0.488 . 0.41+0.02 No features

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 377

Also included in Table 2 is the result of an interesting experiment in which
we temoved our usual set of pre-computed features and substituted instead the
individual terms of the Gammontool evaluation function. We found that the
resulting network, after being trained on our expert training set, was able to
defeat the Gammontoo! program by a small margin of 54 to 46 percent. The
purpose of this expcriment was to provide evidence of the usefulness of
nctwork lcarning as an adjunct to standard Al techniques for hand-crafting
cvaluation functions. Given a set of features to be used in an evaluation
function which have been designed, for example, by interviewing a human
expert, the problem remains as to how to “tune” these features, i.e., the
relative weightings to associate to each feature, and at an advanced level, the
context in which each feature is relevant. Little is known in general about how
to approach this problem, and often the human programmer must resort to
painstaking trial-and-crror tuning by hand. We claim that network learning is a
powcrful, gencral-purpose, automated method of approaching this problem,
and has the potential to produce a tuning which is superior to those produccd
by humans, given a databasc of sufficiently high quality, and a suitable scheme
for encoding the features. The result of our experiment provides evidence to
support this claim, although it is not firmly established since we do not have
highly accurate statistics, and we do not know how much human effort went
into the tuning of the Gammontool evaluation function. More conclusive
cvidehce would be provided if the experiment were repeated with a more
sophisticated program such as Berliner's BKG and similar results were ob-
tained.

8. Qualitative Results

Analysis of the weights produced by training a network is an exceedingly
difficult problem, which we have only been able to approach qualitatively. In
Fig. 9 we present a diagram showing the connection strengths in a network
with 651 input units and no hidden units. The figure shows the weights from
cach input unit to the output unit. (For purposes of illustration, we have shown
a coding scheme with more units than normal to explicitly represent the
transition from initial to final position.) Since the weights go directly to thc
output, the corresponding input units, can be clearly interpreted as having
cither an overall excitatory or inhibitory effect on the score produced by the
network.)

A great deal of columnar structure is apparent in Fig. 9. This indicates that
the network has Icarned that a particular number of men at a given location, or
a particular type of transition at a given location, is either good or bad
independent of the exact location on the board where it occurs. For example,
column L encodes transitions which make points. The large white squares
appearing in this column indicate that the network has discovered the general

378 G. TESAURO AND T.I. SEINOWSKI

features {

{ Al Mummnmzzzmuumm A
roll ; X

f

e

W |

bar
24 [l
23 ‘ | | l P

A B H!!“
22 [l i‘L iy) m!mll

i
i
1,
i
l]mmﬂi e mnu| il
[i ‘ ,,,,,,,, "u

18 ‘ ‘;‘ i gV Ll M
17 il il I il et
16 i AR ity ol

* !W, i

o b

13 ;“3' i e i | e
i “m
TR il i i I
10 i 4‘. W i il e | fith |
h i | I
ik

It}
i I

L
H Mu o

I

!

Wit

e

| u::'l il

HENWSs O~

i o eNPHMIMIEIFY
ABCDEFGHIJKLMNOPQRSTUVW

Fig. 9. A Hinton diagram for a network with 651 input units and no hidden units. Small squarcs
indicate weights from a particular input unit to the output unit. Whitc squares indicate positive
weights, and black squares indicate negative weights. Size of square indicates magnitude of weight.
First 24 rows from bottom up indicate raw board information. Letting x be the number of men
before the move and y the number of men after the move, the interpretations of columns are as
follows: A x<-5:B:x=—-4;C:x=-3;D:x<-2;E:x=—~-LFa=01LGy 2; 1l y=3 1t
x=4:1:x=5Kx<t&y=1Lx<2&y=22;M:x<3&y=3 Ny 4&y 4 Ox-iy&
yE5P=1&y=00:x=22&y=0;R:x=22&y=1S: 073 &y=21T:v -4 &y -3
x=5 & y=4: V: x>y & y=5; W: probability of a Whitc blot at this location being hit
(pre-computed feature). The next row encodes the number of men on Whitc and Black bars. The
next 3 rows encode roll information. Remaining rows encode various pre-computed features.

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 379

utility of making points. Similarly, column R encodes transitions which break
points. and the network has found that this is generally a bad idea. Columns
M, N and O represent “piling” transitions which increase the number of men
on existing points, and the network has learned that this is bad for points in the
opponent’s inner board, and for advanced points in the network’s inner board.
Columns S and T encode “unpiling” transitions, and the network gives high
scorcs to moves which unpile the points held in the opponent’s inner board.
Finally, column W represcnts the pre-computed feature of blot exposure. The
network has clearly learned the general principle that moves which leave blots
exposed are bad moves.

The upper part of Fig. 9 contains the encoding of the bar and dice roll
information, as well as the rest of the pre-computed features. We can also
make some observations on which of these input units the network finds
significant. The most important features seem to be the number of points held
in the network’s inner board, and the total blot exposure.

Much insight into the basis for the network judgment of various moves has
been gained by actually playing games against it. In fact, one of the most
revealing tests of what the network has and has not learned came from a
20-game match played by the G.T. against one of the latest generation of
networks with 48 hidden units. (A detailed description of the match is given in
[44].) The surprising result of this match was that the network actually won, 11
gamcs to 9. However, a detailed analysis of the moves played by the network
during the match indicates that the network was extremely lucky to have won
so many games, and could not reasonably be expected to continue to do so well
over a large numiber of games. Out of the 20 games played, there Were 11 in
which the network did not make any serious mistakes. The network won 6 out
of these 11 games, a result which is quite reasonable. However, in 9 of the 20
games, the network made one or more serious (i.e. potentially fatal) “blun-
ders.” The scriousness of these mistakes would be equivalent to dropping a
picce in chess. Such a mistake is nearly always fatal in chess against a good
opponent: however in backgammon there are still chances due to the element
of luck involved. In the 9 games in which the network blundered, it did manage
to survive and win 5 of the games due to the element of luck. (We are
assuming that the mistakes made by the human, if any, were only minor
mistakes.) It is highly unlikely that this sort of result would be repeated. A
much more likely result would be that the network would win only one or two
of the games in which it made a serious error. This would put the network’s
cxpected performance against expert or near-expert humans at about the
35-40% level. (This has also been confirmed in play against other networks.)

As for the specific kinds of mistakes made by the network, we find that they
are not at all random, senseless mistakes, but instead fall into clear, well-
delined conceptual categories, and furthermore, one can understand the

380 G. TESAURO AND T.J. SEINOWSKI

reasons why these categories of mistakes are made. The most frequent kinds of
major mistakes made by the network are: (i) mistakes made while bc,taring .off
against opposition, or opposing the opponent’s bear-off, (ii) mistakcs involving
the play of outfield blots (for example, failing to move them to safcty past the
opponent’s midpoint), (iii) failing to escape from the opponcnt’s blockade
while the opponent is closed out or trapped behind a prime, (iv) clcaring or
breaking its 6 point in totally inappropriate situations, and (v) inappropriate
attempts to blitz, and failure to blitz in some situations where it is called for. In
each case, we believe we understand why the network behaves as it does. In
the case of problem (i), this undoubtedly occurs simply because we have not
made a systematic effort to include these kinds of positions in the databasc.
For problem (ii), the network has much less experience with outficld play in
general, because the outfield locations are occupied much less frequently than
the infield locations. For problem (iii), the network has been shown in many
other situations that it should not escape the blockade, cither because it is
behind and needs to wait for a hit, or it is too dangerous to escape. or simply
that therc is no legal move which escapes the blockade. What the network
must learn is the proper context in which blockade escapes should be made.
For problem (iv), the network again has been told many times that it is often a
good idea to break or clear the 6 point, and once again it is a matter of learning
the right context. For problem (v), the failure to carry out a blitz where it is
called for secems to be due to the existence of some other alternative, such as
making a side prime, which is ordinarily quite valuable, but not as valuable as
the blitz attack. Inappropriate attempts to blitz probably result once again from
a failure to discern the context in which a blitz attack is desirable. In cach casc,
we are confident that these particular problems could be remedicd by including
a large number (i.e. on the order of a few dozen) examples of positions of each
characteristic type in the data base used to train the network.

Of course, it is also worth mentioning the kinds of situations that the
network handles correctly. We find that the network does act as if it has picked
up many of the global concepts and strategies of advanced play. The nctwork
appears to have learned the general principles of a running game strategy. and
it usually implements this strategy quite effectively. The nctwork also plays a
holding game strategy reasonably well (in part thanks to the hand-crafted
cxamples discussed in Section 3 teaching it the value of hitting), although it has
trouble in filling in its inner board while waiting in a technically precise fashion.
The network has learned the general usefulness of making a prime formation,
although it apparently has not learned many of the long-tcrm conscquences of
such a formation. Also the elements of a blitz attack have been learned quite
well, and in the appropriate circumstances the network is capable of blitzing
very effectively. The back game strategy is probably the most difficult game
strategy to learn, for humans as well as for the network. Prcvious gencrations
of the network were not able to capturé any of the ideas of how and when to

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 381

play a back game, or to defend against a back game. The current networks,
whilc. they usually do not pick the exact best move, seem to have at least
caught on to some of the general operating principles in these situations. For
example, in about half the situations in which the network has an oppurtunity
to hit, it will choose not to do so, indicating that it recognizes this ingredient of
a back game strategy. As such, this probably puts the network well beyond the
capabilitics of ncarly all conventional programs, which usually have no idea at
all how to play a back game, and in fact make precisely the wrong move nearly
all the time.

In addition to elements of global strategies of play, the network has also
learned many important tactical elements of play at the advanced level. The
network has lcarned the value of slotting, particularly on its 5 point, although it
does not know perfectly when slotting is and is not appropriate. The battle for
the 5 points which often occurs early in expert games has been learned very
well by the network, and it can execute this tactic nearly as well as humans.
The network appears to understand the “action play,” a type of move which
involves increasing board coverage when the opponent has only one man back,
although it docs not understand very well the notion of coverage in general.
Other tactics such as duplication of blot exposure, and hitting and splitting,
have also been learned by the network.

To summarize, qualitative analysis of the network’s play indicates that it has
lcarned many important strategies and tactics of advanced backgammon. This
gives the network very good overall performance in typical positions. How-
cver, the nctwork’s worst case performance leaves a great deal to be desired.
The network is capable of making both serious, obvious “blunders,” as well
morc subtle mistakes, in many different types of positions. Worst case perfor-
mance is important, because the network must make long sequences of moves
throughout the course of a game without any serious mistakes in order to have
a reasonable chance of winning against a skilled opponent. the prospects for
improving the network's worst case performance appear to be mixed. It seems
quite likely that many of the current “blunders” can be fixed with a reasonable
numbcer of hand-crafted examples added to the training set. However, many of
the subtle mistakes arc due to a lack of very sophisticated knowledge. such as
the notion of timing. It is difficult to imagine that this kind of knowledge could
be imparted to the network in only a few examples. Probably what is required
is cither an intractably large number of examples, or a major overhaul in either
the pre-computced features or the training paradigm.

9. Discussion

We have scen from both quantitative and qualitative measures that the
network has learned a great deal about the general principles of backgammon
play, and has not simply memorized the individual positions in the training set.

382 G. TESAURO AND T.J. SEJNOWSKI

Quantitatively, the measure of game performance provides a clcar indication of
the network’s ability to generalize, because apart from the first couple of
moves at the start of each game, the network must operatc cntirely on
generalization. Qualitatively, one can see after playing several games against
the nctwork that there are certain characteristic kirds of positions in which it
does well, and other kinds of positions in which it systematically makes
well-defined types of mistakes. The most concise summary of the nctw‘nrk’s
style of play, in our opinion, is that it seems to make the “intuitivcly obvious™
play, from the human expert’s point of view. In other words, much of the
knowledge learned by the network has the character of what a human would
call common sense. As a result, the network is capable of doing certain things
which are extremely difficult to obtain from conventional programs. .

A good example of this is provided in Fig. 10, which illustrates a position
from the match between Berliner's BKG program and the human world
backgammon champion. In this position White can either play 20-24.21-23,
Icaving a blot on the 20 point, or 16-20,16-18, leaving a blot on the IR point,
The first play has a slightly lower immediate risk of being hit (11736 versus

12 1110 9 8 7 6 5 4 3 2 1

13 14 15 16 17 18 19 20 21 22 23 24

ig. 10. A sample position from [4] involving considerations of long-term versus short-term risk.
White to play 4-2. The correct move is 16-18,16-20. Conventional computer programs typically
pick 20-24.21-23. The network selects the right move by a clear margin.

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 383

13/36), but since the two men remain on the 16 point, there is still a long-term
risk of cventually having to leave another man open. The second play is
correct, because it does away with the long-term risk entirely. To make this
type of play with a conventional evaluation function, it is necessary to devise a
sct of fcatures which compute both the short-term and long-term risks, and
which recognize the characteristic kinds of situations in which these computa-
tions arc relevant. This goes well beyond the sophistication of commercial
programs, which usually make the wrong play here. (Berliner’s program did
make the correct play, because its evaluation function does have the required
sophistication.) On the other hand, the network has no trouble finding the right
move, despite the fact that it is explicitly given the short-term risk as a
pre-computed feature, but is not toid about the long-term risk. ’

How is the network able to achieve this? We suggest that what the network
lcarns from the many examples in the data base are the expert's general
tendencics to make certain kinds of moves in various kinds of situations. The
cxpert would describe - these tendencies as being intuitively appealing or
obvious, and in this particular case, the intuitively obvious move happens to be
the correct one. Berliner himself says “This play is certainly the correct one,
which any expert should make without thinking (emphasis added), but it is not
the kind of thing computer programs are supposed to be able to dp.” [4] From
our expericnce with the network, it is usually the case that, if a human expert
can scleet the right move without thinking, then the network will also be able to
find the right move.

Or coursc. this is not to say that the network has fully captured the expert's
intuition. or that its level of play approaches expert level. Due to the network’s
frcquent “blunders,” its overall level of play is only intermediate level,
although it probably is somewhat better than the average intermediate-level
player. Against the intermediate-level program Gammontool, our best network
wins almost 60% of thc games. However, against a human expert the network
would only win about 35-40% of the time.

The network’s level of play is all the more impressive when one considers
that our simple supervised learning approach leaves out some very important
sources of information which are readily available to humans. The network is
never told that the underlying topological structure of its input space really
corresponds to a one-dimensional spatial structure; all it knows is that the
inputs form a 459-dimensional hypercube. (The notions of spatial relationships
between dilferent board locations, e.g. the notion of “coverage,” would be
particularty uscful to the network.) It has no idea of the object of the gamc,
nor of the sense of temporal causality, i.e. the notion that its actions have
conscquences, and how those consequences lead to the achievement of the
objective. The teacher signal only says whether a given move is good or bad,
without giving any indication as to what the teacher’s reasons are for making
such a judgment. Finally, the network is only capable of scoring single moves

384 G. TESAURO AND T.J. SEINOWSKI

in isolation, without any idea of what other moves are available. Thesc sources
of knowledge are essential to the ability of humans to play backgammon well,
and it seems likely that some way of incorporating them into the network
learning paradigm will be necessary in order to achieve further substantial
improvements in performance. :

There are a number of ways in which these additional sourccs of knowledge
might be incorporated, and we shall be exploring some of them in futurc work.
For example, knowledge of the underlying 1-D spatial structure could be
imparted by propagating a fraction of a given weight change to spatially
neighboring weights; this would tend to enforce a kind of approximate
translation invariance. Knowledge of alternative moves could be introduced by
defining a more sophisticated error signal which takes into account not only the
network and teacher scores for the current move, but also the nctwork and
teacher scores for other moves from the same position. However, the more
immediate plans involve a continuation of the existing stratcgics of hand-
crafting examples and coding scheme modifications to eliminatc the most
serious errors in the network’s play. If these errors can be climinated. and we
are confident that this can be achieved, then the network would become
substantially better than any commercially available program, and would be a
serious challenge for human experts. We would expect 65% performance
against Gammontool, and 45% performance against human experts.

Some of the results of our study have implications beyond backgammon to
more general classes of difficult problems. It has seemed possible to some
researchers that connectionist learning procedures would make it possible to
cffortlessly construct intelligent artificial systems. According to this vicw, a
simple coding scheme for the inputs and outputs, and a random databasc of
sample input—output pairs, would suffice to produce a network capable of
producing correct outputs in general for all inputs. However. our work
indicates that this is not likely to hold for general problems for two important
recasons. First, some coding schemes are better than others, because certain
aspects of a coding scheme may lead it to produce false generalizations which
might only be corrected with an excessive number of training pattcrns. A great
deal of effort must be spent in developing appropriate schemes for encoding
the input—output information. This must be done largely on a trial and crror
basis. given the general absence of theoretical principles for choosing good
coding schemes. (Our suggestion of using “conceptually significant’ coding
schemes, i.e.., choosing the individual bits of the coding scheme to correspond
to concepts that humans actually use in the domain, may turn out to be an
important exception.) Secondly, randomly chosen training pattcrns might not
work, because certain conceptual principles of the given domain might be
over-represented in the sample, and other conceptual principles might bc
under-represented. In the worst case, it will be necessary to intelligently design
the training set, using an intelligent mechanism for reducing the number of

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 385

over-represented situations, and an intelligent mechanism for designing addi-
tional patterns to illustrate the under-represented situations. Again a substan-
tial amount of human labor is required to carry this out. A flow chart summary
of this process is illustrated in Fig. 11.

An additional problem which might occur is that even with a good coding
scheme and a good training set, the minimal training time and training set size
would scale exponentially with the order of computation being trained [14, 15,
21, 45], and thus high-order computations would effectively be unlearnable.
This motivates the search for novel learning algorithms and procedures which

INTELLIGENTLY NATURALLY
DESIGNED OCCURRING ARCHITECTURE
[EXAMPLES EXAMPLES

N\ _JTELLIGENT
f SELECTION

UNIv INTELLIGENTLY
l PROPERTIES DESIGNED je— —
ETC. 1/0 CODING _I
EXPERT
| JUDGEMENT I
I I-»0 |
' TRAINING NETWORK TRAINING l
| SET DESIGN PROCEDURE I
" | ' i
| o |
TRAIN
| NETWORK |
I NATURALLY l
} OCCURRING TEST EXPERT |
EXAMBLES PERFORMANCE JUDGEMENT
e _fcottEcr]_. ___]
‘ —“ ERRORS I -
Fig. 11. Flow chart indicating general process of developing an artificial intelligent system using

connectionist fearning. The three main components of network development are: construction of
the training sct. network design, and choice of training procedure. After training, one can test the
network’s performance. and accumufate errors which can be used to improve performance. In
general, the process cannot be fully automated. Intelligent design of the training examples is
necessary. bath to reduce representation of common positions, and to hand-craft examples
illustrating rarc_but important positions. Also intelligent design of the coding scheme using
domain-specific knowledge is necessary. Ideas for training examples and coding schemes come

from observing the kinds of errors made by the network after training. .

386 G. TESAURO AND T.J. SEINOWSKI

would scale only polynomially with the order of computation. Such algorithms
would clearly be unable to learn completely arbitrary Boolean functions, but
the kinds of functions one encounters in typical real-world problcms are far
from arbitrary, and it might be possible to include enough additional informa-
tion about the structure of the problem so that it could be learned with a
tractable number of examples.

On the positive side, we foresee a potential for using these networks as a
novel type of expert system. In typical commercial applications, the cxpert
system serves as an automated assistant, which handles most of the routine
inputs normally analyzed by a human expert. Occasionally there will be an
input which is too difficult for the system to handie. In that case, the system
should be able to recognize the difficulty and notify the human expert that
human attention is required. It might be possible to implement a similar
feature in connectionist expert systems. For our particular application, a simple
way to do this would be to send the “difficulty” signal in thc cvent that the
nctwork is not able to find a clear best move, i.e., the difference in scorc
between the network’s chosen move and the competing alternatives is quitc
close. A more intriguing possibility is to define an additional tcacher signal for
an additional output unit as follows: for each position in the training set, if the
network finds the right move (i.e. if the move it scores the highest was scored
+100 by the human expert), then the teacher signal is 1, else 0. Assuming that
the network is able to learn this input—output function reasonably well, the
sccond output bit would serve as a sort of ““confidence indicator™ indicating to
what extent the network thinks it is capable of finding the right movc in a given
position.

We also foresee a potential for combining connectionist learning techniques
with conventional Al techniques for hand-crafting knowledge to make signifi-
cant progress in the development of intelligent systems. From the practical
point of view, network learning can be viewed as an “enhancer” of traditionat
techniques, which might produce systems with superior performance. For this
particular application, the obvious way to combine the two approaches is in the
use of pre-computed features in the input encoding. Any sct of hand-crafted
features used in a conventional evaluation function could be encoded as
discrete or continuous activity levels of input units which represent the current
board state along with the units representing the raw information. Given a
suitable encoding scheme for these features, and a training sct of sufficient size
and quality (i.e., the scores in the training set should be better than those of
the original evaluation function), it seems possible that the resulting network
could outperform the original evaluation function, as evidenced by our experi-
ment with the Gammontool features.

Finally, network learning might also hold promise as a means of achicving
the long-sought goal of automated feature discovery, as evidenced by recent
applications in signal processing [13] as well as symbolic information processing

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 387

{39]. Our network certainly appears to have learned a great deal of knowledge
from the training set which goes far beyond the amount of knowledge that was
explicitly encoded in the input features. Some of this knowledge (primarily the
lowest-level components) is apparent from the weight diagram when there are
no hidden units (Fig. 9). However, much of the network’s knowledge remains
inaccessible. What is needed now is a means of disentangling the novel features
discovered by the network from either the patterns of activity in the hidden
units, or from the massive number of connection strengths which characterize
the network. This is one of our top priorities for future research, although
techniques for such “‘reverse engineering” of parallel networks are only
beginning to be developed {34, 35, 41].

Appendix A. Glossary of Backgammon Terms

— Action play. A tactic involving splitting the back men in an attempt to
gain additional chances to hit the opponent. This usually occurs after one or
both of the opponent’s back men has escaped from behind one’s biockade.

- Back game. An cxtreme version of the holding game strategy in which two
or morc points are occupied in the opponent’s inner board. This is probably
the most difficult strategy to learn. In this situation, many of the|normal
strategies of play are exactly reversed. For example, one often passes up
chances to hit the opponent so as not to impede his forward progress.

— Backgammon. Similar to gammon except that there is a further require-
ment that the opponent has one or more men in the opponent’s inner board.

" The number of points won is triple the normal value.

— Bar. The strip in the middle of the board where blots are placed after they
are hit. From here, men must re-enter in the opponent’s inner board, so men
on the bar arc cffectively all the way back at the start in terms of the race to
the finish. All men must be moved off the bar before other men can be moved.
If a man on the bar cannot be moved, the player loses his turn.

— Bear-off. The final stage of the game, in which one moves one’s pieces off
the board. This can only take place when all men are in one’s inner board.

~ Blitz game. A stratcgy consisting of an all-out attack attempting to close
out the opponcent (i.c. trap men on the bar behind a completely closed inner
board, so that no movement is possible) and win a gammon. In this strategy,
greater than normal risks are taken. For example, one often hits the opponent
and lcaves a man in the inner board exposed to a return hit.

— Blockade. A configuration of several nearby points which restricts partial-
ly or completely the opponent’s ability to move any pieces located behind the
blockade.

= Blot. A single man at a particular location. An opponent piece can land
on this location. When this happens, the blot is said to have been “hit” and is
moved to the bar.

- Blot exposure. For a given blot, the number of rolls out of 36 which would

388 G. TESAURO AND T.J. SEINOWSKI

allow the opponent to hit the blot. The total blot exposure is the number of
rolls out of 36 which would allow the opponent to hit any blot. Blot exposurc
depends on: (a) the locations of all enemy men in front of the blot; (b) the num-
ber and location of blocking points between the blot and the enemy men; and
(c) the number of enemy men on the bar, and the rolls which allow them to
re-enter the board, since men on the bar must re-enter before blots can be hit.

— Breaking. A move in which you initially have two or morc men at a
location, and end up with only one man present.

— Builder. Usually refers to the extra men on a point which can be moved to
make new points without breaking the existing one.

— Clearing. A move in which you initially have two or more men at a given
location, and end up with no men present.

— Contact. A situation in which the opposing forces are engaged, i.e., each
side has to move past a certain humber of the opponent’s pieces in order to
reach the finish. Hitting and blocking are possible in such situations.

— Gammon. When one <ide removes all pieces from the board before the
opponent has removed a su . piece, this is called winning a gammon. The
number of points won is double the regular value.

— Holding game. A strategy in which two or more men are deliberately left
on a point far back waiting for a chance to hit the opponent.

~ Inner board. Locations 1-6 constitute Black’s inner board, while locations
19-24 constitute White’s inner board.

— Outer board. Locations 7—-12 constitute Black’s outer board, while loca-
tions 13-18 constitute White’s outer board.

~ Qutfield. A term referring the entire outer board region (locations 7-18).

— Piling. Placing too many men (usually four or more) on a singlc point.

— Point. When one side has two or more men on a particular board location,
this is referred to as having established, or “made” that point. Opponent
pieces then cannot land on this location.

— Priming game. A strategy which involves trapping the opponent behind a
prime, i.e., a blockade consisting of six consecutive points. Such a blockade is
impossible to escape.

~ Race. A situation in which no contact is present.

— Running game. A strategy which consists primarily of attcmpting to escape
the opponent’s blockade and move one’s men safely home, while at the same
time hitting the opponent and trapping him behind one’s own blockade.

— Slotting. An expert tactic of deliberately leaving a blot cxposed to a direct
hit, in the hopes of covering it and making a point on the ncxt run.

— Stripping. A move which removes all builders from a point and lcaves only
two men there. Any further moves from this point will break it.

ACKNOWLEDGMENT

This work was inspired by a conference on “Evolution, Games and Learning™ held at Los Alamos
National Laboratory, May 20-24, 1985. We thank Hans Berliner for providing some of the

ol

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 389

positions uscd in the database, Sun Microsystems Inc. for providing the source code for their
Gammontool program, Subutai Ahmad for writing the weight display graphics package, Bill
Bogstad for assistance in programming the back-propagation simulator, and Bartlett Mel, Peter
Frey and Scott Kirkpatrick for critical reviews of the manuscript. G.T. was supported in part by the
National Center for Supercomputing Applications. T.J.S. was supported by a NSF Presidential
Young Investigator Award, and by grants from the Seaver Institute and the Lounsbury Foun-

dation.

REFERENCES

. Ackley, D.H. and Berliner, H.J., The QBKG system: Knowledge representation for produc-
ing and explaining judgments, Tech. Rept. CMU-CS-83-116, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA (1983).

2. Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., A learning algorithm for Boltzmann
machines., Cognitive Sci. 9 (1985) 147-169.

3. Bachrach, J.R.. Connectionist learning in backgammon, COINS Tech. Rept., University of
Massachusetts, Amherst, MA (1986).

4. Berliner, H.. Computer backgammon, Sci. Am. 243 (1) (1980) 64-72.

5. Berliner, H., Expericnces in evaluation with BKG: A program that plays backgammon, in:
Proceedings 1JCAI-77, Cambridge, MA (1977) 428-433.

6. Berliner, T1.. On the construction of evaluation functions for large domains, in: Proceedings
IJCAI-79. Tokyo (1979) 53-55.

7. Bourland, H. and Wellekens, C.J., Speech pattern discrimination and multilayer perceptrons,
Tech. Rept. M.211, Philips Research Laboratory, Brussels, Belgium (1987).

8. Cooke, B.. Championship Backgammon (Prentice-Hall, Englewood Cliffs, NJ, 1979). T

9. Cooke. B. and Bradshaw, J., Backgammon: The Cruelest Game (Random House, New York,
1974).

10. Dwck, 1., Backgammon for Profit (Stein and Day, New Yori(, 1978).

11. Frey, PW. (Ed.), Chess Skill in Man and Machine (Springer, New York, 2nd ed., 1983).

12. Frey, PW._ Algorithmic strategies for improving the performance of game-playing programs,
in: D. Farmer. A. Lapedes, N. Packard and B. Wendroff (Eds.), Evolution, Games and
Learning (North-Holland, Amsterdam, 1986).

13. Gorman, R.P. and Scjnowski, T.J., Analysis of hidden units in a layered network trained to
classify sonar targets. Neutral Networks 1 (1988) 75-89.

14. Hampson, S.E. and Volper, D.J., Linear.function neurons: Structure and training, Biol.
Cybern. 53 (1986) 203-217.

15. Hampson, S.E. and Volper, D.J., Disjunctive models of Boolean category learning, Biol.
Cybern. 56 (1987) 121-137.

16. Hinton, G.E., Conncctionist learning procedures, Tech. Rept. CMU-CS-87-115, Computer
Scicnce Department, Carncgie-Mellon University, Pittsburgh, PA (1987).

17. Ninton, G.E. and Scjnowski. T.J., Learning and relearning in Boltzmann machines, in: J.L.
McCleltand and D.E. Rumclhart (Eds.), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition 2 (MIT Press, Cambridge, MA, 1986).

18. Holland, J.H., Escaping britileness: The possibilities of general-purpose learning algorithms
applicd to parallel rule-based systems, in: R.S. Michalski, J. Carbonell and T. Mitchell (Eds.), '
Machine ILearning: An Artificial Intelligence Approach 11 (Morgan Kaufmann, Los Altos, CA.
1986).

19. Holand, V., Backgammon for People Who Hate to Lose (David McKay, New York, 1977).

20. Jacoby, O. and Crawford, J.R., The Backgammon Book (Bantam Books, New York, 1970).

21. Judd, J.S., Complexity of connectionist learning with various node functions, COINS Tech.
Rept. 87-60. University of Massachusetts, Amherst, MA (1987).

22. Le Cun, Y.. A learning procedure for asymmetric network, in: Proceedings of Cognitiva

(Paris) 85 (1985) 599-604.

390 G. TESAURO AND 1.1, SEINOWSKI

23.

2.

25.

26.
27.

28.

29.
30.

n.

3

31

36.
3.

38,

39,

a0,

41

-

42.

431,

4s.

46.

2

Le Cun, Y., Modiles lionistes de I'Apprentissage, Ph.D. Thesis. University of Paris VI
(1987).)

Lehky. S. and Sejnowksl, T.1., Network model of shape-from-shading: Newral function arises
from both receptive and projective fields, Nature 333 (1988) 452--454.

Levy, D.N.L. (Ed.), Comp Gi hip: The Complete Guidc to Creating and Structur-
ing Intelligent Game Programs (Simon and Schuster, New York, 1983).

Magricl, P., Backgammon (Times Books, New York, 1976).

Maxwell, T., Giles, C.L. and Lee, Y.C., Generalization in ncural networks: the contiguity
problem, in: Proceedings IEEE International Conference on Neural Networks (1987).
Michalski, R.S., Carbonell, J.G. and Mitchell, T.M. (Eds.), Machinc Learning: An Ariificial
Intelligence Approach (Tioga, Palo Alto, CA, 1983).

Minsky, M. and Papert, S., Perceptrons (MIT Press, Cambridge, MA, 1969).

Mitchell, D.H., Using features to evaluate positions in expert's and novices™ Othello games,
Master's Thesis, Northwestern University, Evanston, IL (1984).

Qian, N. and Sejnowski, T.J., Predicting the secondary structure of globular proteins using
ncural network models, J. Mol. Biol. 202 (1988) 865-884.

Parker, D.B., Learning-togic, Tech. Rept. TR-47, MIT Center for Computationat Research in
Economics and Management Science, Cambridge. MA (1985).

Prager. RW., Harrison, T.D. and Fallside, F., Boltzmann machines lor speech tecopnition,
Comput. Speech Lang. 1 (1987) 3-27.

. Rosenherg. C.R., Revealing the structure of NETtalk's internal iepresentations, in: Proceed

ings Ninth Annual Conference of the Cognitive Science Socicty (Lrlbaum, Hillsdale, NI 1987),

. Rosenberg, C.R., Learning the connection between spelling and sound: A network model of

oral reading, Ph.D. Thesis, Princeton University, Princeton, NS (1987).

Rosenblant, F., Principles of Neurodynamics (Spartan Books, New York, 1959).

Rumethart, D.E. and McClclland, J.L. (Eds.), Parallel Distributed P'rocessing: Faploations in
the Microstructure of Cognition 1-2 (MIT Press, Cambridge. MA, 19806).

Rumcthart, D.E., Hinton, G.E. and Wiltiams, R_J., Learning internal representations by crror
propagation, in: D.E. Rumclhart and J.L. McClelland (Eds.), Parallel Disiributed Processing:
Explorations in the Microstructure of Cognition 1 (MIT Press, Cambridpe, NAL 1980),
Rumcthart, D.E. Minton, G.E. and Williams, R.J., Lecarning representations by back-
propagating errors, Nature 323 (1986) 533-536.

Samuct. A.L.. Some studics in machine learning using the game of checkers, TRA 1. Res. Dev
3 (1959) 210-229.

Scjnowski, T.J. and Rosenberg, C.R., Parallel networks that fearn to prononnce Foglich text,
Complex Syst. 1 (1987) 145-168.

Sutton, R.S., Learning to predict by the methods of temporal diffcrences, G Tabs Tech.
Rept. TR87-509.1 (1987). '

Tesanro, G, Scating relationships in back-propagation learning: dependence on tiaining sct
size, Complex Syst. U(1987) 367-372.

. Tesawro, G., Neural nctwork defeats creator in backgammon ortch. Fech. Rept. No.

CCSR-88-6, Center for Complex Systems Rescarch, Univessity of Tlinois. Hibana Chame
paign, TL (198R).

Tesaura, (. and Janssens, B., Scafing relationships in back-propagation learning: dependence
on predicate order, Complex Syst. 2 (1988) 19-44.

Widrow, B, and Hoff, M.E., Adaptive switching circuits, Institute of Radio Lngincers. Western
Elécironic Show and Convention, Convention Record 4 (1960) 96 104,

Received October 1987; revised version received June 1988

