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PURPOSE. To compare the ability of several machine learning
classifiers to predict development of abnormal fields at fol-
low-up in ocular hypertensive (OHT) eyes that had normal
visual fields in baseline examination.

METHODS. The visual fields of 114 eyes of 114 patients with
OHT with four or more visual field tests with standard auto-
mated perimetry over three or more years and for whom
stereophotographs were available were assessed. The mean
(�SD) number of visual field tests was 7.89 � 3.04. The mean
number of years covered (�SD) was 5.92 � 2.34 (range,
2.81–11.77). Fields were classified as normal or abnormal
based on Statpac-like methods (Humphrey Instruments, Dub-
lin, CA) and by several machine learning classifiers. The ma-
chine learning classifiers were two types of support vector
machine (SVM), a mixture of Gaussian (MoG) classifier, a con-
strained MoG, and a mixture of generalized Gaussian (MGG).
Specificity was set to 96% for all classifiers, using data from 94
normal eyes evaluated longitudinally. Specificity cutoffs re-
quired confirmation of abnormality.

RESULTS. Thirty-two percent (36/114) of the eyes converted to
abnormal fields during follow-up based on the Statpac-like
methods. All 36 were identified by at least one machine clas-
sifier. In nearly all cases, the machine learning classifiers pre-
dicted the confirmed abnormality, on average, 3.92 � 0.55
years earlier than traditional Statpac-like methods.

CONCLUSIONS. Machine learning classifiers can learn complex
patterns and trends in data and adapt to create a decision
surface without the constraints imposed by statistical classifi-
ers. This adaptation allowed the machine learning classifiers to
identify abnormality in visual field converts much earlier than
the traditional methods. (Invest Ophthalmol Vis Sci. 2002;43:
2660–2665)

In this study, we investigated whether machine learning
classifiers, including neural networks, are useful for identi-

fying which individuals with initially normal visual fields will

have development of abnormal visual fields later, due to glau-
coma. Neural networks are a subset of machine learning clas-
sifiers. The terminology has been changed in the artificial
intelligence community to the latter term to include classifiers
that “learn”, but do not necessarily mimic, a simple neural
pathway of the brain, as neural networks do. Machine learning
classifiers usually use a form of supervised learning. Supervised
learning refers to systems that are trained, instead of pro-
grammed, by a set of examples that are input–output pairs.1

The input is the data and the output is the classification made
by the machine learning method. During training, the classifier
is told whether it is correct or incorrect based on a gold
standard, and, after each run-through, it adjusts its internal
parameters to arrive at more correct responses. This process is
repeated until the classification performance does not im-
prove. After training, the goal is that the machine classifier has
learned and can correctly classify new input data that were not
part of the original training sets. An attractive aspect of these
classifiers is their ability to learn complex patterns and trends
in data and to create decision rules adaptively, without the
constraints imposed by statistical classifiers.2,3

In a previous study, we compared the ability of several
classifiers to detect early field loss.4 The inputs to the classifiers
in that study were threshold values from standard visual fields
plus the age from either healthy eyes or from eyes with glau-
comatous optic neuropathy (GON). Because there is no abso-
lute agreed-on gold standard for the presence of early glau-
coma, the surrogate gold standard in this previous study, used
to train the classifiers, was the absence or presence of GON.
Visual field results were not used to select subjects or as a gold
standard to train the output. The output from each classifier
was a designation of either “normal field” or “glaucomatous
field”. The classifiers’ results were also compared with those of
two glaucoma experts and the Statpac 2 indices5,6 (Humphrey
Instruments, Dublin, CA) that are typically used to identify field
abnormalities. We found that several machine learning classi-
fiers representing different methods of learning and reasoning
performed well in comparison with both Statpac 2 and the
glaucoma experts when classifying the visual fields.

The purpose of the present study was to apply the best
candidate machine learning classifiers from our previous study,
along with more Statpac-like traditional classifiers, to a new set
of longitudinal standard automated perimetry (SAP) data from
114 ocular hypertensive eyes. If the classifiers could identify
visual field converts from this group, they might have great
utility in situations in which experts in glaucoma are not
available and for standardization of methods in clinical trials.

METHODS

Subjects

One hundred fourteen eyes of 114 patients with ocular hypertension
(OHT) followed up longitudinally at the University of California, San
Diego (UCSD) were included. All patients had a minimum of four field
tests with standard automated perimetry (SAP) over three or more
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years and stereo optic disc photographs. The Human Subjects Com-
mittee of the University of California, San Diego, approved this study
and its protocol adhered to the Declaration of Helsinki, with informed
written consent obtained from all participants.

Each subject underwent a complete ophthalmic examination,
which included review of relevant medical history, best corrected
visual acuity, slit lamp biomicroscopy (including gonioscopy), appla-
nation tonometry, dilated funduscopy, and fundus photography.

All patients had OHT with intraocular pressures more than 23 mm
Hg when measured on at least two separate occasions and normal SAP
visual field test results (defined later) on baseline examination. All had
best corrected acuity of 20/40 or better, spherical refraction within
�5.0 D, and cylinder correction within �3.0 D. Patients with signifi-
cant lens opacity at the baseline clinical examination or on subsequent
ophthalmic examinations were included. Patients with other disorders
known to affect visual fields were excluded. Neither visual field nor
optic nerve status was used to select these subjects.

Visual Fields

Visual field testing consisted of SAP, with the Full-Threshold test
strategy and the 24-2 stimulus presentation pattern of the Humphrey
Visual Field Analyzer (Humphrey Instruments) with 31.5 apostilbs (10
candelas/m2) white background and a Goldmann size III stimulus.
Patients had to have normal visual fields (see definition of abnormality
below) at baseline with at least three additional follow-up fields over a
3-year period. The mean (�SD) number of fields was 7.89 � 3.04. The
mean (�SD) number of years covered was 5.92 � 2.34 (range, 2.81–
11.77 years). All visual fields from all eyes were evaluated by all
machine learning and statistical classification methods.

Optic Disc

Included eyes also had serial simultaneous stereophotographs evalu-
ated for evidence of glaucomatous optic neuropathy determined inde-
pendently in a masked review by two glaucoma specialists at the Optic
Disc Reading Center at USCD. Photographs were masked for temporal
order. Disagreements were resolved by consensus or adjudication.
Optic discs were considered abnormal when one or more of the
following was present: excavation or undermining of the cup, nerve
fiber layer defects, notching or rim thinning, or cup-to-disc asymmetry
between eyes of more than 0.2. Normal optic discs showed no evi-
dence of these abnormal findings. The findings were not part of the
inclusion–exclusion criteria for the study, but the presence and timing
of detectable GON is reported in those eyes showing conversion from
normal to abnormal visual fields by the various classifiers.

Normative Data

There were two sets of normative data used in this study. The first was
used to develop a Statpac-like analysis package for determining single
field abnormality. The second was a longitudinal data set used to set
specificity cutoffs for conversion from normal to abnormal fields. Each
is described in the following sections.

Statpac-like Visual Field Analysis. To compare the machine
learning classifiers to more traditional statistical approaches for analyz-

ing visual fields, we used a Statpac-like analysis developed for the short
wavelength automated perimetry (SWAP) ancillary arm of the Ocular
Hypertension Treatment Study (OHTS).7 This analysis with its own
normative database was developed to allow extraction of data that are
not on the field analyzer printout (e.g., numerical glaucoma hemifield
sector values) and to provide export of all data to spreadsheets.
Although some of the information could be extracted from the field
analyzer printout, we thought it important that all analyses be based on
the same normative data set, to allow us to make comparisons between
SAP and SWAP in future studies on machine learning classification of
SWAP, using the same normative data for both tests.

The normative database consisted of one eye from each of the same
348 normal subjects tested on both SAP and SWAP between the ages
of 20 and 85. The data were collected at five different centers by a
standardized test protocol identical with that used to establish the field
analyzer’s internal normative database. To be included in the norma-
tive database, all subjects had to have a normal findings in an eye
examination, 20/30 or better visual acuity, normal color vision, no
history of ocular or neurologic disease or surgery, refractive error of
less than 5 D spherical equivalent and 3 D cylinder, no diabetes, and
normal optic nerve appearance. They could not be taking any medi-
cations known to affect visual fields or color vision.

After age correction for each of the 52 test locations of program
24-2 (the two blind spot locations are not included), the total deviation
plot, pattern deviation plot, their associated probability cutoffs, and
probability plots were computed. The package then computed the
global indices and the cutoff values at specific probabilities for mean
deviation (MD) and pattern standard deviation (PSD) along with an
asymmetry analysis patterned after the glaucoma hemifield test (GHT)
analysis.6

Setting Specificities. When developing an algorithm for con-
version from normal to abnormal fields it is important to identify a
meaningful specificity for field conversion in longitudinal data sets. To
determine the parameters from the analysis that would provide a high
specificity for visual field conversion, 94 normal eyes from a longitu-
dinal study that had been performed at the University of California,
Davis, were used. Each had been followed-up annually and had had
four visual field tests. They ranged in age from 21 to 85. The inclusion–
exclusion criteria for these normal subjects was identical with those
for the 114 eyes with OHT used in the present study, with the
exception that they had intraocular pressure less than 20 mm Hg and
a family history of glaucoma. None was part of the normative database
sample of 348 eyes used to develop the Statpac-like analysis package
described in the previous section. Fifty candidate criteria for change
were evaluated, and the specificity for each in the 94 longitudinally
followed-up normal eyes was determined. This analysis resulted in five
best criteria for change from a normal to an abnormal field.7 The
specificities and confidence limits for the five are summarized in Table
1. The resultant algorithm for abnormality based on any one of the five
criteria with confirmation is called Statpac-like Analysis for Glaucoma
Evaluation (SAGE).

Confirmation of a suspected change greatly improved specificity
for all criteria. We used these criteria in combination in the present

TABLE 1. Final Criteria for Abnormal Visual Field

SAGE Criterion
Specificity

(%)
Confidence Limits

(%)
Abnormal

(%) n

PSD worse than 1%, confirmed on the next test 100.0 96–100 18 21
GHT outside normal limits, confirmed on the next test 98.9 94–100 21 24
One hemifield cluster worse than the 1% level, confirmed on the next test 100.0 96–100 23 26
Two hemifield clusters worse than the 5% level, confirmed on the next test 97.9 93–100 15 17
Four points worse than the 5% level on pattern deviation, confirmed on next test 98.9 94–100 24 27
Eyes conversion confirmed by any of the above criteria 32 36

The specificity for each criterion is shown, along with the confidence limits and the percentage of the 114 eyes showing confirmed change
from normal to abnormal fields based on the traditional methods. Overall specificity was 96%.

IOVS, August 2002, Vol. 43, No. 8 Machine Classification of Standard Visual Fields 2661



study to classify fields from the 114 eyes with OHT into normal and
abnormal categories. A field conversion with SAGE was defined a
normal visual field at baseline in which abnormality developed later,
based on at least one of the criteria and confirmed by that same
criterion on the subsequent visual field test. Because any one criterion
was sufficient, the specificity overall was approximately 96% (0%
false-positive results for PSD worse than 1%, 0% for the 1 hemifield
cluster at 1%, 1.1% for GHT result of “outside normal limits,” 1.1% for
4 points on the PSD plot at 5%, plus 2.1% for two hemifield clusters at
5%; all confirmed). A specificity of 96% was also found for our best
glaucoma expert in our previous study.4 These best-candidate criteria
of SAGE are all elements of the statistical analysis package (Statpac II)
used on the Humphrey Visual Field Analyzer and can be considered
among the current standards for classification of visual fields.

Machine Learning Classifiers

Several machine learning classifiers were compared with the results
obtained with SAGE to assess their ability to classify the fields of the
114 ocular hypertensive eyes to determine which fields would be
classified as abnormal. The machine learning classifiers were chosen
based on the results of our previous study, in which we trained a set
of classifiers to categorize SAP visual fields as normal or abnormal.4 In
that study, the surrogate gold standard for glaucoma was the presence
of glaucomatous optic neuropathy. Visual fields were not used to
classify the subjects. The study indicated several classifiers that could
separate fields from normal eyes and eyes with GON with a high
specificity and sensitivity. These already trained classifiers were used in
the present study. The sensitivity (the proportion of fields from eyes
with GON classified as abnormal) and the specificity (the proportion of
fields from normal subjects classified as normal) depended on the
selection of a threshold cutoff value along the range of outputs for each
classifier. We set the cutoff values for the present study to obtain a
specificity of 96% for each of the classifiers, using the same 94 normal
eyes from Dr. Johnson’s longitudinal study that determined the 96%
overall specificity for SAGE.7 As with SAGE, the cutoff needed for that
specificity was based on two confirmed abnormal visual fields.

Consistent with the previous study, the input to each of the clas-
sifiers listed in the following sections was the absolute threshold at
each of the 52 locations of the visual field and age. Training and testing
were performed in our previous study, using cross-validation to classify
eyes with known GON versus healthy eyes. In the present study, we
asked these same already trained classifiers to classify visual fields from
an independent group of 114 eyes selected based on IOP and normal
baseline visual fields and not on optic nerve status.

SAGE is a type of classifier that uses statistically determined cutoffs
to distinguish between classes. The attractive aspect of machine learn-
ing classifiers is their ability to learn complex patterns and adapt to the
data. They are not constrained to linear analysis, which would, for
example, result in a decision surface that is a line in two dimensions
between the data of patients with abnormal fields and those with
normal fields, or a plane in three dimensions. Instead, the decision
surface can be any shape in the dimension that provides the best
separation between the groups. Abnormal fields fall on one side of the
surface and normal on the other. The decision surface itself is a
boundary between the two clusters of data. A brief description of the
classifiers used follows. More detail on each can be found in the
detailed Appendix to our previous study.4

Support Vector Machines. These are a new class of super-
vised machine learning algorithms or neural networks that are able to
solve a variety of classification and regression (model-fitting) prob-
lems.8,9 A support vector machine (SVM) can separate data that are not
easily separable in the original data space, by mapping the data of
interest into a much higher dimensional space until a decision surface
is identified that allows the separation of the input data—in our case
into two groups of visual fields: normal and abnormal. The name of this
classifier refers to support vectors, which are those data points that lie
closest to the decision surface and therefore are the most difficult to

classify. As such, they have a direct bearing on the optimum location
of the decision surface.2 Training maximizes the margin of separation
between the normal and abnormal vectors while minimizing the esti-
mated generalization errors in classification.10–12 The architecture
(structure of the network) is similar to that of a multilayer perceptron
(MLP), a basic form of neural network. It is a feed-forward network
with an input layer, a hidden layer, and an output layer.

We used two types of SVM. For linearly separable data, the param-
eters used in the SVM-linear (SVMl) analysis are chosen so that the
margin between the decision plane and the training examples is at
maximum. To avoid the assumption of linear separability, we also used
a multivariate Gaussian distribution (SVMg) analysis.2 Both SVMs sig-
nificantly outperformed the MLP in our previous study. They have also
shown good generalization of performance in face recognition,13 text
categorization,14 recognition of handwritten digits,15 and breast cancer
diagnosis and prognosis.16

Mixture of Gaussian. The MoG is a special case of a committee
machine.2 Committee machines use a set of hidden analyses to divide
a computationally complex task into a number of computationally
simple tasks, performed by “committee members”. Each member does
well at modeling its own simplified data set. In the associative MoG
model, the members perform self-organized learning (unsupervised
learning) on the input data to achieve good partitioning. The fusion of
all the members’ outputs is combined with supervised learning to
model the desired response. In our case, the desired response is
“normal visual field” or “abnormal visual field.” We made two adjust-
ments to facilitate the computation of MoG. To help the MoG manage
the high dimensionality of 53 inputs, we constrained the MoG analyses
to one Gaussian cluster for each class. This constraint results in a
quadratic discrimination function (QDF). In our previous work we
found that this improved performance relative to Statpac indices. Also,
these classifiers sometimes have difficulty with high-dimension input,
and therefore we also projected the data by using principal component
analysis (PCA) from the original 53 dimensions to a space of eight
dimensions.17 PCA is a way of reducing the dimensionality of the data
space by retaining most of the information in terms of its variance. Our
previous work showed that for visual field data, QDF on the full
dimension data worked comparably to the MoG on principle compo-
nent analyzed data. We used both the QDF and MoG with PCA for the
present study.

Mixture of Generalized Gaussians. The mixture of gener-
alized Gaussians (MGG) uses the same architecture as MoG, except it
is designed for situations in which the underlying distributions of the
data for the classification problem are not necessarily Gaussian. For
instance, the data may distribute with heavier tails or may even be
bimodal. It would degrade performance of the classifier to model these
problems with Gaussian distributions. With the development of a
generalized Gaussian mixture model,17,18 we are able to model the
class conditional density distributions with higher flexibility, while
preserving a comprehension of the statistical properties of the data in
terms of, for example, means, variances, and kurtosis. It has been
demonstrated in real-data experiments that this model generally im-
proves classification performance over the standard MoG in those
cases in which the assumption of a Gaussian distribution of data is
incorrect.17,18

In summary, for our initial study, we chose the classifiers that have
recently become popular due to their excellent classification perfor-
mance and robustness in analysis of many data sets in different appli-
cations.9,19–21 The best among these for separating fields from eyes
with GON and fields from normal eyes were used in the present study.4

The best were two types of discriminative classifiers, SVMl and SVMg,
as well as, three generative classifiers (QDF, MoG, and MGG). Discrim-
inative classifiers, such as SVM, minimize error by finding optimal
boundaries between classes, whereas generative classifiers try to esti-
mate the probability density of each class. These two principles are
currently the state of the art in classifiers applied to pattern-recognition
tasks.9,19–21
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RESULTS

The last two columns in Table 1 present the percentage and
number of eyes with fields that converted from normal SAP
visual fields to a field with a confirmed visual field defect, for
each of the five criteria of SAGE. Some fields met more than
one criterion. SAGE identified 36 (32%) of the 114 eyes as
having fields that converted.

Table 2 shows the results for the various classifiers. Thirty-
eight percent (43/114) of the eyes converted by one or more
methods. One or more of the classifiers identified all 36 eyes
identified by SAGE. QDF identified 31 plus 1 additional eye;
SVMl, 28 plus 6 additional eyes; SVMg, 29 plus 7 additional
eyes; MoG, 26 plus 1 additional eye; and MGG, 25 plus 1
additional eye.

The agreement among SAGE and all classifiers for categori-
zation of eyes as having fields that would convert to abnormal
versus remaining normal was good to excellent (� � 0.63–
0.91; Table 3).22 For the most part, the same eyes were iden-
tified as converting to abnormal fields by SAGE and by the
classifiers under test. The two versions of SVM showed agree-
ment of 96%, as did the MoG and MGG. This can be attributed
to the similarities in their architecture. The QDF agreed most
closely with the SAGE method (95% agreement).

In the 36 eyes with confirmed field abnormality based on
SAGE and by at least one of the classifiers, the machine classi-
fier predicted the abnormality several years before SAGE (Table
2). The average gap in years (�SD) with the use of SVMl was
4.39 � 2.92; with SVMg, 4.43 � 2.75; with MoG, 3.39 � 1.55;
with QDF, 4.12 � 1.78; and with MGG, 3.28 � 1.59. These
classifiers were all significantly earlier than the model in deter-
mining repeatable abnormality (P � 0.0001). Constraining
MoG to QDF significantly improved the timing of detection
among the generative classifiers. It was significantly earlier
than both the unconstrained MoG (P � 0.024) and MGG (P �
0.011), but not the two SVMs. The number of eyes each
classifier called abnormal on the baseline visits is shown in
Table 2. Six of the seven eyes that were identified as abnormal
by a classifier that always remained normal with SAGE are still
under observation.

The classifiers used in this study were chosen because we
had previously shown they could successfully separate the
visual fields of normal eyes from those of eyes with GON. To
determine whether use of these classifiers in a new data set
would be consistent with our previous findings, we assessed
the presence of GON in the 43 (of 114) eyes that showed
confirmed abnormal fields based on one or more classifiers.
Two of these eyes had photographs that could not be assessed
because of poor quality or missing information, leaving 41 eyes
for the analysis. Based on the SVMg results, 66% (27/41) of
these eyes had a glaucomatous optic disc at baseline or within
1 year thereafter. An additional 16% (5/41) showed develop-
ment of GON sometime during follow-up, although 22% (9/41)
showed no discernible evidence of GON during the course of
the study. Table 4 shows the GON results, by classifier, in eyes
identified as having converted visual fields. The table shows
that SVMg identified as many eyes as SAGE and that it identified
mostly, although not always, the same eyes. However, SVMg
showed the best agreement with the presence of GON at 94%
(32/34). The percentage of eyes with confirmed abnormal
fields identified by the other classifiers as having GON was 81%
(26/32) with SVMl, 81% (21/26) with MoG, 75% (24/32) with
QDF, 75% (18/24) with MGG, and 74% (25/34) with SAGE.

DISCUSSION

Current methods for assessing change in visual fields fall into
three main categories.23,24 Subjective assessment of a series of
visual field printouts based on clinical judgment is perhaps
most common. Trend analysis on a series of fields is useful if
several (seven or more) field test results are available.25 Finally,
some form of event analysis to identify change in a single visual
field relative to a reference is often used. Event analysis can be
based on a system that scores both baseline and subsequent
fields. A change in score then signals possible progression.
Another form of event analysis is predicated on statistically
based change. An example of this is the glaucoma change
probability analysis available on the Humphrey Visual Field
Analyzer (Humphrey Instruments).26 This analysis signals

TABLE 3. Percent Agreement in Classification of the 114 Eyes

SVMI SVMg MoG QDF MGG

SAGE 88 (0.711) 88 (0.716) 90 (0.761) 95 (0.874) 89 (0.738)
SVMI — 96 (0.912) 87 (0.685) 84 (0.616) 88 (0.666)
SVMg — — 85 (0.630) 84 (0.623) 86 (0.649)
MoG — — — 90 (0.749) 96 (0.877)
QDF — — — — 88 (0.677)
MGG — — — — —

Kappa statistic is in parentheses.

TABLE 2. Machine Learning Classifier Results

SVMI SVMg MoG QDF MGG Mean Gap (y)

Abnormal at baseline 9 9 2 8 1
Additional confirmed prior to traditional method 17 18 22 22 22
Confirmed same time as traditional method 1 1 1 0 1
Confirmed after traditional method 1 1 1 1 1
Confirmed abnormal by traditional and classifier 28 29 26 31 25
Average gap (y)* 4.393 4.43324 3.387 4.122 3.275 3.922
Standard deviation 2.919 2.747 1.546 1.780 1.590 0.554

SAGE identified 36 eyes converting to confirmed abnormal visual fields. Shown are classifier results including the mean (� standard deviation)
number of years earlier that repeatable abnormal fields were identified by a classifier before SAGE identified the abnormality in the same eyes.
Classifier data are the number of eyes.

*Gap between the traditional method date and classifier date when both determined eye to be abnormal.
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change in individual test locations after taking into account the
fluctuation found in a group of patients with stable glaucoma.

To differentiate true change from random fluctuation, evi-
dence for change in visual fields should be confirmed on
subsequent visual fields. For example, the Ocular Hypertension
Treatment Study (OHTS),27 the Advanced Glaucoma Interven-
tion Study (AGIS),28 the Collaborative Initial Glaucoma Treat-
ment Study (CIGTS),29 and the Early Manifest Glaucoma Trial
(EMGT)30 require that change from baseline be observed in
three consecutive follow-up visual field analyses before change
is verified. In each of these studies, a different algorithm was
used for identifying change in their differing patient samples.
There is no gold standard for change in visual fields.

This lack of a gold standard influenced the present study as
well. In our initial work to determine the classifiers, we used
the presence or absence of GON as our surrogate gold standard
for glaucoma. The advantage of this was that it eliminated the
bias in comparing classifiers with each other, Statpac, or the
glaucoma experts that would be present if the fields them-
selves were used in the training. If a chosen set of criteria for
field abnormality were used as the gold standard, it would
probably include some elements of Statpac or expert judg-
ment. This would, by definition, make those criteria perform
the best. Using GON, a definite marker for glaucoma, elimi-
nated this confounder. This said, some of the classifiers per-
formed comparably to the best glaucoma expert.

In the present study, we avoided a gold standard for deter-
mining the sensitivity of each of the different classifiers and
instead simply compared them. Therefore, the true sensitivity
of the determinations is unknown. Whether these improve-
ments in early detection are valid and whether they will be
clinically useful remains to be seen. However, we can make a
strong argument that the classifiers are indeed seeing some-
thing consistent with glaucomatous visual field loss for two
reasons. First, they identified the same eyes that were later
identified by traditional methods for assessing field abnormal-
ity. Second, they identified the same eyes that had GON or later
development of GON. However, we must stress that our con-
clusions are based on the assumption that characteristic visual
field abnormality determined by traditional methods in con-
junction with GON indicates glaucoma.

With regard to specificity, there is an advantage to using a
large longitudinal data set from normal eyes to determine
which criteria identify glaucomatous change in visual fields
from normal to early abnormality. This approach yielded five
commonly used traditional criteria for SAGE, each highly spe-
cific individually, with only one confirmation required. Even in
combination, they maintained a specificity of 96%. When cut-
off values for each of the machine learning classifiers were also
set this way, fair comparisons among methods were possible.
Use of the longitudinal normal data set to select criteria for
change is also supported by the high level of agreement among
the various classifiers, and by the presence of GON in a high
percentage of the eyes identified as changed, especially with
SVMg.

The identification of change from a normal to abnormal
visual field should be considered within the context of glau-

coma progression and available treatment options. In general,
the time course of glaucoma is slow and the need for early
intervention requires assessment of many factors in addition to
the vision loss, including the patient’s age, family history, other
risk factors, and quality of life. Some elderly patients with a
newly found loss of vision may expect to live out their lives
without any noticeable change in performance or quality of
life. However we cannot, as yet, accurately predict the likely
rate of change for each individual. Younger patients at higher
risk may show rapid change, and early detection, and interven-
tion may significantly prolong good vision.

Although, current treatment for glaucoma involves lower-
ing of intraocular pressure to target levels and ongoing fol-
low-up for evidence of the success or failure of treatment, the
advent of better medical and surgical therapies, genetic mark-
ing, and neuroprotective agents will most likely influence this
treatment paradigm. The earlier detection of vision loss by
machine learning classifiers, and their use in clinical trials to
provide quantifiable and comparable evaluation of the data
across sites could be very important in the accurate assessment
of these new therapies. In our study, the machine learning
classifiers detected visual field abnormality, on average, 4 years
before traditional SAGE classification. In theory, their use could
significantly shorten the time of clinical trials assessing small
changes in SAP visual fields over time.

The use of appropriate machine learning classifiers may be
even more important in studies in which other methods are
used to measure visual function or optic nerve structure. Some
of these newer methods, such as SWAP, frequency-doubling
technology perimetry, and confocal scanning laser ophthal-
moscopy, have already been used in clinical trials.31,32 Clini-
cians are not as familiar with these tests as they are with SAP.
Interpretation of their results is therefore more difficult. In
addition, the analysis packages available with the newer visual
function tests are modifications of those developed for SAP and
therefore may not be optimal. The use of machine learning
classifiers with these newer tests should improve their utility
and shorten clinical trial durations, although this remains to be
studied.

In summary, we found that machine learning classifiers
were able to identify confirmed change in visual fields of eyes
with OHT substantially earlier than more traditional methods
of analysis of SAP results.
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