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Abstract 
A neural network model based on the anatomy 

and physiology of the cerebellum is presented. The 
model learns to generate predictive smooth pursuit 
eye movements to follow target trajectories, and re- 
spond to large tracking error by producing corrective 
saccades 1191. A biologically motivated learning rule 
based on Bayesian analysis controls the plasticity 
at the input layer of the cerebellum (81. The pos- 
sibility that this unsupervised learning rule at the 
granule cell synapses of the cerebellum uncovers la- 
tent structures in their mossy fiber inputs is inves- 
tigated. Using the unique convergence of the gran- 
ule cells at the mossy fibers glomemli, the learn- 
ing rule approximates the emergence of a sparsely- 
distributed and statistically-independent code at the 
parallel fibers, in contrast with previous learning 
rules that only produce a dewrrelated representa- 
tion [I31 [l8]. Such a wde is beneficial for learn- 
ing downstream at the Purkinje cells: It simplifies 
the credit assignment problem between climbing and 
parallel fiber activities, while retaining the ability 
for generalization that binary codes or fixed synap- 
tic weights used in many cerebellum models lack [19] 
[30]. Simulations with a spiking model of the cere- 
bellum are used to study the resulting representation 
at the parallel fibers and Purkinje cells. 

1 Introduction 
The cerebellum (Cb) has been suggested to act 

as  a short-term predictive engine in the brain [7] 
111 1231 whose processing may require three dis- 
tinct functional stages: 1) the transformation and 
combination of cerebellar inputs in a pre-processed 
form appropriate for predictions; 2) the identifica- 
tion and selection of the pre-processed inputs that 
define the context of the prediction and that can 
anticipate the neural activity to predict and 3) the 
construction of the predictions themselves. The 
first stage has been suggested to occur in the gran- 
ular layer (fig. I) ,  the second stage a t  the Purkinje 
cells and inhibitory interneurons and the third a t  
the Purkinje cells and deep cerebellar nuclei neu- 
rons (71. 

The computational strength of the cerebellum 
may be to produce predictions or predictive neu- 
ral commands dependent on precise contextual in- 
formation. Hence, as context changes are recog- 
nized, the cerebellar predictions will change accord- 
ingly. We suggest that the information process- 
ing of mossy fiber inputs by the granular layer of 
the cerebellum gives the cerebellum the required 
sensitivity to contextual changes to produce pre- 
cise context-dependent predictions. By definition, 
a context is a situation that can occur indepen- 
dently of another and that is composed of multi- 
ple elements happening together. Hence, contex- 
tual information a t  the cerebellum could be pro- 
vided by a set of granule cells firing independently 
of other sets, which in turn specify other contexts. 
A sparse and distributed representation that mini- 
mizes statistical dependencies in the parallel fibers 
would therefore give the cerebellum the ability to 
recognize different contexts and construct context- 
specific predictions effectively. The theoretical de- 
velopment of learning rules in the granular layer 
of t.he cerebellum in this paper suggests that one 
potential advantage of cerebellar computation for 
machines is to acquire the ability to learn different 
tasks in different contexts something that is essen- 
tial for continuous and long-term learning. 

Recently, probabilistic and information theoretic 
approaches to learning in neural networks have 
made new interesting connections with neural func- 
tions. For example, the representation in networks 
(i.e. what is encoded in their units) after being 
presented with a series of natural images (forests, 
fields, mountainous terrains, ...) a t  its inputs is 
found to be similar to the responses of cells in the 
visual cortex 161 1261 etc. These networks learn in 
an unsupervised manner (i.e. without a teacher to 
give the correct answer) to extract latent structures 
in their inputs 151 1151 120) 1211 1251. These results 
hint. a t  the possibility to understand the functional 
processing of neurons and their diverse responses 
by using general principles of Bayesian probability 
and information theory. However, all of these re- 
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sults have been obtained in systems with early sen- 
sory signals and it has not been clear how to apply 
these principles in higher level of cortical processes 
(although see 1331). 

In this paper, we investigate whether these tech- 
niques could be applied to a well known system in 
the brain that is a corner stone of automatic learn- 
ing and adaptation in the nervous system, the cere- 
bellum [8]. We present preliminary results demon- 
strating that such techniques may explain the first 
layer of processing in the cerebellum. 

2 Methods and Results 
The role of the granular layer which consists of 

mossy fiber (Mf) glomeruli (Gl), granule (Gc) and 
Golgi (Go) cells is two fold. One is to transmit to 
the Purkinje cells through the parallel fibers a com- 
plete contextual account of mossy fibers (Mfs) ac- 
tivity, and the other is to provide it in a form which 
facilitates adaptation in the Purkinje cells and in- 
hibitory interneurons of the cerebellar cortex. We 
maintain that a sparse and distributed representa- 
tion in the parallel fibers that maximizes the mutual 
information between the mossy fibers (Mfs) and the 
parallel fibers and minimizes the  statistical depen- 
dencies among parallel fibers fulfills t.hese two roles. 

A difficult c red i t  ass ignment  problem The 
Purkinje cells, which receive on the order of 100 
000 parallel fibers, axons of the granule cells (Gcs), 
face a difficult credit assignment problem in iden- 
tifying which parallel fiber synapse must be mod- 
ified in connection with climbing fibers activity, 
which direct learning a t  the Purkinje cells (21 [7] 
[22] 1281. Cerebellum models often solve this prob- 
lem by using thresholding together with a binary 
code to  limit the number of active parallel fibers 1191 
1301. These models will often have poorer general- 
ization abilities than an analog code would. One 
way t o  keep the generalization benefits of an analog 
code and solve the credit assignment problem may 
be to use a sparsely-distributed [12] and (nearly) 
statistically-independent representation [5] in the 
parallel fibers. A sparse and distributed code tends 
to minimize the time during which cells are active, 
and a statistically-independent representation min- 
imizes the redundancy across active cells. Both 
properties reduce the complexity of the credit as- 
signment between active parallel fibers and climb- 
ing fiber a t  a Purkinje cell more effectively than 
previous learning rules that  only produced a decor- 
related representation [13] a t  the  parallel fibers [18]. 

T h e  granular  layer: a n a t o m y  Mossy fiber in- 
puts to  the cerebellum terminate in glomeruli where 
granule cell dendrites and Golgi cell (Go) axons 
converge to make synaptic contacts (fig. 1). A 
glomerulus contacts about 20 to  50 granule cells 

through excitatory NMDA and AMPA receptors 
and granule cells receive a combination of 4 to 7 
mossy fibre inputs (161 j27]. The large number of 
Gcs in the Cb may be related to t.he large number of 
possible Mf input combinations 1221. A Golgi cell 
integrates the output of approximately 1000-6000 
granule cells and receive inputs from a number of 
mossy fibres. 

Moss 

Figure 1: Granular layer of the cerebellum considered 
in the model. The mossy fibers (Mfs) end in glomeruli 
(GI) which make contact with granule cells (Gcs) den- 
drites. The granule cells send their parallel fiber axons 
to the Purkinje cells and also make contact with a Golgi 
cell (Go) which inhibits every granule cell dendrites at  
the glomeruli. Golgi cells also receive a number of in- 
puts from mossy fiber glomeruli directly (not shown). 
A granule cell (Gc) receives 4 7  mossy fiber (Mf) in- 
puts (top) whereas a mossy fiber glomerulus contacts 
20-50 granule cells (bottom) 1161 1271. The GI-Gc and 
Go-Gc synapses are represented respectively by matri- 
ces W and V of identical dimensions, where vji is the 
weight of the inhibitory GO-Gc synapse above the ex- 
citatory Gli-Gcj synapse with weight wj i .  Note that 
the Purkinje cells, output of the cerebellar cortex, are 
not part of the granular layer, but are shown to com- 
plete the cerebellar network. The arrows indicate the 
propagation of activity in the network. 

The  G1 is the site of complex receptor interac- 
tions. A Gc receives GABAergic inhibition from a 
Golgi cell axon on its dendrites directly above the 
mossy fibre glomerulus synapses. Glycine is also 
released by the Go in addition to  GABA, and has 
been shown to potentiate the NMDA response in 
cultured mouse brains neurons 1171. Moreover, im- 
pairment of GABAA receptor activity by NMDA 



2000 7th Joint Symposiunz on Neural Conzputation Proceedings 23 

receptor activation in rat. cerebellum granule cells 
has been observed 1291 whereas 'spillover' gluta- 
mate from mossy fibers has been shown to inhibit 
GABA release from Golgi cell terminals by activat- 
ing presynaptic metabotropic glutamate receptors 
(mGluRs) [24]. These complex interactions are not 
modeled here but are the subject of current inves- 
tigations. 

T h e  granular  layer: computat ion The pro- 
cessing of a Gc in the granular layer may be vi- 
sualized as two nested projections of the multidi- 
mensional Mf space [8]. The first is a projection 
of the multidimensional Mf space on to  the 4-7 di- 
mensional subspace defined by the 4-7 Mf inputs 
to the Gc. The ensemble of Gcs is therefore at- 
tempting to  represent the high multidimensional 
Mf space through a large ensemble of projections 
onto 4-7 dimensional subspaces. The second pro- 
jection is the projection of the 4-7 dimensional Mf 
subspace defined by the Gc inputs onto the one- 
dimensional firing of each Gc. Whereas the first 
projection is fixed during development, this second 
projection is plastic, as recent evidence of LTP at  
the Mf-Gc synapses show (91, and is defined by the 
synaptic weight values a t  the G1, namely the G1-Gc 
and Go-Gc synapses. The question is what should 
the weight values be? Ignoring the influence of the 
Go cell for the moment, the question is equivalent to 
asking in what direction in the 4-7 dimensional Mf 
input subspace should the Gc orient its response? 
One answer is in the direction which gives the Gc 
the sparsest probability density function (i.e. one 
with high kurtosis) 1121 or the most non-Gaussian 
density function [14] (151. (Note that a sparse den- 
sity is a particular example of a non-Gaussian den- 
sity function.) The reason is that Mf inputs are not 
random, and therefore that some degree of redun- 
dancy will be present. We hypothesized [8] that this 
redundancy produces sparse distributions in the Mf 
subspaces 1121. 

The Go inhibitory inputs may have different ef- 
fects on the Mf to  Gc project.ion. If the inhibitory 
weights onto all the dendrites of one Gc are equal, 
then the net effect could simply be to reduce the 
overall Gc activity, or set a threshold that vary 
with the Go activity. On the contrary, if the in- 
hibitory weights onto each dendrite of a particular 
Gc can take on different va!ues, then the Go in- 
hibition effect is more complex. As the Go activ- 
ity changes, the inhibition can change on-line, by 
different amount for each Gc dendrites, the effec- 
tive weights associated with Mf inputs. The net 
result is a rotation of the Gc sensitivity in Mf input 
space that varies with the activity of the Go. This 
modulation may allow the parallel fibers to  flexibly 
encode specific spatio-temporal patterns of mossy 
fibers activity. As the context changes and that 

mossy fibers activity changes, the Gc activities will 
change, which in turn modulat,e the activity of the 
Go that receives inputs from these Gcs. The change 
in Go activity in turn may change the orientation of 
the sensitivity of the GCS in Mf input space, caus- 
ing further changes in Gc activities. The Gcs may 
therefore track changes in Mf inputs in particular 
directions dictated by the overall context that sets 
the Go activity level. 

One of the best description of the fundamental 
nature of data is given by maximizing the indepen- 
dence index of projection as offered by independent 
component analysis (ICA); this procedure has been 
successfully used for unsupervised exploratory pro- 
jection pursuit 1151. This means that the spars- 
est direction (or most non-Gaussian) in the Mf in- 
put subspace, and therefore the Mf-Gc synaptic 
weights, can be found, in principle, by using algo- 
rithms that minimize the statistical dependencies 
of the outputs [5] [15]. 

The granular  layer: model  A linear relation- 
ship between the activity of the mossy fiber inputs 
x and the granule cells activity s is assumed. Fur- 
thermore, we assumed that a Go contacts every Gc 
dendrites a t  every GI in its arbor so that the Go- 
Gc synapses can be represented by a weight matrix 
V. The number of GI-Gc and Go-Gc synapses a t  a 
G1 are therefore equal, with respective matrices W 
and V of identical dimensions (top panel in fig. 1). 
The Go is modeled as having a substracting effect 
on the Mf input x so that the Gc activity is mod- 
eled as s = W x  - VLz  > 0, where z is the 
Go activity, and 1 is a column vector of 1's. We 
also write z = l z ,  to represent a column vector of 
identical z values. The granule cell activities are 
therefore the responses of the projection of x into 
s performed by the weights W and activity Vz. In 
the following, we assume that the number of granule 
cells receiving the same mossy fiber inputs is equal 
or smaller than the number of mossy fiber inputs 
to  a granule cell, i.e. that if a granule cell receives 4 
Mf inputs there are a t  most 4 granule cells receiv- 
ing these same 4 Mf inputs. This corresponds to 
a locally undercomplete (< 4) or complete (= 4) 
representation of each set of 4 Mf inputs by the 
Gc, although, since the number of Gcs exceeds the 
number of Mfs by a factor of more than 10 000, 
the global representation at the granular layer may 
itself be overcomplete or not. 

Ro le  of Golgi cells If the Mf inputs have the 
form x = f + x, where x, is the mean of x 
and f has zero mean, x, will be large and posi- 
tive since the firing rates for the mossy fibres may 
be large and positive. As a result, the Gc activity 
s = W X  + wo will remain centered a t  0 only if the 
bias weight vector is wo = - W x ,  and negative. 
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Tlie bias w, is approximated by - V z ,  giving t.o 
the Go the role of setting the threshold of Gcs so 
that their activities s  remain sparsely distributed 
at. 0. 

Feedforward computation 

Mossy 
G 

SJ = 1, It;, x, - -? -, v,,z 

Backward summation 

Figure 2: Feedforward computation in the model 
for computing cell responses and backward summation 
used for directing plasticity of the synaptic weights [8]. 
The variables x, s and z 2 0 represent the firing rate 
activity of the mossy fibers, granule cells and Golgi cell 
respectively (top). The quantity Xi directs learning at  
the glomerulus i (bottom) and is computed using the 
activity of granule cells propagated back along their 
dendrites (granule cells are electrotonically compact, 
see also 1311). 

Learning rules The Gc activities are modeled 
as s  = W x  - V z  with s , x , z  3 0 with a 
sparse (high kurtosis) and statistically independent 
prior probability density f, ( s )  = H i  f ,  ( s i )  where 
f , (s i)  was chosen to be the same exponential den- 
sity for all Gcs, f ,  ( s ; )  = a exp ( - a s i )  = 7 1  (si), 
and where T I ( . )  is the gamma density of order 
1 '. x ,  s  and z represent the firing rate of the  

'The gamma density of order N is 7 ~ ( 8 i )  = 
,N N - l  -a#< m e i  e where r ( N )  is the gamma function. 

- ,- , 
Gamma densities have the property that the density ~ z ( x )  
of the sum of two independent random variables z = s1-l-82 

with respective gamma densities of order p and q, ~ ~ ( 8 1 )  

and r q ( 8 2 ) ,  is a gamma density of order p + q, f r  ( z )  = 
7 P + P ( 4 .  

Mf, Gc and Go respectively. Due to the positive 
constraint, the prior is more precisely f , ( s i )  = 
ae--. U ( s ; )  where U ( - )  is the step function. 

To simplify the derivation of the learning rules, 
this prior was approximated by two exponential 
priors, f , (s i)  = a exp ( - a s i )  for s  > 0 and 
f s (s i )  = a e x p  ( p s i )  for s  < 0 ,  where p >> a. 
Taking the limit as p --t oo, the original prior with 
the step function is recovered. 

The Go activity is given by the sum of Gcs activ- 
ity: z = z L l  si,  where the number of Gcs N is 
about 1000-6000 (271. The Go density turns out to 
be a gamma density of order N ,  f ,  ( z )  = - y ~  ( z )  
and for large N ,  N >-J 200, the  gamma den- 
sity approaches a Gaussian density with a mean 
p(z )  = N/a and a variance aZ = N / a 2 .  In 
the fouowing, the simplifying assumption that  the 
Go cell activity is independent of the mossy fiber 
inputs x and constant at  its mean value is made. 
The more realistic dependent case is currently be- 
ing investigated. 

Bayesian derivation w i t h  m a x i m u m  like- 
l ihood [5] [21] [25] The objective is to maxi- 
mize the probability density of the input data 
(X) given the model. The likelihood func- 
tion in terms of M observations xk of x is 
f x ( x l w ,  v) = nEl ~ , ( X ~ I W ,  v).  Assuming 
a complete representation where 4 Gcs receive the 
same 4 h4f inputs, the 4-dimensional Mf input 
can be written as x = W W 1 ( s  + V z )  in the 
linear regime of s  = W x  - Vz by inverting the 
network. Droping the index k, the density of a 
single data point is obtained by marginalizing over 
the states of the network, f,(xlW, V )  = 
J fx(xIsY zy  W ,  V )  fsz (sy  z )  ds d z  where 
f,(xls, z, W ,  V )  = &(a:- W - l s -  W - ' V z )  and 
where 6 ( - )  is the n-dimensional delta function. The 
joint density distribution fsz(s ,  z )  = f , (s)  f z ( z )  
since s  and z are assumed independent here, and 
f ,(z)  is a delta function, since z is assumed fixed 
a t  its mean value. 

The learning rules for { w j i } , { v j i }  are derived 
by taking the gradient of the log likelihood and mul- 
tiplying the results by W W T  131 [21]: 

for active granule cells sj > 0 18). The complete 
learning rules are shown in fig. 2 (bottom); the 
synaptic weight update rules change sharply de- 
pending on whether the Gc is active or not. No- 
tice that  a backward summation C j  sj  wji from 
Gc activity is required a t  the i th  G1 and that the 
particular connectivity at. the G1 makes its com- 
putation possible (see below). This summation 
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is unique to the it11 Gl, and is the same for all 
weight changes AwJi a t  that Gl, but the difference 
w,, - CY xj s3 w , ~  is unique to eacli synapse at 
that G1. 

Although these learning rules were derived fot 
the complete case, Girolami et al. 1151 showed that 
the same learning rules hold whether s forms a com- 
plete or undercomplete representation of x, i.e., in 
our case, whether the number of Gc s with the same 
Mf inputs is equal or smaller than the number of 
Mf inputs x t o  s. 

The backward summation xj s j  wji is biolog- 
ical plausible in the granular layer of the  cerebel- 
lum due to the  unique convergence of information 
a t  the glomeruli. Because the Gcs are electroton- 
ically compact, the spiking activity a t  the soma is 
assumed to be reflected at the dendrites. In addi- 
tion, patch-clamp recordings made from the den- 
drites of neocortical pyramidal cells in brain slices 
have showed that  action potentials initiated first 
in the axon can actively propagate back into the 
dendritic tree 1311. Na+-dependent action poten- 
tials have also been shown to backpropagate over 
the dendrites in an activity-dependent manner in 
CA1 pyramidal neurons of the rat hippocampus 
[32]. The biophysical mechanisms for computing 
the backward summation and its distribution a t  ev- 
ery synapse at the G1 are currently being worked 
out [lo]. 

S m o o t h  pur su i t  m o d e l  A spiking neural net- 
work model based on the anatomy and physiology 
of the cerebellum is presented. The model learns to 
generate predictive smooth pursuit eye movements 
to follow target trajectories, and respond to  large 
tracking error by producing corrective saccades (41 

181 ~ 9 1 .  
The granular layer contained 1955 Gcs that  re- 

ceived 200 Mf inputs encoding for different aspects 
of eye movements and target: 10 Mfs encoded the 
target position and velocity for each, 90 Mfs en- 
coded the position and velocity of the eye relative 
to  the head for each 141. Each Gc received inputs 
from a single Go and a unique set of 4 Mfs. The 
Gcs projected to  10 Go and a single Purkinje cell. 
The Purkinje cell projected to a cerebellar nucleus 
neuron and received a climbing fiber from the  in- 
ferior olive that  encoded retinal velocity slip of the 
target during smooth pursuit. The nucleus neuron 
encoded the output eye velocity to follow a tar- 
get that oscillated in one dimension with angular 
position given by 0 = 3sin(27rt)/4 where t is the 
time. The parameters of the  Gc prior were a = 0.2 
and /3 = 10. To adapt the  analog learning rules 
to a spiking network, firing rates were computed 
by taking a moving average of activity over a pe- 
riod of 50 ms and making synaptic weight updates 
every 100 ms. A saccade to the target was gen- 

a) Saccade Rate 

I 
0 2 4 6 8 10 12 14 16 

lime (1005 units) 

Figure 3: Performance comparison of tlic smooth pur- 
suit cerebellar model for two different granular layer 
representations. The mean and standard deviation of 
the saccade rate over a sliding 100 seconds window are 
shown for the sparse and statistically-independent (SSI) 
representation obtained from the present learning rules 
and a decorrelated representation (Hebbian) that used 
Hebbian and anti-Hebbian learning rules for the Mf-Gc 
and Go-Gc synapses, respectively 1181. The number of 
saccades per second (Hz) is representative of the per- 
formance of the system since a saccade was generated 
whenever the eye deviated from the target by more than 
0.25"away from the target [4] [8] 1191. 

erated whenever the eye was more than 0.25Oaway 
from the target; the number of saccades in a given 
period of time was therefore an  indication of the 
performance of the system in smooth pursuit. 

The performance of the system with the present 
learning rules that  approximate a sparse and 
statistically-independent (SSI) representation in 
the Gcs was compared to the performance with 
learning rules leading to a decorrelated representa- 
tion (Hebbian) at the Gcs 1181. The learning rules 
for the decorrelated representation were: Hebbian 
for the Mf-Gc synapses and anti-Hebbian for the 
Go-Gc synapses. The performances for the two r e p  
resentations are compared in fig. 3. The SSI r e p  
resentation has a mean saccade rate that  continues 
to decrease whereas the Hebbian representation re- 
mains a t  the same level after an  initial drop. 

Examination of the Gc activities shows a sparser 
patt.ern of activities developing in the SSI model 
than in the Hebbian model (fig. 4). With the SSI 
representation, the  Gc distributions closely match 
the exponential priors used. Note that  here the 
peak of the priors was chosen to be a t  10 Hz in- 
stead of zero for easier comparison with the other 
representation. In the Hebbian representation the 
distributions have significantly higher means and 
variances 

This paper demonstrates the plausibility that  
the granule cells uncover latent structures in their 
mossy fiber inputs using unsupervised learning 
rules in the granular layer. The current results 





2000 7th Joint Symposium on Neural Cornpufation Proceedings 27 

1151 M. Girolami, A. Cicliocki, and S.-I. Ammi. A [28] J. L. R.ayrnond arid S. G. Lisberger. Neural 
common neural network model for unsuper- learning rules for the vestibule-ocular reflex. 
vised exploratory data analysis and indepen- Journal of Neu~oscience, 18(21):9112-29, Nov 
dent component, analysis. I. E. E. E. Transac- 1 1998. 
tions on Neural Networks, 1998. 

1291 M. Robello, C. Amico, and A. Cupello. A dual 
1161 R. L. Jakab and J .  Haniori. Quantita- mechanism for impairment of GABAA recep 

tive morphology and synaptology of cerebel- tor activity by NMDA receptor activation in 
lar glomeruli in the rat. Anat Embryo1 (Bed), rat  cerebellum granule cells. European Bio- 
179(1):81-8, 1988. physics Journal, 25(3):181-7, 1997. 

1171 J. W. Johnson and P. Ascher. Glycine poten- 
tiates the NMDA response in cultured mouse 
brains neurons. Nature, 325(5):529-531, 1987. 

1181 H. J. Jonker, A. C. Coolen, and J .  J .  Denier 
van der Gon. Autonomous development of 
decorrelation filters in neural networks with re- 
current inhibition. Network, 9(3):345-62, Aug 
1998. 

[30] J. Spoelstra, N. Schweighofer, and M. Arbib. 
Cerebellar learning of accurate predictive con- 
trol for fast-reaching movements. Biol. Cy- 
bern., 82(4):321-33, 2000. 

[31] G. Stuart and B. Sakmann. Active propa- 
gation of somatic action potentials into n e e  
cortical pyramidal cell dendrites. Nature, 
367(6458):69-72, 1994. 

[19] R. E. Kettner, S. Mahamud, 11. C. Leung, [321 H. TsubOkawa and W. MuscarinicmA- 

N. Sitkoff, J .  C .  Houk, B. W. Peterson, ulation of spike backpropagation in the apical 
and B. A. G. Prediction of complex two- dendrites of hippocampal CAI pyramidal neu- 

dimensional trajectories by a cerebellar model rons. Journal of Neuroscience, 17(15):5782-91, 

of smooth pursuit eye movement. Journal of 1997. 

Neurophysiology, 77(4):2115-2130, 1997. [33] P. K. Young, M. A. Jabri, S. Y. Lee, and T. J .  

[20] M. S. Lewicki and T. J .  Sejnowski. Learning Sejnowski. Independent components of optical 

overcomplete representations. Neural Comput, flows have MSTd-like receptive fields. In Pro- 

12(2):33745, Feb. 2000. ceedings of ICA '2000, pages 597 -601, Helsinki, 
Finland, June 2000. 

1211 D. J. C. MacKay. Maximum likelihood and c e  
variant algorithms for independent component 
analysis. Unpublisl~ed manuscript, 1996. 

[22] D. Marr. A theory of cerebellar cortex. J. 
Physiol., 202:437-470, 1969. 

1231 R. C. Miall, D. J .  Weir, D. M. Wolpert., and 
J. F. Stein. Is the cerebelluni a Smith predic- 
tor? Journal of Motor Behavior, 25(3):203- 
216, 1993. 

[24] S. J. Mitchell and R. A. Silver. Glutamate 
spillover suppresses inhibition by activating 
presynaptic mG1uR.s. Nature, 404(6777):498- 
502, Mar 30 2000. 

[25] B. A. Olshausen. Learning linear, sparse, fac- 
torial codes. A.1. Memo 1580. Technical report, 
Massachusetts Institute of Technology, Cam- 
bridge, Mass., 1996. 

[26] B. A. Olshausen and D. J .  Field. Emergence of 
simple-cell receptive field properties by learn- 
ing a sparse code for natural images [see com- 
ments]. Nature, 381(6583):607-9, Jun 13 1996. 

(271 S. L. Palay and V. Chan-Palay. Cerebellar 
Cortex, Cytology and Organization. Springer- 
Verlag, 1974. 




