Unsupervised Learning
Computational Neuroscience
Terrence J. Sejnowski and Tomaso A. Poggio, editors

Methods in Neuronal Modeling: From Synapses to Networks
edited by Christof Koch and Idan Segev, 1989

Neural Nets in Electric Fish
Walter Helligenberg, 1991

The Computational Brain
Patricia S. Churchland and Terrence J. Sejnowski, 1992

Dynamic Biological Networks: The Stomatogastric Nervous System
edited by Ronald M. Harris-Warrick, Eve Marder, Allen I. Selverston, and Maurice Moulins, 1992

The Neurobiology of Neural Networks
edited by Daniel Gardner, 1993

Large-Scale Neuronal Theories of the Brain
edited by Christof Koch and Joel L. Davis, 1994

The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries
edited by Idan Segev, John Rinzel, and Gordon M. Shepherd, 1995

Models of Information Processing in the Basal Ganglia
edited by James C. Houk, Joel L. Davis, and David G. Beiser, 1995

Spikes: Exploring the Neural Code
Fred Rieke, David Warland, Rob de Ruyter van Steveninck, and William Bialek, 1997

Neurons, Networks, and Motor Behavior
edited by Paul S.G. Stein, Sten Grillner, Allen I. Selverston, and Douglas G. Stuart, 1997

Methods in Neuronal Modeling: From Ions to Networks
second edition, edited by Christof Koch and Idan Segev, 1998

Fundamentals of Neural Network Modeling: Neuropsychology and Cognitive Neuroscience
edited by Randolph W. Parks, Daniel S. Levine, and Debra L. Long, 1998

Neural Codes and Distributed Representations: Foundations of Neural Computation
edited by Laurence Abbott and Terrence J. Sejnowski, 1998

Unsupervised Learning: Foundations of Neural Computation
Unsupervised Learning: Foundations of Neural Computation

edited by Geoffrey Hinton and Terrence J. Sejnowski
CONTENTS

Introduction vii

1 Unsupervised Learning
 H. B. Barlow 1

2 Local Synaptic Learning Rules Suffice to Maximize Mutual Information in a Linear Network
 Ralph Linsker 19

3 Convergent Algorithm for Sensory Receptive Field Development
 Joseph J. Atick and A. Norman Redlich 31

4 Emergence of Position-Independent Detectors of Sense of Rotation and Dilation with Hebbian Learning: An Analysis
 Kechen Zhang, Martin I. Sereno, and Margaret E. Sereno 47

5 Learning Invariance from Transformation Sequences
 Peter Foldiak 63

6 Learning Perceptually Salient Visual Parameters Using Spatiotemporal Smoothness Constraints
 James V. Stone 71

7 What Is the Goal of Sensory Coding?
 David J. Field 101

8 An Information-Maximization Approach to Blind Separation and Blind Deconvolution
 Anthony J. Bell and Terrence J. Sejnowski 145

9 Natural Gradient Works Efficiently in Learning
 Shun-ichi Amari 177

10 A Fast Fixed-Point Algorithm for Independent Component Analysis
 Aapo Hyvärinen and Erkki Oja 203

11 Feature Extraction Using an Unsupervised Neural Network
 Nathan Intrator 213

12 Learning Mixture Models of Spatial Coherence
 Suzanne Becker and Geoffrey E. Hinton 223

13 Bayesian Self-Organization Driven by Prior Probability Distributions
 Alan L. Yuille, Stelios M. Smirnakis, and Lei Xu 235

14 Finding Minimum Entropy Codes
 H. B. Barlow, T.P. Kaushal, and G. J. Mitchison 249

15 Learning Population Codes by Minimizing Description Length
 Richard S. Zemel and Geoffrey E. Hinton 261
16 The Helmholtz Machine
 Peter Dayan, Geoffrey E. Hinton, Radford M. Neal,
 and Richard S. Zemel
 277
17 Factor Analysis Using Delta-Rule Wake-Sleep Learning
 Radford M. Neal and Peter Dayan
 293
18 Dimension Reduction by Local Principal Component Analysis
 Nandakishore Kambhatla and Todd K. Leen
 317
19 A Resource-Allocating Network for Function Interpolation
 John Platt
 341
20 Learning with Preknowledge: Clustering with Point and Graph
 Matching Distance Measures
 Steven Gold, Anand Ranganjan, and Eric Mjolsness
 355
21 Learning to Generalize from Single Examples in the Dynamic Link
 Architecture
 Wolfgang Konen and Christoph von der Malsburg
 373
Index
 391
Unsupervised Learning
Foundations of Neural Computation
eSIDed by Geoffrey Hinton and Terrence J. Sejnowski

Since its founding in 1989 by Terrence J. Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past ten years.

This volume, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.

Geoffrey Hinton is Director of the Gatsby Computational Neuroscience Unit at University College, London. Terrence J. Sejnowski is a Howard Hughes Medical Institute Investigator and directs the Computational Neurobiology Laboratory at the Salk Institute for Biological Studies. He is Professor of Biology at the University of California, San Diego.

Computational Neuroscience series
A Bradford Book

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu

Jacket design by Jim McWethy

HINUP 0-262-58168-X