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ABSTRACT 

A class of conncctionisf networks is described that has learned to play backgammon af an 
i~rtcr~~~rrlintr-t~~-a~l~~~t~tcc(I level. The networks were trained by back-propagation learning on a large 
sct of sonrpl(* pmiiions et~nlrtatcd by a human expert. In actual match play against humans and 
cortt~crrrio~ml cornptrtrr programs. the networks have demonstrated substantial ability to generalize on 
thc hmis of ierpcrt krron4rdgc ofthe game. This is possibly the most complex domain yet studied with 
conn~~ctiorris~ Icrrr~tirrg. Ncw trclrniqrres were needed to overcome problems due to the scale and 
cornplc.riy of flre tcrsk. Tlre.re hrclude techniques for intelligent design of training set examples and 
eficicnf coding .srhrrnrs. and procedures for escaping from local minima. We suggest how these 
~cclrniqtres nrigltt bc used in applications of network learning to general large-scale, diflcrilt 
"real-worhi" prob/cm domains. 

1. Introduction 

There has heen a tremendous resurgence of interest in computing with' 
massively parallel fine-grain architectures, particularly with "connectionist" o r  
"neural" networks. This is t o  a large extent due t o  several recent learning 
algorithms [2, 17, 22, 32,38, 391 which have overcome some of the problems of 
earlier architectures [29, 36, 461. These learning algorithms have demonstrated 
considerable success at  general-purpose learning of small-scale computational 
tasks, and there are  several reasons t o  believe that they might prove useful for 
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ccrtain classes of larger-scale problems that are encountered in tlic rcal world. 
Problem domains which are currently being studied include English pronuncia- 
tion (41 1, speech recognition [7, 331, protein folding [31], medical diagnosis 
(231. sonar target identification [13], and 3-D shape analysis of shaded images 
124). 

Connectionist learning procedures show particular promise in domains whcrc 
tl~crc are many graded features that collectively contribute to the solution o f  a 
problem. In the connectionist approach, learning proceeds by making small 
numerical adjustments to a large number of parameters rather than a few 
discrete changes to the relationships between Boolean categories. This :rllows 
efficient techniques from numerical analysis to be employed in optimizing 
performance. In contrast, methods based on symbolic inductive infcrcncc arc 
more appropriate for domains where categories are well dclincd and knowl- 
edge is highly structured 1281. 

A r~seful testing ground for studying issues of knowlcdgc rcprcsctit:~tioti ;tnd 
Ic.:trriing in nctworks can he found in the domain of gamc pl:iyit~g. Ihwrtl g:t~llc.s 
sr~ch :is cllcss. go, Ix~ckgntnmon, and Othello entail consirlcr:~ldc sopIiistic:ttiot~ 
;tnd complexity at the advanced level. Mastery of cxpcrt concepts arid 
strategies often takes years of intense study and practice. Furthermore. a 
myriad variety of skills is often called upon, including extensive memorization 
of opening variations, intricate calculation of tactical exchangcs. intrritivcly 
sensing the long-range potential of a current board confignr:ttiori, ;tnd cvcn 
;tsscssing the psychological state of one's opponent. The complcxitics i n  Iward 
p m e s ,  howevcr, are embedded in relatively "clean" structured t x k s  with 
\vcll-dcfincd rules of play, and well-defined criteria for succcss ;1n0 ktilr~rc. 'l'liis 
riiakes thcm amenable to automated play, and in fact most of thcsc g;imcs 
(~wrticularly chess) have been extensively studied with convention:~l comprttcr 
science techniques [I 1,251. Thus, direct comparisons of the results of nctwork 
lcarning can be made with more conventional approaches. 

The choice of a particular game of study should depend or1 the particular 
types of skills required for successful play. We make a distinction hctwecn two 
frrntlamentally different kinds of skills. First, there is the ability to "look 
:il~e:id," i.e., to work out the future consequences of a currcnt state, citlicr by 
cuh:~rtstive trce se;irch, or by more symbolic, deductive reasoning. Secondly, 
there is "jutlgmental" ability to accurately estimate the v;tluc o f  ;I crtrrcnt 
hoard state based on the patterns or features present. without explicitly 
ritlculating the future outcome. The game of backgammon is unr~sual atllongst 
,games hccause the judgmental aspects predominate, in comparison with c3tllcr 
g:~nics like chess that often require look ahead to great dcptli. Tlic principal 
rc:ison for this is the probabilistic element in backgammon: cach movc rlcpcnds 
on ;i roll of the dice. There are 21 distinct dice rolls arid around 20 possildc 
Icgal moves for each roll. Tree search algorithms would thus hc iwppropri;itc, 
since the average branching factor at each ply of the search would bc ;ihout 
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400. As n conscqucnce most backgammon programs and most humans do not 
scatch more than one or two ply, but rather rely on pattern recognition and 
judgmental skills. 

In simple terms, backgammon is a one-dimensional race to the finish, 
involving both skill and luck. Play proceeds by rolling the dice and moving 
picccs forward according to the dice roll. The full complexity of the game 
etncrgcs i n  "cngaged" positions, i.e., positions in which it is necessary to cross 
ovcr sonic of the opponent's pieces in order to reach the finish. In such 
positions it is possible to "hit" an opponent's piece and send it back to the 
starting position, and to form a "blockade" which impedes the forward 
progress of the opponent's pieces. These possibilities lead the expert to 
develop a number of advanced concepts and strategies of considerbble com- 
plexity. In contrast, in "racing," or disengaged positions, hitting and blocking 
arc not possihlc, and the computation of correct moves is much simpler. 
Atldition;~l coniplic:~tions are introduced through a "doubling cube" which a 
player can rtsc to fotce his opponent to either resign or  accept a doubling of the 
stakes o f  the g:iti~c. A glossary of backgammon terminology is provided in an 
appcnrlix. For :I more detailed description of the rules, strategies, etc., we refer 
the reader to [26]. 

Of particular interest to the present study is Hans Berliner's backgammon 
program BKG ( 1 .  4-61. which has reached an advanced level of performance. 
I3KG uses an evaluation function containing a large number of hand-crafted 
fcatrtrcs which wcrc devised based on the knowledge of human experts. The 
fc:tturcs nicacurc quantities such as mobility and the probability of being hit. 
Thc cot~trihution of each feature to the total evaluation is weighted by an 
"application coefficient" which measures the degree of relevance of the feature 
in the particular situation. These application coefficients vary smoothly as the 
position is changed, and depend themselves on the band-crafted features, so 
the overall evaluation function is a nonlinear function of the features. BKG 
provides an existence proof that a static evaluation function capturing much of 
human expert knowledge can be produced. However, since machine learning 
techniques did not contibute to the evolution of BKG, the question of whether 
such a sophisticatcrl evaluation function could be learned was not addressed. 

OIIC of tlic first detnonstr:itions of machine learning in a games environment 
was S:trnr~cl's chcckcrs program [40J. This program's evaluation function was 
simply :I linear conihination of a set of hand-crafted features, with constant 
cocflicicnts :~djustccI in learning. Learning was based on a comparison of the 
evaluation function for a particular position with the value of the expected 
fr~turc position n certain number of moves ahead obtained by following the 
most plausihlc line of play. If the expected future value was greater than the 
currcnt valuc. tlicn thc coefficients of the features contributing positively to the 
evalrratiot~ function were increased, and the coefficients of the negatively 
contributing fcatures were decreased. Conversely, if the expected future value 

I I 
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was less than the current value, the coefficients were changed in the opposite 
fashion. In addition to gradual changes in the coefficients, abritpt changes 
could also occur when one feature was replaced with another. One fundamen- 
tal limitation of this approach is that all of the features used in the evaluation 
function came from a list drawn up by the human piogrammcr: the more 
difficult problem of discovering and defining new features was not addrcsscd in 
this study. 

Relatively little work has been done to explore learning in games since 
Samuel's pioneering efforts in checkers. A notable exception is the recent work 
of Frey et al. on Othello [12,30], which uses modern computational resources 
to study learning in very much the same spirit as in Samuel's approach. Once 
:]gain, a linear evaluation function was constructed using a set of heuristic 
1i:lnd-crafted features. A large set of late middle game positions takcn from 
tournament play was used to fit the heuristic evaluation function to thc exact 
v:llucs obtained by exhaustively searching the tree of possiblc ntovcs f ~ o m  c:lch 
position to the cnd of the game. While this is an effcctivc p~occtlurc for 
tlcvcloping an accurate evaluation function, Frey exprcsscs tlis:lppointtilctit 
that, more than two and a half decades after Samuel's origin:~l w o ~ k .  thcrc is 
ctill no known procedure for automating the definition of features. 

We have used a connectionist approach to study learning of a sophisticated 
Iwckgammon evaluation function. Specifically, we have used a deterministic, 
Iccd-forward network with an input layer, an output layer, and eithcr onc or 
two layers of hidden units, The algorithm used to train the nctwork is thc 
\o-called "hack-propagation" algorithm [22, 32, 38, 39). Our choicc of lx~ck- 
galntnon was motivated by the considerations of judgment versus look-ahcad 
tli~cussed previously. Connectionist networks are believed to be much bcttcr at 
judgmental tasks than at tasks involving sequential reasoning, and thus would 
:Ippear to be well-suited to the domain of backgammon. Our learning proce- 
dure is a supervised one that requires a database of positions and moves that 
have been evaluated by an expert "teacher." In contrast, in an unsupervised 
procedure [18, 40, 421, learning would be based on the consequences of a given 
move (e.g., whether it led to a won or lost position, as in [31), and explicit 
tcacher instructions would not be required. However, unsupervised Icarning 
procedures thus far have been much less efficient at reaching high lcvcls of 
performance than supervised learning procedures. In part, this advantage of 
wpervised learning can be traced to the higher quantity and quality of 
information available from the teacher. (Of course, when Icarning is b:lscd 
~ l c l y  on tcacher instructions, then the student cannot surpass thc tc;lchcr, 
cuccpt perhaps in thoroughness and endurance. The best onc could rcalictic:llly 
I~opc for is a network which plays as well as the teacher that tr:lincd it.) 

Some of the issues that are explored in this study are important gcricral 
i w e s  in connectionist learning, and have also been discussed by othcr authors 
116, 23, 27, 43). Amongst the most important are scaling and gcncrdimtion. 
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Most of thc problems that have been examined with connectionist learning 
algorithms are relatively small-scale and it is not known how well they will 
perform on much larger problems. Generalization is a key issue in learning to 
play backgammon since it is estimated that there are lo2' possible board 
positions. which is far in excess of the number of examples that can he 
providcd clnring training. In terms of both the ratio of training set size to total 
sct s i x .  and thc predicate order of the computational task (more will be said 
about this latcr), we believe that our study is the most severe t ~ s t  of 
generalization in any connectionist ngtwork to date. 

We havc also identified in this study a novel sct of special techniques for 
training the network which were necessary to achieve good performance. A 
training sct based on naturally occurring or random examples was not sufficient 
to bring tlic nctwork to an advanced level of performance. Intelligent database 
dcsigri W:IS rtcccss:Iry. Performance also improved when noise was added to the 
ttaining ptocctlurc untlcr some circumstances. Perhaps the most important 
factor i t t  the succcss of the network was the method of encoding the input 
ithrniatioti. I'hc hcst pcrformance was achieved when the raw input informa- 
tion was encoded in a conceptually significant way, and a certain number of 
pre-computed features were added to the raw information. These lessons may 
also bc uscful when connectionist learning algorithms are applied to other 
difficult Iilrgc-scalc problems. 

2. Operational Paradigm 
Tlic firs! stcp i n  designing any connectionist system is to decide what input- 
output function it is to compute. In general, it is not necessary for a single 
network to handle all aspects of game play. A complete game-playing system 
might usc several networks, each specialized for a particular aspect of the 
problem. In thc present study, we have focused solely on move-making 
decisions, and have not considered the problem of making doubling decisions. 
Furthermore, we have only trained the network on engaged positions, since the 
decisions for racing positions are much easier and can be handled very 
effcctivcly by a simple algorithm. 

For many problems, such as text-to-speech conversion, the network inputs 
and outputs can be identical to the inputs and outputs in the formal statement 
of the computational task. In backgammon the formal input is a description of 
a board position and roll, and the desired output is a move (or equivalently a 
final board position). We would expect it to be extremely difficult tb teach a 
nctwork this input-output function, primarily because an enormous amount of 
cffort would Iiavc to be expended in teaching the network the constraint of 
movc 1cg:llity. (This is due to two factors: the computation of legal moves, if 
cxprcssctl as a Boolcan predicate, would be of very high order, Bnd the 
coristraint o f  Icgality is severe, i.e. the output must be exactly legal, whereas 
corincctionist networks tend to find only approximate solutions for hard 
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p ~ ~ h l c m s . )  Additional problems would be expected in situations in which thcrc 
i.: n o  clear best move. Competing moves of approximately equal value could 
( :luw serious interference. 

.I hese problems can be surmounted by teaching the network to select moves, 
~ ; ~ t l i c r  than generate them. We envision our network o p e r a h a  in tandem with 
:I pre-processor which would take the board position and roll as input, and 
p ~ d u c e  all legal moves as output. The network would be trained to score each 
Inwe, and the system would choose the move with the highest network scorc. 

There are two possible ways of training the network to score moves. One 
ncwld be to present each final board position to the network, and train it to 
produce a numerical output corresponding to the absolute value of the position 
(c' g . the expected payoff at the end of the game). The problem with this 
.qlproach is that the network is to be trained on the judgment of human 
c.upcrt5. and it is very difficult for human beings to assign absolute numhcrs for 
111c ovcrall value of a given position. The other approach would I x  to prcsclit 
I ~ r ~ l l i  thc initial and final positions to the network, and train it to produce :I 

I<-l:~tivc "strength of movc" output. This approach would have grc:~tc~ w -  
\~tivity in distinguishing between close alternatives, and corrcsponcl~ n l o ~ c  
c-lorely to the way humans actually evaluate moves. For these reasons we have 
chosen the latter operational paradigm. These competing alternatives are 
wnmarized in Table 1. 

3. Construction of the Training Set 

\\'c now discuss the construction of a training set conforming to thc opcratio~wl 
ywradigm discussed previously. Each line in the database contains a hoard 
p ~ i t i o n ,  a roll, a suggested move, and a human expert's judgnicrit of thc 
strcngth of that move. The expert judgment is expressed as an intcgcr in thc 
r;~ngc [- 100, + 1001, with + 100 representing the best possible movc ;uid - I00 
representing the worst possible move. 

Table 1 
A summary of three different types of operational paradigmc 
for backgammon. In each the input includes dice roll infor- 
mation. (a) The input is the initial board state, and thc 
dcsired output is a move, or equivalently a final board slatc. 
(b) The input is a final board state, and the desired output is 
a score indicating the absolute value of that state. (c) Thc 
input contains both the initial and final board states, and thc 

.. output iz a score indicating the relative strength of thc movc. 

lnnul Outnut 

(a) Initial position Move 
(b) Final position Absolute score 
(c) Initial and final position Relative score 
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Example 3.1. Consider the following sample entry in the 3200-position training 
sct. .. 

The first line contains integers describing the initial board position in the 
format x-11, whcrc x is the board location and n is the number of med at the 
location (with positivc r r  indicating White men and negative n indicating Black 
mcn). Each o f  the 7 suhscquent lines lists a legal move of the particular dice 
roll (Wliitc to play 6-5). followed by the score assigned by the human expert. 
'l'hc Iiunia~i cxpcrt has said that the move 1-7,7-12 is the best possible move, 
12-18,12-17 is a moderately strong alternative, and 17-23,17-22 is a horrible 
blunder. The other legal moves have not been judged by the expert, so they 
are assigned a score of zero. 

In gcncral. i t  is not feasible for a human expert to comment on all possible 
' movcs. so our approach is to record the expert's comments on only the  few 

niovcs hc considcrs relevant, and to leave the remaining moves unscored. (Our 
databasc thus consists primarily of unscored lines of data. The handling of 
these unscorcd lincs in the training procedure will be discussed in Section 5.) In 
addition, it is important to have examples of bad moves in the database, which 
are not usually mentioned in expert commentary. The bad moves are necessary 
because otherwise the network would tend to score all moves as ~ o o d  moves. 
We have tricd to arrange our database so that for each of moves 
gcncratcd from a givcn position, there is at least one example of a bad move. 

Our currcnt clat:ihase contains a total of 3202 board positions. All of these 
positions involvcd some degree of engagement or contact between the forces, 
and only a IimdfuI of positions involved bear-off situations. One of us (G.T.) is 
a strong backpnmor~  player, and played the role of human expert in entering 
scorcs for thc movcs in each of these positions. Several different sources were 
used for tlic positions in our training set. Approximately 1250 positions were 
takcn froni vwiotts backgammon textbooks [&lo, 19, 20, 261. The scores for 
tlicsc niovcs tcricl to rcllcct the opinions of the respective authors, although 
some effort was made to impose overall consistency on the resulting data. 
Alwut 1000 positions came from games in which G.T. played both sides. 500 
positions wcrc from games in which G.T. played against the network, and 300 
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pvitions came from games in which the network played against itself. In thc 
I:tttc-r two cases, the positions selected were positions in which thc nctwork was 
~r~tlgcd to have handled the position incorrectly. Finally, a total of about 150 
II:III~-crafted positions were included in an attempt 40 correct spccific 
c :ttcgories of mistakes that the network had made previously. 

A? an example of the use of intelligently designed positions t o  cor~cct 
\pccific problems, we illustrate in Fig. 1 a position in which Whitc is to play 
0--5. This is a late holding game position in which White is suhst:inti:~lly 
Iwhind. The correct move is 4-10,12-17, hitting the Black blot and sending it 
I ~ c k  behind White's blockade. The network does in fact give this move a score 
o f  0.95 on a scale from 0 to 1. The problem is that the network prefers thc 
:rltcrnstive move 16-22,17-22, a move which does not hit, but which tnakcs an 
:rtltlitional point in White's inner board. This move is scored 0.98 by thc 
network. This problem demonstrates in a nutshell the basic qtrcngths :lnd 
11 i~irk~iesses of our supervised learning approach. The nctwork appear.; to I I ~ I V C  
Ir.:~~ricd to judge moves hased on a weighted summation o f  visui~lly appci~ling 
Ic.;~tures. Such analysis can be of considerable sophistication, Imt t l ~ c  ilctwc~k 
wffers from an inability to reason logically about the consequences of its 

Fig. 1 .  A sample position taken from [26] illustrating a charact&istic defect of lhc network which 
is remedied by hand-crafted examples in the training set. White is to play 6-5. 'l'hc correct niovc i s  
4-10.12-17. The network prefers 16-22.17-22. The graphic display was gcncr;~tcd on :I Sun 

Microsystems workstation using the Gammontool program. 
- =  _ 
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actions, ,ant1 to simultaneously consider two competing moves. Humans have 
little trouble with this position because we can foresee that White is not likely 
to get another chance to hit, and can deduce that without hitting, the game will 
evolve aftcr scvcral moves into a pure racing situation in which White has 
virtually no ch:mcc to win. Therefore a hit is imperative, even if the resulting 
position is ~ o ~ i i ~ ~ h i ~ t  awkward or vulnerable. The network has no such 
reasoning capiildity, and thus has trouble finding the right move. Humans are 
also able to consider the hitting and nonhitting moves together, and to reject 
the nonhitting move because of the availability of the hitting alternative. The 
network, however, can only consider one move at a time, and thus does not 
realize that 16-22,17-22, which would ordinarily be the correct move if no hit 
were possible, is actually wrong here because of the hitting alternative. 

It is also instructive to examine the steps needed to correct this particular 
dcficicncy of the nctwork. If one simply includes a large negative score for 
16-22.17-22 in thc training set. one finds that the network refuses to learn this 
judgmcrit. I hcrc arc so many other examples in the training set in which this 
typc of movc has hccn scored extremely high that the network does not learn 
to produce a low score in this particular instance. Instead, it is necessary to add 
a set of about 20 hand-crafted examples of positions of this characteristic type 
(i.e. late game holding positions in which there is a choice between hitting and 
making a vcry good point in one's inner board) to the training data. After this 
nurnl~cr o f  cxatnplcs, thc network finally catches on to the general idea that 
hitting takes prcccdcncc over filling the inner board in late holding game 
situatio~is. 

In summary, wc cmphasize the necessity of int'elligently hand-crafting exaw- 
plc positions t o  include in the training set which illustrate particular points. It 
would not be possible, we claim, for the network to obtain this information 
simply from a training set consisting of a large number of randomly accumu- 
lated, undcsigned positions. This is because the particular situation in question 
occurs extremely infrequently during the course of regular game play. In most 
holding game positions, there is no hit available, so the correct move is to fill in 
one's inncr board whilc waiting. A small fraction of the time, a hit will be 
possihlc, but the alternative filling move will not be particularly attractive. In 
only an cxtrenlcly small fraction of positions will there be a choice between a 
hitting ~iiovc i~nd ;I vcry good filling move. Thus the network is not likely to 
Icarn this particular principle from random positions alone. 

4. Network Design 
As statccl previously, wc use either a three-layer or four-layer network of 
tlctcrministic :rri:tlog units. The networks are fully connected between adjacent 
layers o f  units. (We have tried a number of experiments with restricted 
rcccptivc fields, and gcncrally have not found them to be useful.) Since the 
dcsircd output of thc nctwork is a single real value, only one output unit is 
required. 
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The coding of the input patterns is probably the most difficult and most 
iniportant design issue. We have experimented with a large numticr of coding 
schemes. and expect our representation scheme to continue to  cvolvc as we 
gain more experience with the network. In its current. configuration the input 
layer contains 459 input units. A location-based represcntation sclictnc is used, 
in which a certain number of input units are  assigned to c i d i  of thc 26 
locations' on the board. The  information in the databasc is invertctl i f  
necessary so  that the network always sees a problem in which White is to play. 

An example of the coding scheme used until very recently is shown in Fig. 2. 
This is essentially a unary encoding of the number of men at each board 
location, with the following exceptions: First of all, the units reprcscnting 5 
men at a given location can take on multiple values to  encode those rare cascs 
whcn there are more than 5 men present. (Specifically, if x is thc riu~nhcr of 
nicn and x as, we set the value of the unit to  x - 4.) Sccotitlly. thc unit 
rcprcscnting two men is set to  1 whenever two o r  morc tncn arc  p~cscn t .  ('l'liis 
i q  bccausc a11 o f  thcsc cascs share the common propcrty of being ;I "poitit" that 
tlic opponent cannot land on.) Finally, the units reprcscnting tlic linill posilion 
are turncd on only if there has been a change in the nurnbcr of rncli at the 
given location. This was implemented t o  give the network added sensitivity in 

Fig: 2. Two schemes used to encode the raw position information in  the ~ictwork's i n p ~ ~ t .  
Illustrated in  hoth cases is the encoding o f  two White men present before the movc. ;lnd ll lrcc 
Whilc men prescnt afrcr the move. (a) A n  essentially unary coding of  the nlttnllcr o f  men at :I 
o:~rticul:~r h w r d  location. Units 1-10 encode the initial position, units I I L I 6  cncodc thr l in:~l 
position i f  there has heen a change from the initial position. Units arc turned on in  tllc c:~scs 
intlicatcd on top of  each unit, e.g., unit 1 is turned on i f  5 or  morc Black men :Ire present itlili:~lly. 
ctc. (h) A superior coding scheme with more units used to  characterize the type of l r :~ns i t i o~~  from 
initi:tl to final position. A n  up arrow indicates an incrcasc in  thc n~tniher of men. :I clown arlow 
indicates a c%crcasc. IJnits 11-15 have conceptual interprctations: I I = "clc:~ting." I 2  "slotting." 

13 = "hrcaking," 14 ="making," 15 = "stripping" ;I point. 

'There are 24 hasic hoard locations, plus White bar and Black har. We have not inclutlctl an 
explicit representation o f  the number o f  men taken of f  the board. 

0 IF I$ t 2 t  2.1 3 4 ?5 
O O O O O I O O  
11 12 13 14 15 16 17 18 

5-5 -4 -3 52 -1 
( b )  O O O O O  

1 2 3 4 5 
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I 22 3 4 >5 
O 1 O O O  
6 7 8 9 10 

distinguishing hctwecn competing moves, a"d ha$ the further a d v a n t a ~ e  of 
reducing the nurnbcr of input units required. If the final position is different 
from tlic initial position, it must be  either zero o r  positive, because the network 
only secs cases in which White moves. 

Tlic rcprescntation scheme of Fig. 2(a) worked fairly well, but had one 
pcculiar prohlcm it1 that, after training, the network tended t o  prefer piling 
Ii~rgc n t ~ ~ i i l ~ c r s  of mcn on certain points, in particular White's 5 point (the 20 
point in the 1-24 numbering scheme). Figure 3 illustrates an example of this 
pcculiar hchavior. In this position White is to  play 5-1. Most humans would 
play 4-5,4-9 in this position; however, the network chose the move 4-9,19- 
20. This is actually a bad move, because it reduces White's chances of making 
further points in his inner board. The  fault lies not with the database used to 
train the network, but rather with the representation scheme used. In Fig. 2(a), 
noticc that unit 13 is turned on whenever the final position is a point, and the 
numhcr of mcn is diffcrent from the initial position. For the 20 point in 
pilrticular. this unit will develop strong excitatory weights due  t o  cases in which 
tlic initi;ll position is not a point (i.e., the move makes the point). The 20 point 

Fig. 3. A s:~mplc position illustrating a defect o f  the coding scheme o f  Fig. 2(a). White is to  play 
5-1. With the coding schcmc of  Fig. 2(a), the network prefers 4-9.19-20. With the coding scheme 

of  Fig. 2(h), the network prefers 4-9.4-5. 
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is such a valuable point to make that the excitation produced by turning unit 13 
on might overwhelm the inhibition produced by the poor distribution of 
builders. 

In conceptual terms, humans would say that unit 13 participates in the 
representation of two different concepts: the concept. of ntakirig a point, and 
the concept of changing the number of men occupying a made point. These 
two concepts are unrelated, and there is no point in representing them with a 
common input unit. A superior representation scheme in which these conccpts 
are separated is shown in Fig. 2(b): In this representation unit 14 is turned on 
only for moves which make the point. Other moves which change the number 
of men on an already-made point do not activate unit 14, and thus do not 
receive any undeserved excitation. Similarly, units 12, 13 and 15 represent the 
important concepts of "slotting," "breaking," and "stripping" a point. With 
this representation scheme the network no longer tends to pilc large nutnhcrs 
of men on certain points, and its overall performance is signilicitntly bcttcr. 

In addition to this representation of the raw board position. wc also utilix ;I 

number of input units to represent certain "pre-computcd" fc:~trtrcs o f  tlic raw 
input. The principal goal of this study has been to investigate network Ic;~rning, 
rather than simply to obtain high performance, and thus we have resisted the 
temptation of including sophisticated hand-crafted features in the input encod- 
ing. However, we have found that a few simple features are needed in practice 
to obtain minimal standards of competent play. With only "rmv" board 
information, the order of the desired computation (as definctl by Mit~sky :~nd 
Papert 1291) is undoubtedly quite high, since the computation o f  rclcvant 
fcatures requires information to be integrated from ovcr most of tlic board 
area. (See &g. the discussion below concerning blot exposure.) Thc nutnbcr of 
examples needed to learn such a difficult computation might hc intr:tctably 
large (14, 15, 21, 451. By giving the network "hints" in tlic form of prc- 
compuled features, this reduces the order of the computation. and thus tiiight 
make more of the problem learnable in a tractable number of cxamplcs. 

Our current coding scheme uses the following eight featurcs: ( I )  pip count, 
(2) degree of contact, (3) number of points occupied in the iriricr boarcl. (4)  
number of points occupied in the opponent's inner board. (5) total nuriihcr of 
mcn in the opponent's inner board, (6) the prescncc o f  a "pritiic" lor~ii ;~tio~i,  
(7) blot exposure (the probability that a blot can be hit). and (4)  strcngtli of 
blockade (the probability that a man trapped behind an cticriiy Idock:~clc can 
escape). Readers familiar with the game will recognize t11:1( thcsc arc d l  
ccmceptually simple featurcs, which provide an elcmcntary bitsis for tlcscriling 
board positions in a way that humans find relevant. However, t l ~ c  infor~n;~tion 
provided hy the features is still far removed from the actud cotnput:ttion of 
which move to make. Thus we are not "cheating" by cxplicitly giving the 
network information very close to the final answer in tlic input c~tcotlicig. (Wc 
might add that we do not know how to "cheat" even if we wi~ntcd to.) 'l'hc first 
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six featurcs are trivial to calculate. The last two features, while conceptually 
simple, require a somewhat intricate sequential calculation. The blot exposure 
in particular, as described in the appendix, would be a very high-order Boolean 
predicate (a predicate order of 30 or more would not be surprising), and we 
suspect that the network might have trouble learning such computations. One 
should also note that the final two features involve real-valued piobabilities 
hctwccn 11/36 and 36/36: thus we use analog coding in both the input and 
output laycrs. 

An example of the importance of the pre-computed feature is presented in 
Fig. 4. In this position. White is to play 3-2 after Black started the game with a 
5-1 by moving out to White's bar point. Without the blot exposure as a 
pre-computed feature, the network tends to play 12-15.12-14. This would be 
the corrcct move in the opening position, and undoubtedly the network's 
choice is duc to thc close similarity (in terms of Hamming distance) between 
this position i~tld the opcning position. In this position, 'however, the move is 
incorrect. bccitusc tlic blots on 14 and 15 are exposed to direct shots of 3 and 4. 
With tllc Idot cxposrlrc explicitly calculated and presented to the network as a 

I@. 4. A s:~~rlplc p m i t i r i n  illusfrating Ihc utility of pre-computed features in the input layer. Whitc 
is lo play 3--2. A nclwork w i t h o ~ ~ t  fcnturcs prefcr~ 12-1.5.12-14 as in the dpening. A networM with 

;I hlot cxposure feature prefers 12-14.17-20. 
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pre-computed feature, the network then prefers the move 12-14,17-20. This 
move surprised and impressed us: not only is it the best move by far in this 
<ituation, but we did not even think of it ourselves. There arc  two rc;w)ns why 
this is such a strong move: it gives excellent chances of making White's 5 point 
on the next turn, and it uses the principle of "duplication" to  mi11inii7c tlic risk 
of a blot being hit. Note that the blot on  14 would be hit by a roll of 4. a d  tlic 
hlot on 20 would also be hit by a roll of 4. Thus the total probability of at Icast 
one blot being hit is substantially smaller than other positions in which two 
different numbers hit the blots. It  is quite interesting that the network acts as if 
it understands the principle of duplication; more likely, it prohahly is just 
trying t o  minimize the total blot exposure. (While not rigorously provable, this 
notion is supported by the large negative weights of the total blot cxposurc 
feature, and by the network's overall style of play.) 

5. Training Procedure 

'1'0 train tlic ~ictwork,  wc have used the standard "hack-prop:~g:lti~~~~.'  Ic:lr~litig 
i~lgorithm 122, 32, 38, 391 for modifying the connections in a ~ ~ ~ u l t i l a y c r  
fccd-forward network. Typical networks contained between I2 and 48 hidden 
wiits. Typical learning runs lasted for about 50 cycles through the training set, 
taking approximately 100-200 hours of CPU time on a Sun 31 160 with FPA. 
1.-ollowing the notation of  1411, typical learning parameter values wcrc ils 
follows: the momentum coefficient a was 0.9, the initial random wcight scale 
was 0.1, the margin was 0.01, and the learning rate F: was 2.0 cxccpt for 
nctworks without hidden units, for which it was rednccd to 0.5. As in tlic 
st:~ndard back-propagation training procedure, we cycle repcatctlly througli tlic 
tlntabase, presenting the patterns in order and changing the weights aftcr cvcry 
fcw prcsentations. However, our  procedure differs in that it cont;lins :I few 
sonrccs of noise which are not ordinarily present. Thc  primary soul-cc of noisc 
arises from the necessity of  dealing with the large number of uncommcntcd 
moves in the database. O n e  solution would be  simply t o  avoid prcscnting thcsc 
moves t o  the network. However, this would limit the varicty of input patterns 
prcwnted to the nctwork in training, and certain types of inputs prolxlldy 
would bc eliminated completely. T h e  alternative proccdurc whicl~ we Iii~vc 
:~tlopted is to skip thc uncornmented moves most of the time (7.5%. for o r t l i~~ary  
rolls and 92% for double rolls), and the remainder of  tlic timc present the 
p:lttcrn t o  the network and generate a random tcachcr signal with ;I s l i ~ h t  
ncpttive hias. This makes sense, because if a move has not rcccivctl :I cotnrnc~ll 
by tlic human expcrt. it is more likely to  b e  a bad movc than :I good ~novc .  l'lic 
r:lntloni tcnchcr signal is chosen uniformly from thc interval ( (15. 1351. 'l'lic 
otlicr source of noise is that we d o  not average over a fixed nu~ii lxx o f  t ra i~l i~ig 
patterns hcfore updating the weights. Instead. the dccision to updiltc the 
w i g h t s  is madc randomly after every input with a 25% prohahility. 
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Thc sources of noise used in our  training procedure are  expected t o  give the 
nctwork tlic bcncft of experiencing a wider variety of input patterns during 
training. m d  to provide a mechanism for escaping from local minima. The 
potential disadvantage of this procedure is that the noise in the teacher signal 
could mislead thc nctwork about the actual value of certain patterns. T o  some 
cxtc~it.  wc cxpcct this to be diminished by presenting the qncommented moves 
much lcss frcqucntly than the commented moves. However, if the trAfining 
contiriucs for a very long time, the network might s r c  the uncommented moves 
a sufficient number of times to  draw false conclusions about their scores. We 
will discuss thcse issues in more quantitative terms below. 

6. Measures of Performance 

Tlicrc arc n~;lny different ways of assessing a network's performance once it 
has Iwx trainctl. We havc used the following four measures: (i) performancc 
oti tlic training tli~tn. (ii) pcrformance on a set of test data which was not used 
to train tlic nctwork, (iii) pcrformance in actual game play against a conven- 
tional roniputcr pmgrilrn (tlic program Gammontool of Sun Microsystcms 
Inc.. wliicli is n conipctcnt intermediate-level program and the best commercial 
program that we have seen), and (iv) performance in game play against a 
human cxpert (G.T.). In the first two measures, we define the performance as 
tlic fraction o f  positions in which the network picks the correct move, i.e.. 
thosc positions for which the move scored highest by the network agrees with 
tlic choicc o f  tlic 1iun1:1n cxpert. This is expected to  be  a more useful measure 
of pcrforrn;i~icc than, for example, the fraction of patterns for which the 
nctwork scorc is within :I specified margin of the teacher score. In the latter 
two Incilsllrcs. tlic pcrformance is defined simply as the fraction of games won:' 
without consitlcring the complications of counting gammons o r  backgammons. 

Thc fil-st n ic ;wre  gives very little indication of the network's ability to  
gcncralizc. mid wc shall not discuss it in detail. The remaining three measures 
ci~cli havc thcir own merits. Performance against a human expert probably 
provides tlic most accurate assessment of the network's strength as  a player, as 
wcll :IS a11 opportunity for detailed qualitative description of the network's 
play. I lowcvcr, this rncthod is extremely time-consuming, and thus results for 
o~l ly :I small ~irrmhcr o f  games can bc achieved. The understanding which arises 

I 1111-or~gh this ~ i ~ e t h ; ~ t l  is primarily qualitative, and hence we postpone further 
tliscussio~l to Scction 8. With automated game-playing against a conventional 

' 111 tlic ~:lliics :~g:~insl ( i ;~n~~non tooI .  the network evaluation was used until the gam hecanie ;I 

f I W I C  1:lcc. ;I! n l i i d ~  p o i ~ ~ l  111c (i ;~mrnontool cvalualion function was used for hoth sides. For thc 
g:1111cs : ~ p i n s l  (;..I'.. pl:~y procccdcd unt i l  the point of either race or hear-off, after which hest 
~ x ~ s s i l k  p l ; ~ y  ( i n  ~ l i c  op in ic r~~ or G.T.) was taken for hoth sides. These schema were necessary 
I ~ : I I ~  llic n c l w r r k  received very littlc training on hear-off. and no training at all on racing 
si t~~:~lio~is .  
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program. more games can be played out ,  and accurate statistics can be  
ohtained for a single, static network. However, if we wish to ohserve the 
pcrforrnance over the entire time-course of a learning run, this method again is 
too time-consuming. Performance on a test set is the fastest testing method, 
hut is not necessarily related t o  the network's actual game-playing strength. 

In the discussion that follows, we examine questions such as how the 
network's performance depends on  the number of hidden units, thc ni~tnbcr  of 
hidden layers, the size of the training set,  the noise in the training procedure, 
and the use of various pre-coded features in the input patterns. Some of these 
effects are  discussed primarily in terms of performance on a test set, others are 
discussed in terms of  performance versus Gammontool. In cach case, thc 
choice is based on the available data, and on  the magnitude of the ohscrvcd 
effect. It is interesting that some effects are more noticeahlc in thc tcst sct 
measure, while others are  more noticeable in terms of numbcr of gamcs won. 
In cnch case, when results a re  presented only for onc  mc:lrurc, wc stntc 
qualitatively the results according to the other measure. 

7. Quantitative Results 

In Fig. 5, we present sample learning curves for a particular network as a 
function of the number of cycles through the training data, as measured by two 
indicators of performance: performance on  the training data, arid performance 
on a set of test data not used in training. (The training sct was thc 3202- 
position set described in Section 3, while the test set contained lO(I0 nonracing 

0 . 3 ~ " ~ " ~ " " ' ~ " '  12 24 36 48 60 

Troining Cycles 

Fig. 5.  Sample learning curves for a network trained on the 3200-posifion d :~ t :~ l~sc  will1 two l :~ycr~  
of 24 hidden units each plotted versus number of cycles of training. (a) l'crf~orni;~ncc on the training 
zct (fraction of positions in which the network gives the highest scorc to thc Iwsl movc) (h) 

Performance on a test set (1000 positions) not used in training. 
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positions taken from games played by G.T. against Gammontool.) A number 
of important general points are illustrated in this figure. First, thellearning of 
the training data appears t o  increase constantly as  long as  the training 
continues, with no sign of asymptoting. Secondly, performance on  the test data 
docs not continue to improve with more and more training. Instead, a 
maximum lcvcl of performance appears t o  be  reached around 10c20 cycles 
through the training set, after which the performance either remains constant, 
o r  perhaps dccrcascs slightly, with further training. This may be indicative of 
"overtraining" the network. Finally, the learning curves are  not smooth; 
fluctuations are  present. We expect that these fluctuations are  due t o  our  noisy 
training procedure, and d o  not indicate any repeatable! effects. 

7.1. Dependence on number of hidden units 

In Fig. 6, we plot pcrformance o n  the 1000-position test set versus number of 
cyclcs or training for networks with 0, 12, 24 and 48 hidden units in a single 
layer. Again wc note that the networks d o  not always continue t o  improve with 
morc and morc training; for the networks with hidden units, a maximum 
performance generally appears t o  be reached somewhere around 20 cycles 
through the training set. The  performance does generally increase as  more 
hidden units are added, although the difference between the networks with 12 
and 24 hiddcn units is very small and in fact the 12-hidden unit network seems 
to reach a slightly higher maximal performance. The  most important point 
regarding this figure, however, is that the overall scale of variation is quite 

Fig. 6. L.carning curvcr illustrating performance on the test set version cycles of training for 
ttct\+orks with varying numbers of hidden units in a single layer, as indicated. 
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small. Adding more hidden units appears t o  give only a fcw pcrccnt:igc points 
improvement in performance, according t o  this measure. Even for the network 
without any hidden units, the performance is only about 5 pcrccntagc points 
lower than the optimal performance of the 48-hidden unit network. Similar 
results are found in terms of the percentage of games won against Chrn~non- 
tool. except that the network without hidden units appears to  d o  noticeably 
worse according to this measure (about 8 t o  10 percentagc points worse t h : ~  
the 48-hidden unit network). 

7.2. Dependence on number of hidden layers 

Figure 7 shows the performance o n  the test set versus cyclcs of training for 
networks which have varying numbers of hidden layers. A fcw pcrccntagc 
point improvement is seen going from no hidden layers to  a sitiglc laycr. :i~id :I 

f ~ ~ r t l i e r  smaller improvcmcnt is obtained with two hiddcn I:iycrs (which in this 
c:lsc havc thc samc number of hiddcn units in each Iaycr). Wc ~i irnt ion in 
piissing, howcvcr, that a network with three laycrs of hitltlcn twit.; h:id Iowc~ 
pcrfortnaticc than tlic one with two hiddcn layers, and in fact was .;lightly lowcr 
in performance than the network with a single hidden layer. Results in terms of 
games won show a similar behavior, except that there is a greater difference 
between the network without hidden units and the others, as described 
previously. 

t ~ ~ . I O ~ l ~ @ l # ~ I ~ ~ l  
0 12 24 36 48 60 
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Fig. 7. Learning curves illustrating performance on the test sct versus cyclcs of tr;rining for 
rrctworks with varying numhcrs of layers of hidden units (24 units in cnclr layer). :is inclic:~tctl. 
M;rximal pcrfnrmancc is nhtained with two hidden layers. Perfnrmnncc of :I r~ctwork will1 tlrrcc 

hiddcn laycrs falls slightly below the curve for a single Iirycr. 
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7.3. 1)ependcnce on training set size 

Figiirc 8 tlc~iionstratcs the performance of three identical networks trained with 
training scts of different sizes. The  smaller; training sets were obtained by 
random sclcction of positions from the original training Set. We find tdht the 
pcrform:i~icc docs dccrease when a smaller train in^ set is used, although once 
again thc ovcrall size of the effect is quite small. (The effect is also small in 
t c r ~ n s  of gamc performance.) This provides evidence that simply adding more 
ex:unplcs to  tlic training set will not produce substantial improvements in 
pcrforrn:i~ice if thc choice of examples is not made intelligently. Instead, 
intclligcnt hand-crafting of particular examples to  reinforce particular con- 
ceptual points is rcqnircd. 

We also mcntion in passing that if one simply observes the amount of 
tr;iining timc nccdcd to memorize the training set t o  a certain level of 
perforni;i~icc, cmc firitls that the training time scales roughly quadratically with 
tlic s i x  o f  thc tr-;lining sct. This cxponent is substantially larger than the valuc 
of 413 I ' o t ~ ~ i t l  for ~ictworks traincd on 32-hit parity with a fixed training set 1431. 
whidi was thought t o  IK :III upper hound on the value of this scaling exponent. 
l ' h e  tliscrcp:uicy might bc clue to  the noise in the training procedure, o r  to  the 
unusual measure of performance for this particular application. 

7.4. Other effects 

Wc havc d s o  cxamined the effects of eliminating the noise in the training 
procctlurc. :ind o f  changing the pre-computed features used in the input coding 
sclicnic. 'l'hcsc cffccts are  much larger than the effects discussed so  far. The 
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Fig. 8. Ix:~rning curves illustrating performance on the test set v&us cycles of training for 

trct\wrk\ ~r:~inctl with tliffcrcnt sized training sets (number of positions as indicated). 
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most dramatic effect is seen by removing entirely all the precornpi~tcd fcatnrcs 
from the input coding, and using instead only "raw" information dcscrihing thc 
board position and move. This produces a dramatic decrcasc of around 15 to 
20 percentage points in the number of games won by the network against 
Gammontool, although the performance on the test set is not affcctcd so  
significantly. Eliminating the noise also has a large effect: when tlic uncom- 
mcnted moves in the training set are  never seen by the nctwork. tlic pcrccn- 
tage of games won against Gammontool falls by approxini:~tcly I 0  to  15 
percentage points. (Removal of the random score noise and leaving tlic othcr 
sources of  randomness produces a less severe performance drop of only 7-8 
percentage points.) Once again, the performance on the test set does not drop 
so  much (this measure changes by only about 5 percentage points). 

A summary of these various effects as measured by perforniancc against 
Gammontool is presented in Table 2. The best network that we h:tvc produccd 
so far appears to dcfeat Gammontool nearly 60% of tlic timc. Using this :is n 
I~cnchmark, we find that the most serious dccrc:tsc ill pcrror~ii:i~icc occurs by 
rctiioving all prc-computed features from the input coding. 'l'liis protlr~ccs :I 
nctwork which wins at  most about 41% of the time. l 'hc  ~icxl  11iost i~i iport :~~it  
effect is the removal of noise from the training procedure; this rcsults in a 
network which wins 45% of the time. Next in importance is the presence of 
hidden units; a network without hidden units wins about 50% of the games 
against Gammontool. In contrast, the other effects we have discussed. such as 
varying the exact number of hidden units, the number of laycrs, (11- tlic size of 
thc training set, results in only a few (1-3) percentage point dccrci i~c in tlic 
number ~ f - ~ a m e s  won. 

Tahle 2 
Srmmary of performance statistics for various networks. (a) The best netwnrk we have produccd. 
containing two layers of hidden units, with 24 units in each layer. (b) A nctwork will1 only onc 
1:tyer of 24 hidden units. (c) A network with 24 hidden units in a single layer. trainctl on ;I training 
sct half the normal size. (d) A network with half the number of hidden units as in (h).  (c) A 
network with features from the Gammontool evaluation function suhstitutctl fnr the norrn:il 
lc;~tnres. (f) A network without hidden units. (g) A network traincd with no noise in thc training 
prwctfure. (h) A network with only a raw board description as input. 

Network Training Performance on Performnncc vs. 
size cycles test set Gammontool Coninicnls -- 

(a) 459-24-24-1 20 0.540 0.59 2 0.03 
(h) 459-24-1 22 0.542 0.57 2 0.05 
(c) 459-24-1 24 0.518 0.58 2 0.05 l6Oll-position d:t~:~I~;tsc 
((I) 459-12-1 10  0.538 0.54 + 0.05 

(c) 410-24-12-1 16 0.493 0.54 S 0.03 ( ; : ~ n ~ n ~ ~ ~ ~ i I o o l  lc:~Iurc\ 
(f)  459-1 22 0.485 0.50 + 0.03 No liiilclc~~ ~tnit\ 
(g)  459-24-12-1 10 0.499 0.45 + 0.03 No  tr:lit~ing nokc 
(11) 393-24-12-1 12 0.488 0.41 2 0.02 No rc;~twcs 

I 
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Also included in Tablc 2 is the result of an interesting experiment in which 
wc rcmovctl our usual set of pre-computed features and substituted instead the 
inrlivitlual t c r ~ n s  of the Gammontool evaluation function. We founkl that the 
resulting nctwork. after being trained on our  expert training set, was able to  
dcfcat thc Gammontool program by a small margin of 54 to  46 percent. The 
purposc o f  this cxpcrimcnt was to  provide evidence of the usefulness of 
nctwork 1c;irriing ac. an adjunct to  standard A1 techniques for hand-crafting 
evaluation functions. Given a set of features to  be used in an evaluation 
function which havc bcen designed, for example, by interviewing a human 
expert, the problem remains as t o  how t o  "tune" these features, i.e., the 
rclativc wcightings to associate to  each feature, and at an advanced level, the 
context in which each feature is relevant. Little is known in general about how 
to approach this problem, and often the human programmer must resort to 
painstaking trial-and-crror tuning by hand. We claim that network learning is a 
powerful. gcncral-pttrposc. automated method of approaching this problcm, 
:i~id 1i:iv tI1c potc~i(ial to  produce a tuning which is superior t o  those produccd 
I)y I ~ r ~ ~ n : i ~ i s .  l~ivcn :I tlatabasc of sufficiently high quality, and a suitable sclicmc 
f o ~  c~icotling tlic features. The result of our  experiment provides evidence to 
support this claim. :~lthough it is not firmly established since we d o  not have 
highly accurate statistics, and we d o  not know how much human effort went 
into the tuning of the Gammontool evaluation function. More conclusive 
cvidchcc would bc provided if the experiment were repeated with a more 
sophisticatctl program such as Berliner's BKG and similar results were ob- 
t:~inctl. 

8. Qualitative Results 

Analysis of tlic weights produced by training a network is a n  exceedingly 
difficult problcm, which we have only been able t o  approach qualitatively. In 
Fig. 9 we prcsent a diagram showing the connection strengths in a network 
with 651 input units and n o  hidden units. The figure shows the weights from 
cacli input w i t  to  thc output unit. (For  purposes of illustration, we have shown 
a coding sclicnic with more units than normal to  explicitly represent thc 
tr:insitioti Irorn i11iti;iI to final position.) Since the weights go  directly to  thc 
outpnt, tlic ccwrcsponding input units, can be clearly interpreted as having 
citlicr an ovcrall cxcitntory o r  inhibitory effect on the score produced by the 
nctwork. 

A grcat dc:il of columnar structure is apparent in Fig. 9. This indicates that 
Ihc ~ictwork has Ic:irnetl that a particular number of men at a given location, o r  
a particular typc of transition at  a given location, is either good o r  bad 
ititlcpcntlcrit of tlic cxact location on  the board where it occurs. For example, 
column L cncodcs transitions which make points. The large white squares 
appearing in this colr~mn indicate that the network has discovered the general 
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Fig. 9. A Hinton diagram for a network with 651 input units antl n o  I~itldcn w~ils. S111:lll xqwrcs 
intlicntc weights from a particular input unit to the output unit. Wliitc squares i~~tlic:~tc lrcrsitivc 
wcights. and Idack squnrcs indicatc negative wcights. Sizc olsqunrc in(lir:~lcs rn:~gnil~~clc 01 rvciphl. 
First 24 rows from hottom up indicate raw hoard information. Ix t t i l~g  .r Ire lhc I I ~ I I I ~ ~  r r l  men 
hcforc thc movc antl y the numhcr of men after the movc. thc in tcrprc l :~t io~~r  or ~ ~ I I I I I I I I S  ;IK :IS 

follows: A: x s  -5; B: x =  -4; C: x =  -3; D: X G - 2 :  E:  x =  - I :  1;: x = I :  ( i :  .r ' - 2 ;  11: .r - 3: I:  
.~=4:J:x>5;K:x<I&y=l;L:x<2&ya2;M:x<3&y=3:N:r-:4kv 4:O:  \ - . : y&  
1,>5:P::t=l & y = O : O : x 2 2 & y = O : R : x a 2 & y = 1 : S : x z 3 ~ t y - 2 : ' 1 ' :  r - . I S . ) ,  7:II: 
. x>S  & y = 4 :  V :  x > v  & y 2 5 ;  W: probability of a Whitc Mot o t  Illis Ior;~tion I r c i ~ ~ g  hi t  
(prc-computed fcnturc). The next row encodes the number of men on Whitc : ~ n d  IIhck h:lrs. I ' I I c  

next 3 rows encode roll information. Remaining rows encode various prc-computctl lc;lturcs. 
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utility of niaking points. Similarly, column R encodes transitions Which break 
points. atid tlic nctwork has found that this is generally a bad idea. Columns 
M, N and 0 rcprescnt "piling" transitions which increase the number of men 
on existing points, and the network has learned that this is bad for points in the 
opponcnt's inner board. and for advanced points in the network's inner board. 
Columns S ilnd T encode "unpiling" transitions, and the network gives high 
scores to movcs which unpile the points held in the opponent's inner board. 
Finally, colu~iin W rcprcsents the pre-computed feature of blot exposure. Thc 
network has clearly learned the general principle that moves which leave blots 
exposed are bad moves. 

The uppcr part of Fig. 9 contains the encoding of the bar and dice roll 
information, as well as  the rest of the pre-computed features. We can al'so 
make scmc olwxvations on which of these input units the network finds 
significnnt. I'hc most important features seem to be the number of points held 
in thc rictwork's iriricr hoard, and the total blot exposure. 

Much insight into thc basis for the network judgment of various moves has 
l>cc~i pai~ictl by acfu:~lly playing games against it. In fact, one of the most 
rcvealirig tests o f  what the network has and has not learned came from a 
20-game match played by the G.T. against one  of the latest generation of 
networks with 48 hidden units. (A detailed description of the match is given in 
1441.) Thc surprising result of this match was that the network actually won, 11  
gamcs to 9. I lowcvcr. a detailed analysis of the moves played by the network 
tluring tlic m:~tcli inrlicatcs that the network was extremely lucky t o  have won 
so rn:ltiy g:inics, a~irl cor~ld not reasonably be expected to  continue to  d o  so  wcll 
ovcr :I 1:ir.g~ ~iutiil,cr of games. Out  of the 20 games played, there &ere 1 I in 
whiclt the tictwol-k did not make any serious mistakes. The  network won 6 out 
of t l~csc  I 1  g m c s ,  ;I result which is quite reasonable. However, i n  9 of the 20 
gamcs. the ~ictwork made one or  more serious (i.e. potentially fatal) "blun- 
ders." I 'hc scriousness of these mistakes would be eqpivalent t o  dropping a 
piece in chcss. Such a mistake is nearly always fatal in chess against a good 
opporicnt: however in backgammon there are  still chances due to  the element 
of luck involved. 111 thc 9 games in which the network blundered, it did manage 
to survive :~nrl win 5 of the games due to the element of luck. (We arc 
:~ssutiiitig Ili:~t the mistakes made by the human, if any, were only minor 
mistilkcs.) It is highly unlikely that this sort of result would be repeated. A 
much niorc likely result would he that the network would win only one or  two 
of tlic g:~tlics in which it made a serious error. This would put the network's 
cxpcctctl pcrformnncc against expert o r  near-expert humans at  about thc 
35-4fW Icvd. (This has also been confirmed in play against other networks.) 

As for the specific kinds of mistakes made by the network, we find that they 
arc  not at all random, senseless mistakes, but instead fall into clear, well- 
tlclincrl coticcptual categories, and furthermore, one can understand the 
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reasons why these categories of mistakes are made. The most frcqr~cnt kinds of 
major mistakes made by the network are: (i) mistakes made while bearing off 
against opposition, or opposing the opponent's bear-off, (ii) mistakes involving 
the play of outfield blots (for example, failing to move them to safcty past the 
opponent's midpoint), (iii) failing to escape from the opponcnt's blockade 
while the opponent is closed out or  trapped behind a prime, (iv) clearing or 
breaking its 6 point in totally inappropriate situations, and (v) inappropriate 
attempts to blitz, and failure to blitz in some situations where it is called for. In  
each case, we believe we understand why the network behaves as it docs. In 
the case of problem (i), this undoubtedly occurs simply because we have not 
made a systematic effort to include these kinds of positions in the database. 
For problem (ii), the network has much less experience with outfield play in 
general, because the outfield locations are occupied much less frequently than 
the infield locations. For problem (iii), the network has been shown in many 
other situations that it should not escape the blockade, cithcr hcc;~nse it  is 
I~cliind and needs to wait for a hit, or it is too dangerous to escape. or si~iiply 
that therc is no legal move which escapes the blockade. What 11ic nctwo~k 
must learn is the proper context in which blockade escapes should he ~nadc.  
For problem (iv), the network again has been told many times that it is often a 
good idea to break or clear the 6 point, and once again it is a matter of learning 
the right context. For problem (v), the failure to carry out a blitz whcrc it is 
called for scems to be due to the existence of some other alternative, such as 
making a side prime, which is ordinarily quite valuable, but not as valn;lldc :IS 

the blitz attack. Inappropriate attempts to blitz probably result once :~g;~in from 
a failure to discern the context in which a blitz attack is dcsirahlc. 111 each casc, 
we are confident that these particular problems could be remedied by including 
a large number (i.e. on the order of a few dozen) examples of positions of each 
characteristic type in the data base used to train the network. 

Of course, it is also worth mentioning the kinds of situations that the 
nctwork handles correctly. We find that the network does act as if it has picked 
up many of the global concepts and strategies of advanced play. The nctwork 
appears to have learned the general principles of a running gamc strategy. and 
it usually implements this strategy quite effectively. The nctwo~k :11w plays a 
holding game strategy reasonably well (in part thanks t o  tlic li:~~id-c~:~fted 
cu:~mples tliscusscd in Section 3 teaching it the valuc of hitting), ;~ltlior~gli i t  li;~.; 

trouble in lilling in its inner board while waiting in a tcchnic;~lly prccisc I;lshion. 
l 'hc network has learned the general usefulness of niaking a prime fo~m;~tiori, 
:~ltliough it apparently has not learned many of the long-tcrm corwcqucnccs o f  
wch a formation. Also the elements of a blitz attack h;~vc Ilccn Ic;i~rictl quite 
wcll. and in the appropriate circumstances the network is cap;lldc o f  hlit7ing 
vcry effectively. The back game strategy is probably the most diflicult game 

<1 Ions strategy to learn, for humans as well as for the network. Previous gcricr* t' 
of the network were not able to capture any of the ideas of how and when to 
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play ;I hack g;l~iic, or to defend against a back game. The current networks, 
while they usu;~lly do not pick the exact best move, seem to have at least 
caught on to some of the general operating principles in these situations. For 
examplc, in about half the situations in which the network has an oppurtunity 
to hit. i t  will choose not to do so, indicating that it recognizes this ingredient of 
a hack gamc strategy. As such, this probably puts the network well beyond the 
capabilities of nearly all conventional programs, which usually have no idea at 
all how t o  play a back game, and in fact make precisely the wrong move nearly 
all the time. 

In addition to elements of global strategies of play, the network has also 
learned many important tactical elements of play at the advanced level. The 
nctwork has learned the value of slotting, particularly on its 5 point, although it 
docs not know pcrfcctly when slotting is and is not appropriate. The battle for 
the 5 points which often occurs early in expert games has been learned very 
wcll hy tlic rictwork, and it can execute this tactic nearly as well as humans. 
The nctwork ;lppcnrs to understand the "action play," a type of move which 
involves i~ic~c:lsing hoard coverage when the opponent has only one man back, 
althougli it  docs not understand very well the notion of coverage in general. 
Other tactics such as duplication of blot exposure, and hitting and splitting, 
have also been learned by the network. 

To summarize, qualitative analysis of the network's play indicates that it has 
Icarncd many important strategies and tactics of advanced backgammon. This 
gives the nctwork vcry good overall performance in typical positions. How- 
ever. tlic nctwork's worst case performance leaves a great deal to be desired. 
The network is c:lp;hlc of making both serious, obvious "blunders," as wcll 
morc subtle rnist;tkes, in many different types of positions. Worst case perfor- 
mancc is important, because the network must make long sequences of moves 
throughout the coursc of a game without any serious mistakes in order to have 
a rcason:iblc chance of winning against a skilled opponent. the prospects for 
improving the network's worst case performance appear to be mixed. It seems 
quite likely that many of the current "blunders" can be fixed with a reasonable 
numbcr of hand-crafted examples added to the training set. However, many of 
the subtlc rnistakcs arc duc to a lack of very sophisticated knowledge, such as 
tlic notion of timing. It is difficult to imagine that this kind of knowledge could 
Ilc irnp:~ttctl t o  tlic nctwork in only a few examples. Probably what is required 
is cithcr an intr;~ct:ibly large number of examples, or a major overhaul in either 
tlic prc-computcd fcaturcs or the training paradigm. 

We have seen from both quantitative and qualitative measures that the 
nctwork has lcarncd a great deal about the general principles of backgammon, 
play, and has not simply memorized the individual positions in the training set. 
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Quantitatively, the measure of game performance provides a clcar indication of 
the network's ability to  generalize, because apart from the first conple of 
moves at the start of  each game, the network must o p e r a k  cntircly on 
gcneralization. Qualitatively, one can see after playing sevcr:d gamcs :igainst 
the nctwork that there are certain characteristic kinds of positions in which it 
does well, and other kinds of positions in which it system:itically makes 
wcll-defined types of mistakes. T h e  most concise sunim:lry o f  the tictwork's 
style of play. in our  opinion, is that it seems to make the "intuitivcly obvious" 
play, from the human expert's point of view. In other words, much of the 
knowledge learned by the network has the character of what a human would 
call common sense. As a result, the network is capable of doing certain things 
which are extremely difficult to  obtain from conventional progr:itns. 

A good example of  this is provided in Fig. 10, which illustrates a position 
from the match between Berliner's BKG program and thc human world 
backgammon champion. In this position White can eithcr play 20-24.21-23. 
Ic:~ving a blot on the 20 point, o r  16-20.16-18, leaving a Idot on thc 18 point. 
The  first play has a slightly lower immediate risk of being hit (1 1/30 versus 

Fig. lo. A snn~plc pclsiticin from 141 involving considerations 01 long-trrm v u s w  ~ I O I . ( - ~ C I I ~ I  r k k .  
While lo play 4-2. l'hc correct move is 16-18.16-20. Convc11lion:d cotilpulcr 1nopt:i11ls Iylic:llly 

pick 20-24.21-23. The network selects the right move liy :I rlc:~r 111:1tgi11. 
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13/36). but sincc the two men remain on the 16 point, there is still a long-term 
risk of cvcntually having to leave another man open. The second play is 
correct. bccausc it does away with the long-term risk entirely. To make this 
type of play with a conventional evaluation function, it is necessary t o  devise a 
sct of fc:tturcs which compute both the short-term and long-term risks, and 
which rccognize thc characteristic kinds of situations in which these computa- 
tions arc rrlcvant. This goes well beyond the sophistication of commercial 
programs, which usually make the wrong play here. (Berliner's program did 
make the correct play, because its evaluation function does have the required 
sophistication.) O n  the other hand, the network has n o  trouble finding the right 
move, clcspite the fact that it is explicitly given the short-term risk as a 
pre-computcd feature, but is not told about the long-term risk. I 

How is the network able t o  achieve this? We suggest that what the network 
Icarns from thc many examples in the data base are  the expert's general 
tcndcncics to  makc certain kinds of moves in various kinds of situations. The 
cxpcrt would tlcscribe these tendencies a s  being intuitively appealing o r  
olwions. :inrl in t h i ~  particular case, the intuitively obvious move happens to  be 
tlic corrccl one. Berliner himself says "This play is certainly the correct one, 
which any expert should make without thinking (emphasis added), but it is not 
the kind of thing computer programs are  supposed to be  able t o  dp." (41 From 
our expcricricc with the network, it is usually the case that, if a human expert 
c:in select tlic right move tvithocrt rhinkirzg, then the network will also be able to 
linrl tlic light ~iiovc. 

O r  c o u r x .  this is not to  say that the network has fully captured the expert's 
intitition. o r  tIi:l( its lcvcl of play approaches expert level. Due  to thk network's 
I~cqucnt  "I~lundcr~,"  its overall level of play is only intermediate level, 
:~lthougli it proh:ibly is somewhat better than the average intermediate-levcl 
player. Ag:,inst the ititermcdiate-level program ~ a m m o n t o o l ,  our best network 
wins :~lniost 60% of the gamcs. However, against a human expert the network 
would onlv win :~hont  35-40% of the time. 

'I'lic tictwork's level of play is all the more impressive when one considers 
thiit our siniplc sr~pcrviscd learning approach leaves out some very important 
sourccs of infor~n:ltion which are  readily available to  humans. The  network is 
ticvc~ told that the underlying topological structure of its input space re:dly 
co~rcspord.; to ;i onc-climcnsicmal spatial structure; all it knows is that thc 
inp~rt.; l o t  111 :I 450-tlitiic~isional hypercube. (The notions of spatial relationships 
I~c twcc~i  tlillcrcnt Ixwrd locations, e.g. the notion of "coverage," would he 
1x11 ticul:i~ly r~sclr~l  to tlic nctwork.) It has n o  idea of the object of the game, 
not of tlic ~ C I I S C  of tc111por:iI causality, i.e. thc notion that its actions have 
consequences. :ind l i ~ w  those consequences lead t o  the achievement of the 
ol+xtivc. 'I he tc:~clicr signal only says whether a given move is good o r  bad, 
without giving any indic:~tion as to  what the teacher's reasons are for making 
such :I jrctlgnictit. Finally, the network is only capable of scoring single moves 



384 G. TESAURO A N D  T.J. SlJNOWSKI 

in isolation, without any idea of what other moves are available. Thcsc sourccs 
of knowledge are essential to  the ability of humans to  play Ixickg:~~i~~iiori well. 
and it seems likely that some way of incorporating them into thc network 
learning paradigm will b e  necessary in order to  achieve further substantial 
improvements in performance. 

There are  a number of  ways in which these additional sources o f  knowlctlgc 
might be  incorporated, and we shall b e  exploring some of them in future work. 
For example, knowledge of the underlying 1-D spatial structure could be 
imparted by propagating a fraction of a given weight change to spatially 
neighboring weights; this would tend t o  enforce a kind of approximate 
translation invariance. Knowledge of alternative moves could be introduced by 
defining a more sophisticated error signal which takes into account not only the 
network and teacher scores for the current move, but also the nctwork and 
teacher scores for other moves from the same position. Howcver, the more 
immediate plans involve a continuation of the existing stratcgics o f  hand- 
crafting examples and coding scheme modifications to  eliminate thc 111ost 
scrious errors in the network's play. If these errors can be  climin:~tetl. :ind we 
are confident that this can be achieved, then the nctwork would I~eccmc 
substantially better than any commercially available program, and would be a 
serious challenge for human experts. We would expect 65% performance 
against Gammontool, and 45% performance against human experts. 

Some of the results of our  study have implications beyond h;ickg:~rnmon to 
more general classes of difficult problems. It  has seemed possible to some 
researchers that connectionist learning procedures would makc it possihlc to  
effortlessly construct intelligent artificial systems. According to this vicw, a 
simple coding scheme for the inputs and outputs, and a random datahasc of 
sample input-output pairs, would suffice t o  produce a network capable of 
producing correct outputs in general for all inputs. However. our work 
indicates that this is not likely to  hold for general problems for two itnportant 
rcasons. First, some coding schemes a re  better than others, bccausc certain 
aspects of a coding scheme may lead it t o  produce false gener:~lizations which 
might only be corrected with an excessive number of training patterns. A great 
tleal of effort must be  spent in developing appropriate schemes for cncotling 
the input-output information. This must be  done largely o n  a trial : ~ n d  error 
Imsis. given the general absence of theoretical principles for choosirig good 
coding schemes. (Our suggestion of using "conceptually significant" cotling 
schemes, i.e.. choosing the individual bits of the coding schcmc to corrcspo~id 
to  concepts that humans actually use in the domain. may turn out t o  hc :in 
important exception.) Secondly, randomly chosen training p a t t a n s  might not 
work, hccause certain conceptual principles of the given domain might I x  
over-represented in the sample, and other conceptual principles might he 
under-represented. In the worst case, it will be  necessary to  intelligently design 
the training set, using an intelligent mechanism for reducing the numhcr of 
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ovcr-represented situations, and an intelligent mechanism for designing addi- 
tional patterns to illustrate the under-represented situations. Again a substan- 
tial amount of human labor is required to  carry this out.  A flow chart summary 
of this process is illustrated in Fig. 11. 

An additional problem which might occur is that even with a good coding 
schcn~c  and a good training set, the minimal training time and training set size 
would scalc exponentially with the order of computation being trained [14, 15, 
21, 451, and thus high-order computations would effectively be unlearnable. 
This motivates the search for novel learning algorithms and procedures which 
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Fig. I I .  I:low cli:~rt ilidic:~ling general process of developing an artificial intelligent system using 
co~~ncctio~li\.( Ic:lrr~ing. The three main components of network development are: construction of 
the Irai~~itlg set. ~ ~ c t w r k  dcsign. and choice of training procedure. After training. one can test the 
~lct\vork's ~wrk~rrn:~ncc.  : i d  accumulate errors which can be used to improve performance. In 
g c n c ~ ~ l .  tlic proccss c;lnnot hc fully automated. Intelligent design of the training examples is 
ncccss;lry. both to retluce representation of common positions. and to hand-craft exan~plcs 
illustr:~ting rare Iwt important positions. Also intelligent design of the coding scheme using 
dom:~ili-spccilic knowlctlgc is nccessary. Ideas for training examples and coding schemes come 

from ohscrving the kinds of errors made by the network after training. 
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would scale only polynomially with the order of computation. Such algorithms 
would clearly be unable to learn completely arbitrary Boolean functions, but 
tlic kinds of functions one encounters in typical real-world problcms arc far 
from arbitrary, and it might be possible to include enough additional informa- 
tion about the structure of the problem so that it could be learned with a 
tractable number of examples. 

On the positive side, we foresee a potential for using these networks as a 
novel type of expert system. In typical commercial applications, thc cxpert 
system serves as an automated assistant, which handles most of the routine 
inputs normally analyzed by a human expert. Occasionally there will be an 
input which is too difficult for the system to handle. In that case, the system 
should be able to recognize the difficulty and notify the human expert that 
human attention is required. It might be possible to implement a similar 
feature in connectionist expert systems. For our particular application. a simple 
way to do this would be to send the "difficulty" signal in thc cvcnt thilt the 
nctwork is not able to find a clear best move, i.e., the diffcrcncc i n  scorc 
bctween the network's chosen move and the competing altcrnativcs is clr~itc 
close. A more intriguing possibility is to define an additional tcachcr sig~ial for 
an additional output unit as follows: for each position in the training set, if the 
network finds the right move (i.e. if the move it scores the highest was scored 
+ 100 by the human expert), then the teacher signal is 1, else 0. Assuming that 
the network is able to learn this input-output function reasonably wcll, the 
sccond output bit would serve as a sort of "confidence indicator" indicating to 
what extent the network thinks it is capable of finding the right movc in ;I givcn 
position. 

We also foresee a potential for combining connectionist learning tcchriiqr~cs 
with conventional A1 techniques for hand-crafting knowledge to make signifi- 
cant progress in the development of intelligent systems. From tlic practic:~l 
point of view, network learning can be viewed as an "enhanccr" o f  traditional 
techniques, which might produce systems with superior perforniancc. For this 
particular application, the obvious way to combine the two approaches is in tlic 
use of pre-computed features in the input encoding. Any sct o f  h:~nd-cr:~ftcd 
features used in a conventional evaluation function could hc c~~codctl  21s 
discrete or continuous activity levels of input units which rcprcscnt tlic cr~rrcnt 
I m r d  state along with the units representing the raw infor~ii:itio~i. (iivcn ;I 

witable encoding scheme for these features, and a training sct of sr~llicictit size 
:tntl quality (i.e., the scorcs in the training set should be I~cttcr tIi:111 tliosc of 
thc original evaluation function), it seems possible that tlic rcsrllticig ~irtwork 
c ( ~ ~ l t l  clutpcrform thc original evaluation function, as evidc~iccrl Ily 0111- cxpcri- 
mait with the Gammontool features. 

Finally, network learning might also hold promise as a mcans o f  :~chicving 
tlic long-sought goal of automated feature discovery, as evidcticctl by rcccnt 
:~pplications in signal processing [13] as well as symbolic inforniatioti processing 
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139). Our rictwork certainly appears to have learned a great deal of knowledge 
from the training set which goes far beyond the amount of knowledge that was 
explicitly eticodcd in the input features. Some of this knowledge (primarily the 
lowest-level components) is apparent from the weight diagram when there are 
no hidden units (Fig. 9). However, much of the network's knowledge remains 
inacccssihlc. What is nccdcd now is a means of disentangling the novel features 
discovcrcd by tlic network from either the patterns of activity in the hidden 
units, or from tlic massive number of connection strengths which characterize 
the network. This is one of our top priorities for future research, although 
techniques for such "reverse engineering" of parallel networks are only 
beginning to be developed [34, 35, 411. I 

Appendix A. Glossary of Backgammon Terms 
- Actiorr plny. A tactic involving splitting the back men in an attempt to 

gain additional chances to hit the opponent. This usually occurs after one or 
both of thc opponent's back men has escaped from behind one's blockade. 
- Back g(uiir An cxtrcme version of the holding game strategy in which two 

or morc points arc occupied in the opponent's inner board. This is probably 
the most difficult strategy to learn. In this situation, many of thel normal 
strategies of play are exactly reversed. For example, one often passes up 
chances to hit the opponent so as not to impede his forward progress. 

- Bnckgnrirr~iorr. Similar to gammon except that there is a further require- 
ment that the opponent has one or more men in the opponent's inner board. 

' Thc nu~iibcr of points won is triple the normal value. I 

- nor .  The strip in tlic middle of the board where blots are placed after they 
arc hit. Fro111 hcrc, men must re-enter in the opponent's inner board, so men 
on the bar arc effectively all the way back at the start in terms of the race to 
the finish. All mcn must be moved off the bar before other ,men can be moved. 
If a man on the bar cannot be moved, the player loses his turn. 
- Bear-off. The final stage of the game, in which one moves one's pieces off 

the board. This can only take place when all men are in one's inner board. 
- Blitz garirc. A stratcgy consisting of an all-out attack attempting to close 

out tlic opponent (i.c. trap men on the bar behind a completely closed inner 
b(>i~rtl, so that no riiovcmcnt is possible) and win a gammon. In this strategy, 
grcatcr tIi:111 1101nii1l risks arc taken. For example, one often hits the opponent 
and Icavcs it nian in tlic inner board exposed to a return hit. 
- I ~ l o ~ . k n d c .  A configuration of several nearby points which restricts partial- 

ly or coniplctcly tlic opponent's ability to move any pieces located behind the 
Ihck:itlc. 
- Blot. A singlc man at a particular location. An opponent piece can land 

on this location. When this happens, the blot is said to have been "hit" and is 
rnovctl to thc bar. 

- Blot e-rposrrre. For :I given blot, the number of rolls out of 36 which would 



allow the opponent to  hit the blot. The  total blot exposurc is thc nunibcr of 
rolls out  of 36 which would allow the opponent t o  hit any blot. Blot exposure 
depends on: (a) the locations of all enemy men in front of the blot; (b) thc num- 
ber and location of blocking points between the blot and the enemy men; and 
(c) the number of enemy men on  the bar, and the rolls which allow them to 
re-enter the board, since men o n  the bar must re-enter before blots can bc hit. 
- Breakirrg. A move in which you initially have two o r  morc nicn at a 

location, and end up  with only one  man present. 
- Builder. Usually refers t o  the extra men on  a point which can be  moved t6  

make new points without breaking the  existing one. 
- Clearing. A move in which you initially have two o r  more men at  a given 

location, and end up  with n o  men present. 
- Conracl. A situation in which the opposing forces are  engaged, i.e., each 

side has to  move past a certain humber of the opponent's pieces in ordcr to  
reach thc finish. Hitting and blocking are  possible in such situations. 
- Gammon. Whcn m e  side removes all pieces from the hoilrd Iwforc thc 

opponent has removed a st, ,..- piece, this is called winning :I g;tni~iio~i. The  
n&ber of points won is double the regular value. 
- Holding game. A strategy in which two o r  more men are deliberately left 

on a point far back waiting for a chance t o  hit the opponent. 
- Inner board. Locations 1-6 constitute Black's inner board, while locations 

19-24 constitute White's inner board. 
- Ortter hoard. Locations 7-12 constitute Black's outer board, whilc locs- 

tions 13-18 constitute White's outer board. 
- Ou~jield. A term referring the entire outer board region (loci~tions 7- 18). 
-Piling. Placing too many men (usually four o r  more) on a siriglc point. 
- Poirrr. When one side has two o r  more men on  a particular board location, 

this is referred to  as having established, o r  "made" that point. Opponent 
pieces then cannot land on this location. 
- Priming game. A strategy which involves trapping the opponent behind a 

prime, i.e., a blockade consisting of six consecutive points. Such a blockade is 
impossible to  escape. 

- Race. A situation in which n o  contact is present. 
- Rurrrririg gnrrre. A strategy which consists primarily o f  attc~iiptirig t o  csc:lpc 

tlic opponent's blockade and move one's men safely homc, whilc ;1t thc s:trnc 
time hitting the opponent and trapping him behind onc's o w n  I~lockitdc. 
- Slot/irtg. An expert tactic of deliberately leaving a blot cxposcd to ;I dircct 

hit, in the hopes of covering it and making a point on the ncxt run. 
- Slripping. A move which removes all builders from a point ;uid Ic;tvcs only 

two men there. Any further moves from this point will brcak it. 

ACKNOWLEDGMENT 

This work was inspired by a conference on "~vol"tion, Games and Learning" hcltl :II Los Al:in~os 
National Laboratory, May 20-24, 1985. We thank Hans Berliner for providing some of thc 

A PARALLEL NETWORK THAT LEARNS BACKGAMMON 389 

positions oscd in thc database. Sun Microsystems Inc. for providing the source code for their 
Gamtnontwl program. Suhutai Ahmad for writing the weight display graphics package, Bill 
Bogstid for assistance in programming the back-propagation simulator, and Bartlett Mel, Peter 
Frey and Scott Kirkpatrick for critical reviews of the manuscript. G.T. was supported in part by the 
National Center for Supercomputing Applications. T.J.S. was supported by a NSF Presidential 
Young Investigator Award, and by grants from the Seaver Institute and the tounsbury Foun- 
dation. 

REFERENCES 

1. Acklcy, D.H. and Berliner. H.J., The QBKG system: Knowledge representation for produc- 
ing and explaining judgments, Tech. Rept. CMU-CS-83-116, Department of Computer 
Science, Carnegie-Mellon University, Pittsburgh, PA (1983). 

2. Ackley, D.H.. Hinton, G.E. and Sejnowski, T.J., A learning algorithm for Boltzmann 
machines, Cognitive Sci. 9 (1985) 147-169. 

3. Bachrach. J.R.. Connectionist learning in backgammon, COINS Tech. Rept., University of 
Massachusetts. Amherst. MA (1986). 

4. Berliner. H.. Computer backgammon, Sci. Am. 243 ( 1 )  (1980) 64-72. 
5. Bcrlincr, 11.. Expcricnccs in evaluation with BKG: A program that plays backgammon. in: 

I'r~~ccrrlinp IJC'Al-77. Carnhridge, MA (1977) 428-433. 
6. Rcrlincr. 11.. On thc construction of evaluation functions for large domains, in: Proceedings 

/ / ( 'A/-79.  Tokyo ( 1070) 53-55. 
7. Bourland, tl.  and Wellekens, C.J., Speech pattern discrimination and multilayer perceptrons, 

Tech. Rept. M.211, Philips Research Laboratory, Brussels, Belgium (1987). 
8. Cooke. B.. Cliompionship Backgammon (Prentice-H111, Englewood Cliffs, ~ j ,  1979). 1 ,  
9. Cookc. B.  and Bradshaw, J.. Backgammon~The Cruelest Game (Random House, New York, 

1974). 
10. Dwck. J.. Backgnvr,~lon for Profit (Stein and Day, New YO&, 1978). 
1 I .  Frcy. P.W. (Ed.), Clress Skill in Man and Machine (Springer, New York, 2nd ed.. 1983). 
12. Frcy. P.W.. Algorithmic strategies for improving the performance of game-playing programs, 

in: I). I;:~rmcr. A. Lapedcs, N. Packard and B. Wendroff (Eds.), Evolution, Games and 
Learning (North-I-lolland, Amsterdam, 1986). 

13. Gorman, R.P. and Scjnowski. T.J., Analysis of hidden units in a layered network trained to 
classify sonar t:lrgcts. Neutral Networks 1 (1988) 75-89. 

14. Hampson. S.E. and Volper, D.J., Linear function neurons: Structure and training. Bid .  
Cyhern. 53 (1986) 203-217. 

15. Hampson, S.E. and Volper, D.J., Disjunctive models of Boolean category learning, Biol. 
Cyheni. 56 (1987) 121-137. 

16. tlintnn, G.E. ,  Connectionist learning procedures, Tech. Rept. CMU-CS-87-115, Computer 
Scicncc Drp:lrtmcnt. Carncgic-Mcllon University. Pittsburgh, PA (1987). 

17. Ilinton. G.F. :wd Scjnowski. T.J., Learning and relearning in Boltzmann machines, in: J.L. 
Mc('lcll:~tirl :~nd I>.l<. Rumclhart (Eds.), Parallel Di.rtributed Processing: Explorarions in tlrc 
Micrrmtrrrcrrwr of Cognition 2 (MIT Press, Cambridge, MA, 1986). 

18. 1loll:incl. J.11.. Escaping brittleness: The possibilities of general-purpose learning algorithms , 
applictl to par;~llcl rdc-based systems, in: R.S. Michalski, 3. Carbonell and T. Mitchell (Eds.). 
Mncl~inr 1.cornirtg: Art Art$cial Intelligence Approach 11 (Morgan Kaufmann, Los Altos, CA. 
19x6). 

19. Ilollnnd, 'I'.. Rock~n~rir~~orr for People Who Hate to Lose (David McKay, New York, 1977). 
20. Jacohy, 0. ant1 Crawlord, J.R., The Backgammon Book (Bantam Books, New York, 1970) 
21. Jutltl, J.S.. Complcxity of connectionist learning with various node functions, COINS Tech. 

Rcpt. 87-60. University of Massachusetts, Amherst. MA (1987). 
22. 1.c Cim, Y.. A lcarning procedure for asymmetric network, in: Proceedings of Cogniriva 

( f i r i s )  85 ( 1985) 599-604. 



23. LC (:nn. Y.. Mod~lcs mnneclloniiiti de ~'Apprcntiscn~e. ~h.13. W~csir. I Ini \c.~ci~v c,r 1':11ic VI 
(1987). 

24. Lchky. S. and ~ejnowkst, T.j.. ~ e h o r k  model 01 shapc-lrom-sh:~cli~ig: N~III:I~ l~~nr l i on  :~risrs 
from hoth rcceplivc and projective fields, Nature 333 (191U1) 452-44. 

25. Levy. D.N.L. (Ed.), Con~purer Gamesmanship: 771e Conrpl~tc Guklr r r~ ('rnlrirrs nml Snrrmr- 
btg Inrelligml Game Progranu (Simon and Schuster. New York. l082). 

26. Magriel, P., nackgommoA (Timu Books, New York, 1976). 
27. Maxwcll. T., Gilcs, C.L. and Lee, Y.C., Generalizalion.in ncnr:~l nrtw~rks: r l ~ r  rrwlipr~ily 

problcm. in: Proceedings IEEE htcrnational Confercncc on Nrrrrel h ' m ~ . ~ r L ~  (lW7). 
28. hlichalski, R.S., Carhonell, 1.0. and Mitchell. T.M. (Eds.). n%lni-lrhrr 1.cnrrritrp: Arr Atrilicinl 

Intcl l i~rnrr Approach (Tioga, Palo Alto. CA, 1983). 
29. Minsky, M. and Papert, S.. Perceprmns (MIT Press. Cambridge. MA. IWJ) 
30. Mitchell, D.H.. Using features to evaluate positions in  expert3 and novices' Othclto pnmcs. 

Masler's fhesis, Northwestern University. Evanston. 1L (1984). 
31. Qian, N. and Sejnowski. T.1.. Predicting the secondary strvcturc nl glc~Iwl:~r p ro l r i~~s  t~sing 

neural network models, I .  Mol. Biol. 202 (1988) 865-884. 
32. Parker. D.D., Learning-logic, Tech. Rept. TR-47. M l T  Ccntcr Aw ( 'on ip~~l ;~ l ic~~~:~I  Rrcr:~rch in 

Ecrwomics and Managcmcnt Science, Cnmhridge. MA (IORS). 
33. I'ragcr. R.W., Ilnrrison. T.D. nnd Fallside, F.. Uoltzmann tn:~rhi~~rs 1111 -prrl-l~ ~rr tv~ i l ic ,n .  

Ctnnp~rt. Slrcrc* 1.an.q. 1 (1987) 3-27. 
34. R~isrnlictg. C.R.. IZcvcaling the strcldurc nf NETt:~lk's intcrn:~i ICI.I~~~~II~;I!~~!IIC. in: 1 '1 ,wd 

i n p  Ninrlt Ar~nual Cbnfcrmcc offhe Cognitive Srienrc Socir?, (1:tllw11111. I li l lwl:~lc. N.1. I1W7). 
35. Roscnhcrg. C.R., Learning the wnnection between spclling and SOUIIII: A II~.IWOI~ model 111 

oral rcnclinp. P1t.D. Tltcsis. Prlncelon Universily. Frincclon. NJ (1'187). 
36. Roscnblatt. F.. Prirtciylrs of Neurodynamlc.s (Spnrlan Books. N r w  Yt~l r .  I'Wl). 
37. Rnnrclharl. D.E. nnd McCtcllnnd. J.L. (Eds.). Pornllrl I~ i r t r i l ~~ t r r~d  I ' r r~r t~~h: :  I:~ld,vrrrir~rr~ i r r  

tlrc Ifirro.rmrrture of Cognirion 1-2 (MlT Press. Camhriclgc. MA.  l'IS(*). 
3R. Rmnclhart. D.E.. Hinton. O.E. and Williams, R.J.. Lcarning inlcrn:d ~cl,~csc~~f:rt i rw Iy rl l l t r  

prqngation. in: D.8. Rumclhart and I.L. McClcllancl (Eel.;.). I 'rr~~rllcl I l i~n i l r r r~d I'rrvr r.<\irrp: 
E.rp1rrrrrtir1rt.r in Ac Mirrmtrucrnrc of Cognition I (Ml'1' I'rcss, (':~mlr~itll:r. hl,\. I'W.). 

39. Rnmclhart. D.E. Ilinton, O.E. and Williams. R.J.. I.carninp ~rl ,~ccrnl:~t io~~c IT Iw+- 
prnlragating crmrs, Natirrr JZ3 (1986) 533-536. 

40. S:tmucl. A.L.. Some stctdicx in  machine learning using the g:nnc of rhrl-kr~r. l l11 l l  1.  Net 1h.v 
3 (1959) 210-229. 

41. Scjnowski, T.J. and Rosenbcrg, C.R., Parallel networks that IC:IIII to prcrnqmllrc I:nrrti41 tryt. 
~irnr~11r.r Syrt. 1 (1987) 145-168. 

42. Snlton. R.S.. Learning to predict by the methods of t cn~p~ra l  clilfcrrnrr~. f i I I: I :~hc ' l rrh. 
Rep!. TRR7-509.1 (1987). 

41. Tcsaaro. (1.. Sc:~ling relationships in  back-propagation Icarninp: ctrprn~lcncr TVI I~:~ininfr v t  
s ix .  Civnp1r.r Syt. 1 (1987) 367-372. 

dJ. 'lcsaurc~. (1.. Ncurnl nclwork defeats creator In hackp :~mm~~~~ III:II~II. TVCII 11q*1. NII. 
CCSR-W-6. Centcr lor Complex Systems Rcrcarch. Univc~sity 01 I l l i ~w , i c .  11tO:~n:1 ('IWIII- 
p;~ipn. iL (1988). 

45. Tcsa~ro. (1. and Jnnswns, 0.. Scaling relationships in hack -p r t~p :~~ :~ t i<~~~  Iv:~tnin~: ~L~~~VIIIIVII~T 
on prcdicatc nrdcr. Conrplex S~V.  2 (1988) 39-44. 

46. Wi!lrow. n. and Ilolf. M.E.. Adaptive switching circuits. httifrrtr rr/ Ndi,v I.rr!:irr~v.r $.  Ili,.\rrrrt 
Elri.rrrntir Sho~r nnd Contvnrlon, Convcnrlon Rrcord 4 (I*)Nl) 06 Ilrl. 

Recrircd Ot.tohrr 1987; revheted versidn received J w e  ICAW 




