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Abstract 
An arbitrary movement of a rigid object in 3-D space can always be decomposed instan- 
taneously into a translation plus a rotation. How should the neural representation of a 
static view of a 3-D object be updated according to its instantaneous motion? Assuming 
that a motion-sensitive neuron detects the rate of change of an arbitrary function of the 
static view of an object, we predict that the generic response properties of such a neuron 
can always be specified by a preferred translation direction and a preferred rotation axis 
in 3-D space, with cosine directional or axial tuning and linear firing-rate modulation by 
speed or angular speed. This theoretical framework includes known properties of some 
motion-sensitive cells as special cases. From the activity of a population of these neurons, 
a feedforward network can readily extract the instantaneous rotation axis, the angular 
speed, and the translation velocity, and thereby completely determine the motion of the 
object. We propose that neurons tuned to 3-D motion (same view, different possible 
rotation axes) and neurons tuned to static views (same rotation axis, different possible 
views) can form a conjugate representation of a 3-D object. In this way, the internal 
neural representation can contain both static and dynamic information and effectively 
mimic how the static view of an object changes during arbitrary movement. 

Introduction 

There is a dichotomy in the visual system between the way static and motion information 
is represented for 3-D objects. 

Static uiews. Given a fixed rotation axis, different static views of the same object 
are probably represented by the ventral visual pathway in primates. It is known that 
many cells in the inferior temporal cortex in monkey respond to specific objects, and the 
responses often drop off smoothly as the object is rotated away from the preferred view 
(Perrett, Oram, Harries, Bevan, Hietanen, Benson & Thomas, 1991; Logothetis & Pads, 
1995). The view-dependence of the representation is generally consistent with the recent 
optical imaging data (Wang, Tanaka & Tanifuji, 1996) and various psychdphysical ex- 
periments (Edelman & Biilthoff, 1992; Sinha & Poggio, 1996). Some important existing 
theoretical models also belong to this class (Poggio & Edelman, 1990; Ullman & Basri, 
1991). 
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Instantaneous motion. When the view of an object is fixed, the instantaneous motion 
of the object, including both translation and rotation, might be represented by motion- 
sensitive cells in the dorsal visual pathway, including areas MT, MST and parietal cortex. 

A complete representation of the dynamic state of an object would require repre- 
sentations of both the static view and the instantaneous motion. The generic response 
properties for moving 3-D object are still unknown. The aim of this paper is to predict 
such properties by general theoretical considerations and propose how these cells could 
be used for 3-D object representation. 

Basic assumption 

Assumption 

The generic response properties of a motion-sensitive neurons for a moving 3-D object can 
be derived from the following assumption: The firing mte above baseline is proportional 
to the time derivative of an unknown smooth function of object position and orientation 
in &D space. In ot5er words, 

where f is the firing rate, fo is the baseline rate, and A = A(%, y, z, 8,4, @) is an arbitrary 
function of object position and orientation. Here (x, y, z )  describe the position of the 
object in space and the Euler angles (8,4, @) describe its orientation. 

The basic idea is that function A is the most general formulation of a view-dependent 
representation of an object because it may include all visual features of the object, even 
shadows and shading caused by lighting. Since the time derivative is determined by the 
instantaneous motion of the object, problem of occlusion is avoided automatically. A 
motion-sensitive neuron is expected to respond to changes of the visual features. So the 
proportionality to time derivative is essentially a linear approximation. 

Conjugate variables 

In mechanics, for a particle of mass m and position qi along some axis, the conjugate 
momentum is proportional to the time derivative: 

Unique determination of the instantaneous state of an autonomous mechanical system - 

requires both the positions and the conjugate momenta. Under the assumption (I), the 
mechanical example is analogous to our dichotomy between static view and instantaneous 
motion considered in the beginning of this paper. 

Predictions and implications 

Arbitrary motion of a rigid object 

The instantaneous motion of the rigid object can be completely determined by its angular 
velocity 52 and the invariant translation velocity U E V - In x C,  where C a reference 
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point through which the rotation axis passes, and V is the translation velocity which 
depends on the reference point C because parallel rotation axes are equally legitimate 
choices. Once St and U are known, the instantaneous object motion is completely 
determined, and the velocity of any material point on the object is 

where vector r is the position of the point. 

Predicted tuning rule 

Given a 3-D object moving at instantaneous angular velocity St and translation velocity 
U, we predict that the firing rate of a generic neuron should be 

where fo is the background firing rate, vector T is the preferred translation direction and 
vector R is the preferred rotation axis. Both 7 and R may depend upon the object as well 
as the view of the object, but not upon the translation velocity and a n d a r  velocity. This 
tuning rule is a logical consequence of the assumption (1) and the geometric constraints 
of rigid object motion. The derivation is straightforward and is omitted here. 

In other words, we predict that the responses should be proportional to the cosine of 
the angle between the actual axis and the preferred axis for both rotation and translation; 
i n  addition, the firing rates should be modulated by angular speed and translation speed 
approximately linearly. 

Predicted displacement constraints: changing object position in space 

For a given object, both the preferred translation direction I and the preferred rotation 
axis R in general depend on the exact object position in space, which determines the 
exact view. Thus 7 and R are both vector fields in real 3-D space. It can be shown that 
7 must be curl-free, namely, 

j 7 . d 1 =  0 (5) 

along any closed curve in 3-D space; and R must be divergence-free, namely, 

-- / /R+ = 0 (6) 

on any closed surface in 3-D space. These conditions provide strong constraints on the 
distribution of the preferred translation directions and rotation axes in space. 

Predicted existence of central axis: changing origin of rotation axis 

The preferred translation axis 7 is independent of the choice of reference point C in 
Eq. (3), but the preferred rotation axis is. The exact amount of drift of the preferred 
rotation axis can be predicted. In particular, the reference point can be chosp such that 
the preferred rotation axis becomes parallel with the translational axis. This choice is 
unique, and we call this axis the central axis. The general tuning rule can be written as 
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It can be shown that the central axis can be specified by the reference point 

where coefficient k is arbitrary because the axis is in parallel with I. Now the new 
rotation axis is parallel with the preferred translation direction T: 

Explicit examples 

Consider a local-motion detector responding to object motion projected orthogonally 
onto the frontoparallel plane. It has a preferred direction p so that its response to local 
velocity v is p  . v. If the motion is generated by a point with coordinates r  on a rigid 
object in real 3-D space, then the preferred translation direction and rotation axis can 
be obtained explicitly: .c 

l = p ,  R = r x p .  (10) 

By adding up two local motion detectors with opposite preferred directions p and -p 
responding to two points rl and r2 on an object, we can build a detector with 

which are invariant with respect to parallel shift of rotation axis. 

Proposed experimental tests 

Recordings should be made from a neuron in the dorsal visual pathway while slightly 
oscillating an object around a fixed axis. In theory, the oscillation should be infinitesimal. 
In practice, it just needs to be small so that occlusion problem can be avoided. Suppose 
the oscillation is sinusoidal with frequency F, then according to the tuning rule (4), the 
response should be 

f (t) = fo + k F  cos(a) cos(271 F t  + 4), (12) 

where a is the angle between the actual axis and the preferred axis, k is a constant 
coefficient and 4 is a phase shift. Note that the modulated response is also proportional 
to the frequency F of the oscillation. Systematically changing the orientation of the axis 
in 3-D space while keeping the view fixed allows the preferred axis to be determined. 
Similarly, the response to translation in 3-D space could be tested by oscillating the 
whole object along a straight line. 

Testing the assumption on known biological systems 

The generic tuning rule (4) is derived from the basic assumption (1). Although the 
assumption looks reasonable, it validity depends ultimately on whether predictions based 
on it are verified experimentally. To test its validity, we applied the same argument to  
some known biological systems and found that it often leads to encouraging results. 
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Motor cortical directional tuning 

Consider stereotyped reaching movement in which the configuration of the whole arm 
is determined completely by the hand position (x, y, z) in space. In this situation our 
basic assumption becomes that the firing rate above baseline is proportional to the time 
derivative of an unknown smooth function of hand position in  3-0 space. This arbi- 
trary function A(x, y, z) includes any functions of arm configuration, such as muscle 
length, joint angles, and any combination of those (Mussa-Ivaldi, 1988). According to 
the assumption, we have 

where vector P = VA is the preferred direction and v is the reaching velocity, which is 
always pointing in the instantaneous reaching direction. 

This formula captures two major effects: cosine directional tuning and linear speed 
modulation. The first effect is ubiquitous in the motor cortices (Georgopoulos, Schwartz 
& Kettner, 1986), while the second effect is implied in the fact that adding up the 
population vector head-to-tail approximately reproduces the hand trajectory, with the 
same scaling law for curvature speed trade-off (Schwartz, 1994). 

Similar to Eq. (5), the vector field of preferred direction must have zero curl; that is, 

along any closed curve in 3-D space. It is known that the preferred direction of a 
motor cortical cell typically depends on the starting point of hand position (Caminiti, 
Johnson, Galli, Ferraina & Burnod, 1991). So the curl-free condition (14) limits the 
distribution of the preferred directions for different starting positions in 3-D space. The 
curl-free condition provides useful predictions. For example, it unequivocally rules out 
the possibility of any circular arrangement of preferred directions in space. 

Place cell speed modulation 

The firing of a hippocampal place cell is determined not only by the animal's spatial 
position but is also modulated approximately linearly by the running speed, at least 
for movement confined to a narrow track (McNaughton, Barnes & O'Keefe, 1983). In 
one-dimensional case, by similar argument as in the preceding section, we find 

where v is the running speed and 

is the gradient of the arbitrary function A of spatial position x. Equation (15) captures 
linear speed modulation and allows arbitrary place tuning G(x). In realify, the linear 
speed modulation is a very good approximation, with a correlation coefficient greater 
than 0.95 when averaged over all simultaneously recorded cells (Zhang, Ginzburg, Mc- 
Naughton & Sejnowski, 1997). 
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Areas MT and MST 

These motion-sensitive visual areas in monkey are a candidate for searching for cells 
tuned to 3-D object motion. Although the existing results are not sufficient to confirm 
our general predictions, we can verify that some known properties of some cells in these 
regions are indeed special cases of our generic tuning rule (4). 

For the movement of a small dot, an approximate cosine directional tuning with linear 
speed modulation can be expected from the same argument shown in the preceding 
sections. This is a crude characterization of a typical MT cell (Rodman & Albright, 
1987). Understandably the real data have nonlinear effects in both the directional tuning 
and the speed modulation. 

Many MST cells are known to respond best to a large-field spiral motion (Graziano, 
Andlessen & Snowden, 1994). Consider a large rigid object, which could be the envi- 
ronment itself. For this object, if the preferred rotation axis and preferred translation 
direction are both pointing towards the observer, then the optic flow generated by the 
optimal object motion is an expansion plus a rotation, which is a spiral field. For a 
pure expansion cell; the translation direction is pointing towards She observer whereas 
the rotation axis is missing. Although shift of focus for expansion and rotation fields 
has been studied (Duffy & Wurtz, 1995), general 3-D object motion has not been tested. 
The real question here is how to parameterize the visual stimulus so that it can be varied 
systematically. This is also a relevant consideration for surround effects. Our new results 
predict what to expect if moving 3-D objects are used as stimuli. Coding 3-D object 
motion in MST has recently been considered by Zemel & Sejnowski (1995). 

Extracting inst ant aneous object mot ion from population 
activity 

Suppose we have N cells obeying the predicted tuning rule, and nl,  n2,. . . , n N  spikes are 
collected from these N cells within the time window T. Then the instantaneous arbitrary 
motion of an object can be determined completely by using feedforward mechanisms, 
which are considered biologically plausible. Let the mean firing rate of cell i be 

The population vector is the simplest method: 

for large N. The validity of this method relies on the conditions that both matri- 
ces xi x?;T and x; +;RT are proportional t o  the 3 x 3 identity matrix, while matrix 
xi ZRT vanishes. 

The probabilistic method based on Bayesian approach is more accurate: 

where f; is a function of U and as given by Eq. (17). Here the assumptions are 
Poisson spike distribution and independence of different cells. When these conditions 
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are met, the Bayesian method can achieve the Cram&-Rao lower bound. This method 
can also be implemented as a feedforward network. For more detailed discussions, see 
Zhang, Ginzburg, McNaughton & Sejnowski (1997). 

Discussion 

Moving rigid objects are natural stimuli that can be expected to  have efficient repre- 
sentations in the visual cortex. It  is surprising that a general argument with minimal 
assumption can fully predict the generic behaviors for neurons tuned to  the motion of 
3-D objects. The key argument presented in this paper, conceptually simple, is able to  
make interesting predictions and has the unifying power to  capture some known generic 
properties of some neurons in the motor cortex, the hippocampus, and the visual cor- 
tex. This may help to  explain the ubiquity of these properties. In all these cases, the 
responses properties are ultimately determined by the geometry of the spatial transfor- 
mation. On the other hand, the real biological system is invariably more complex, and 
any prediction of cosine tuning curves is unlikely to  be exactly true especially a t  the 

t 

negative side lobes because of low firing rate cutoff. 
To our knowledge, systematic experiment using rotating 3-D object as a stimulus 

while keeping the view fixed has not been performed. Thus our prediction of the generic 
behavior of neurons can be directly tested. If the predicted tuning rule turns out t o  
be true, it would have important biological implications. The instantaneous arbitrary 
motion of an object can then be determined completely by using feedforward mechanisms 
considered in the preceding section. 

A view-specific representation of the dynamic state of an object would require in- 
formation about both the current view and the instantaneous motion; that is, how the 
view is changing. The dichotomy between static view and instantaneous motion repre- 
sentations is essentially valid because neurons with transient and sustained responses are 
segregated early on in the visual pathways, although the implementation using the first 
order time derivation is only an approximation. The instantaneous motion determines 
how the activity pattern for the static view in the temporal cortex should be updated 
so that a new cell population can be activated in accordance with the rotation axis. 
By coupling both representations, the internal neural representation of an object can 
contain both static and dynamic information and effectively mimic how the static view 
of an object changes during arbitrary movement. 

- 
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