
Trends in
Feature Review

Transformers and cortical waves: encoders for
pulling in context across time

Neurosciences
Lyle Muller1,2,*, Patricia S. Churchland3,*, and Terrence J. Sejnowski 4,5,*
Highlights
Transformer networks learn to predict
long-range dependencies by concatenat-
ing input sequences into a long ‘encoding
vector’.

Sensory inputs, however, arrive at the
periphery one word and one fixation at
a time, raising the question of how the
sensory cortex could implement a similar
computational principle while processing
incoming inputs in real time.

We suggest that a computational role we
have previously identified for waves trav-
eling over single regions of sensory cor-
The capabilities of transformer networks such as ChatGPT and other large lan-
guage models (LLMs) have captured the world’s attention. The crucial computa-
tional mechanism underlying their performance relies on transforming a complete
input sequence – for example, all the words in a sentence – into a long ‘encoding
vector’ that allows transformers to learn long-range temporal dependencies in nat-
uralistic sequences. Specifically, ‘self-attention’ applied to this encoding vector
enhances temporal context in transformers by computing associations between
pairs of words in the input sequence.We suggest that waves of neural activity trav-
eling across single cortical areas, or multiple regions on the whole-brain scale,
could implement a similar encoding principle. By encapsulating recent input his-
tory into a single spatial pattern at eachmoment in time, cortical wavesmay enable
a temporal context to be extracted from sequences of sensory inputs, the same
computational principle as that used in transformers.
tex may subserve the same underlying
computational principle as the trans-
formers’ ‘encoding vector’ to provide
temporal context.

Self-attention in transformers assigns
association strengths between pairs
of words that can be far apart in a
sequence. Self-attention could be
implemented on the whole-brain scale
by interacting waves in the cortex and
basal ganglia over a wide range of time
scales.
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Transformer networks use encoding vectors to capture long-range dependencies
Cortical mechanisms for spatial context are well established, mediated by the long-range horizontal
connections that give rise to non-classical receptive fields [1–4]. The contextual modulations of
non-classical receptive fields allow spatial contrasts between inputs to neurons in neighboring
cortical columns to be directly encoded into the responses of their classical receptive fields. Equally
important, however, is temporal context, which occurs, for instance, when reading words in
sentences over a sequence of saccades. Consider these sentences in French and English:

‘Le chat à traversé la rue parce qu'il faisait chaud.’

and

‘The cat crossed the street because it was hot.’

Contextual information is indispensable in translating one sentence to the other. In the English
sentence, ‘it’may refer to the cat, the street, or the weathermore generally. In the French sentence,
by contrast, ‘il’ could not refer to the street but only to either chat or the weather. Decisions regard-
ing the referent of ‘it’ are determined by context: whether within the sentence, in the context of a
neighboring sentence, or the context of a whole paragraph. Experienced readers parse this effort-
lessly based on their experience. Language is chock-full of these context dependencies, which can
make for surprises, as when Groucho Marx announced, ‘This morning I shot an elephant in my
pajamas. How it got in my pajamas, I don't know.’

Over the past 20 years, interest in predicting sequences of words has steadily increased in natural
language processing (NLP). With vast amounts of text available online, there was great interest in
learning models to predict and generate naturalistic language from this text. Neural networks that
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could generate sequences were an obvious choice for this task. Networks where model neurons
are connected in a dense web, called ‘recurrent neural networks’ (RNNs), have long been known
to be effective for generating sequences [5]. RNNs are distinct from feedforward models, such as
convolutional neural networks [6,7], where neurons are organized into successive processing
layers with no internal, intra-layer connections. Inputs to an RNN affect neurons within the net-
work, which then propagate their activity to other neurons through a dense and loopy web of
interconnections (Figure 1, top left). An RNN receiving words in a sentence as inputs, one by
one, can build up an internal state that can, in turn, capture dependencies within a natural
language sequence [8]. Various techniques have been developed to train RNNs [9–11]. In apply-
ing RNNs to sequence prediction for natural language tasks, however, researchers began to re-
alize the difficulties in training RNNs to pick up on long-range dependencies [12–14], which are
critical for language prediction, such as with the context-dependent gist a human reader picks
up with ease.
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Figure 1. Recurrent neural network (RNN) architecture, transformer networks, and self-attention in language prediction tasks. Top left: RNNs for language
prediction tasks take each word in a sequence as input, one at a time. The inputs are processed by the RNN, whose state passes from time step to time step (horizontal
arrows) in order to build up a representation of the sequence. After the entire input sequence is fed into the RNN, a ‘go’ signal cues the network to generate the output
sequence, again one word at a time. Each generated output word is fed back into the RNN to recursively generate the output sequence. Bottom left: instead of taking each
input one at a time, transformers take in the whole input sequence, which is processed through a series of Encoders. GPT-4 has a context length of 128k tokens (about 240
pages at 400 words per page). The output of the last Encoder is then an input to the Attention mechanism in the Decoder modules. The output of the complete Encoder–
Decoder is the predicted next word in the sequence. This prediction is then appended to the input to the decoder to start the prediction for the next step. Right: within a
single layer of the Encoder and Decoder, the sequence encoding (E) is passed to a multi-head attention module. The result of this calculation is the self-attention score,
which is added to its input and passed on to a traditional feedforward layer. This self-attention mechanism enables the data-driven discovery of the network of relationships
between words in the input sequence (top). Note that the input is added to Multi-Head Attention in the Add and Normalize box, which externalizes it as a parallel module.
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To address problems with long-range dependencies, a new mechanism was introduced by
Bahdanau et al. in 2014, allowing an RNN to learn which parts of a source sentence were the
most valuable for making correct predictions [15]. This mechanism was called ‘attention’ and
had a loose association with the process of human attention to different sensory items. This
mechanism allowed the network to ‘focus’ on those pieces of the input sequence that would
most effectively drive its internal state to produce the correct prediction. This mechanism for
identifying predictively valuable segments proved very effective in helping RNNs learn natural
language prediction tasks. Equipped with attention mechanisms, RNNs gained proficiency in
sentence-level translation tasks, in part tackling the problem of long-range dependencies. How-
ever, a breakthrough in utilizing attention for long-range dependencies was reported in 2017 with
the introduction of transformer networks [16]. The main innovation behind transformers was
surprising: they used only the attention mechanism and relatively simple feedforward layers to
predict the next word. This simplified architecture provided the foundation for advances exhibited
in the generative pre-trained transformer (GPT) architecture [17] and led to the current LLM chat
agents such as ChatGPT, LLaMa, PaLM2, and Gemini [18].

In a language translation task, the transformer architecture is divided into an Encoder (which, in
the earlier example, would process the sentence in French) and a Decoder (which would output
the sentence in English) (Figure 1, bottom left). The critical step is the self-attention module, where
a set of features learned for each word item interacts with features for the other items in the input
sequence (Figure 1, right). The size of this feature vector is called the ‘embedding dimension’. If
the feature vector for one word matches another, the two words will have a vital link in the self-
attention process. For example, in a given input sequence, ‘popcorn’ and ‘ribosome’ will be
less strongly linked than ‘popcorn’ and ‘movie’. Once this process is computed in parallel for
all the words in the input sequence, the array of numbers storing the embedding vectors for all
words in the input passes into a simple feedforward network. This is the basic function of one
Encoder module in the transformer architecture. The self-attention mechanism is repeated
many times within a single Encoder. This process is called ‘multi-headed attention’. After several
encoding layers with self-attention (Figure 1), the resulting encoding vector then passes to a mul-
tilayer Decoder, where the relationships the encoding vector has captured with self-attention aid
in the correct prediction of the next output. During the training process of the transformer, the
connections that make up the self-attention and feedforward modules in the Encoder learn
how to create a very high-dimensional encoding vector that can effectively drive the decoder to
predict correct output sentences. The long vectors used to encode the inputs, together with
the self-attention across the components of the vector, provide a comprehensive context for
making predictions. The temporal context of spoken words is represented in a transformer by
the spatial context within the encoding vector.

The transformer architecture introduced the idea that the attention mechanism was ‘all you need’
for language prediction tasks. As transformer networks scaled up, their encoding vectors
became surprisingly proficient at capturing the long-range dependencies in language that were
previously difficult to capture with standard RNNs, which received words sequentially. The break-
through represented by the transformer is that the computation itself is simple: the self-attention
mechanism, iterated with feedforward networks, dramatically increased computational efficiency,
meaning these networks could be scaled in size, and unexpectedly solvedmany natural language
problems. As has become clear in GPTmodels, these networks can successfully produce coher-
ent pages of text and, in some cases, display impressive generalization and reasoning [19]. The
utility of this encoding vector and its focus on capturing the relationships between words in an
input sequence is central to these advances in language prediction. Grasping what this encoding
vector can teach us about computation more generally could advance our understanding of
790 Trends in Neurosciences, October 2024, Vol. 47, No. 10
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neural networks, both artificial and biological. In what follows, we focus on experimental data from
single regions of the sensory cortex to understand how this encoding principle from transformers
could be implemented at this scale. In the concluding sections we discuss how this principle
could be implemented by interactions across cortical regions at the whole-brain scale.

Capturing relationships by encoding a complete input sequence in parallel
In learning and using context, do brains rely on anything like a transformer? The fundamental
insight of the encoding vector is to capture in parallel predictively valuable relationships between
all the items in an input sequence, rather than handling inputs one by one, as with standard
RNNs. Sensory inputs, however, arrive at our brains one spoken word and one eye fixation at
a time. This appears to pose a fundamental difficulty for brain systems to use transformer-style
contextual information, that is, to capture relationships in parallel and to operate on sensory
input, which is astronomically high-dimensional and continuously arrives at the periphery. Yet
somehow, brains do seem to have solved some version of the broad context problem. Could
brain circuits implement an encoding strategy that is similar to that of transformers?

The tactic of encoding many elements in a temporal sequence in parallel may at first appear at
odds with our current understanding of sensory processing in the brain. Regions in the sensory
cortex contain neurons that respond selectively to the onset of sensory inputs [20]. For example,
the orientation of a bar of light may be encoded by the spike rate of an orientation-selective unit in
primary visual cortex (V1), the tone of a sound may be encoded by the rate of a frequency-
selective neuron in primary auditory cortex (A1), or (to take an example from a cognitive system)
the position of a rodent during navigation may be encoded by the spike rate of ‘place cells’ in the
hippocampus. Hubel and Wiesel, in their pioneering work on neuronal selectivity in the visual
cortex [21,22], established a model in which the input entirely drives the sensory encoding and
where just-now events in its receptive field determine an individual neuron's response properties.
In this model of sensory encoding, trial-to-trial fluctuations that deviate from the average response
expected from the receptive field are thought to be a product of noise [23] or to represent uncer-
tainty [24,25]. Lateral interactions due to horizontal connections are known to influence selectivity,
specifically through the non-classical receptive field [1–4]. These effects have been proposed to
mediate specific computations in the visual system, such as contour completion [26]. Feedback
projections [27] from higher cortical areas have also been proposed to provide context for incom-
ing sensory inputs or to impose bias on incoming sensory input [28]. This feedback is composed
of efference copy from motor commands in addition to sensory information [29,30]. These circuit
features add additional computations for spatial context into the feedforward processing model
of Hubel and Wiesel; at the same time, however, they do not explain how cortical circuits could
take advantage of activity generated by inputs from the recent past, in turn enabling these circuits
to perform computations with temporal context.

However, the powerful transformer strategy of encoding entire input sequences in parallel, along
with their predictive relationships by virtue of a sizable encoding vector, appears ill-suited to bio-
logical neural networks as characterized by the classical framework of sensory function. At first
blush, the transformer strategy seems beyond the brain’s reach, assuming that neuronal
encoding remains a fixed function of single-input features, such as visual orientation or auditory
pitch at one moment of time. That assumption, we suggest, may benefit from another look in
the light of new recordings from arrays of electrodes.

Recent research has demonstrated that rather than being based solely on just-now features of
sensory input that are currently present, the selectivity of single neurons may take future, pre-
dicted features as well as past features into account. One recent study of place cells in bats
Trends in Neurosciences, October 2024, Vol. 47, No. 10 791
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observed that, by shifting the present position of the animal forward in time in the data analysis,
hippocampal place fields became sharper, and new, well-formed place fields became apparent
[31]. This result suggests that, especially at the high speeds flown by bats relative to place field
size in the hippocampus, selectivity may be enhanced by future, anticipated inputs rather than
restricted to present input stimuli. Anticipatory responses to moving stimuli have also been
observed in the visual system, in the peripheral circuits of the salamander and rabbit retina, [32]
and, more recently, in monkey V1 [33]. These results, which were obtained by averaging across
trials, indicate that in contrast to simply reflecting present sensory input, the sensory and cog-
nitive systems’mapsmay play more dynamic roles in neural computation. If that is the case, the
question is this: could the highly structured encoding that occurs in transformers to handle
contextual features across time be enabled by the dynamics of these circuits on a trial-by-
trial level?

Waves in single regions of visual cortex: parallel encoding of the recent past
A critical computational insight of the transformer architecture is to encode the words in an input
sequence in parallel, in a highly structured encoding that allows extracting meaningful relation-
ships. Regarding the visual system, first consider a series of points of light presented briefly.
The key circuit element would be a way to link the activity patterns evoked by each stimulus,
even after the initial activity pattern has subsided, to generate predictively valuable signals. How
might neural circuitry be organized to achieve transformer-like richness?

Studies using large-scale optical imaging techniques and multielectrode array recordings in non-
human primates have demonstrated that small visual stimuli drive waves of activity that propagate
from the input point across the visual cortex [34,35]. These waves propagate at the same speed
as the unmyelinated long-range horizontal fibers that connect neurons across cortical areas [36],
traveling over a substantial portion of the map of visual space in tens of milliseconds. These long-
range fibers, which project many millimeters to connect neurons across an individual cortical
region [26], are thus a candidate network mechanism underlying waves in single cortical regions,
such as V1.

How are such waves generated?Waves occur quite generally in networks of rate-coded neurons
with local interactions [37–39]. Waves in these networks are ‘dense’, in the sense that each neu-
ron participates in the wave as it passes across the network. Spiking neural networks, however,
can admit a distinct activity state: ‘sparse’ waves, where only a few neurons spike as the wave
travels across the network, primarily when known distance-dependent axonal conduction delays
are included [40]. Networks with sparse waves can match the activity observed in experimental
recordings of visual cortex. Waves in this model propagate with the distribution of speeds
observed in experiments, with activity at a local scale remaining consistent with the low-rate,
decorrelated ‘asynchronous-irregular’ activity regime. Evidence from both models and experi-
mental recordings indicates that spontaneous and stimulus-evoked waves involve the contribu-
tion of many synapses in coordination, rather than strong monosynaptic connections at spike
initiation zones [41]. Further, in experimental recordings, waves modulate neural excitability and
thus the responses to incoming inputs [42,43]. These large-scale spiking network models also
reveal that the local balance of excitation and inhibition of neurons is modulated as the waves
pass through local circuits, which in turn modulates excitability to incoming stimuli [40].

Experimental observations indicate that waves evoked in the awake state do not cross the
boundaries between different cortical areas [34], in contrast to those in anesthetized animals
that do [44,45]. This restriction suggests that waves occurring during normal, waking visual pro-
cessing respect the retinotopic maps in individual regions of the visual system. With neurons thus
792 Trends in Neurosciences, October 2024, Vol. 47, No. 10
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organized, the waves could yield structured spatiotemporal patterns in response to sequences of
brief input stimuli. In both recordings and models, another important feature of these waves is
that they are sparse: when a wave passes over a local patch of cortex, only a tiny fraction
(<1%) of the neurons spike. This profile contrasts with the dense waves that occur, for example,
during epileptic seizures. Unlike dense waves, sparse waves propagate across single cortical
regions along long-range horizontal fibers, modulating but not completely overwhelming the
feedforward input.

These experimental and modeling results raise the possibility that stimulus-evoked waves are
not pointless doodads, but may play a significant computational role in sensory processing. In
this case, however, what computation could this be? Waves of neural activity traveling over the
retinotopic map seem at first inconsistent with the standard framework for sensory processing.
Within this canonical framework, visual system models generally consider feedforward inputs
from the retina, with precise retinotopic projections from one layer of neurons to the next, to
process incoming visual inputs through successively elaborated receptive field selectivity [46].

The objection is this: if a single-point stimulus can evoke a wave that travels over a large part of
an individual visual area, such a wave could disrupt the processing of other sensory stimuli as
it propagates. Consequently, stimulus-evoked waves appear incompatible with the classical
conception of precise retinotopic maps and retinotopic projections. Nevertheless, a closer look
suggests an alternative in which mixing information across space and time has computational
advantages.

Waves traveling across single regions of cortex can provide temporal context [47] and can
also convert temporal information into spatial codes [48]. We have previously introduced a poten-
tial computational role for waves traveling over topographic maps in single regions of sensory
cortex [35]: waves traveling radially outward from the point of input can encode both where
(in retinotopic space) and when a stimulus occurred. To take a simple example, with a small,
punctate input that evokes a wave (Figure 2, top), a decoder could tell where the input occurred
by using the center point of the wave on the retinotopic map and when it occurred by using the
distance from the center and the fact that these waves travel at a specific range of speeds.Where
and when are thus encoded in the wave pattern. In a case with multiple stimuli, such as multiple
spots presented in a sequence, both the sequence of stimulus positions and their onset times
could be decoded from the spatiotemporal interference pattern in the membrane potentials of
the neural population (Figure 2, bottom). In this way, waves could provide a mechanism for the
sensory cortex to encode stimuli in the recent past in a highly structured manner that enables
extracting meaningful relationships across space and time.

As waves of activity spread laterally within the cortex, they influence the spiking activity of neigh-
boring neurons after a delay caused by conduction through unmyelinated long-range horizontal
axons (Figure 3A). As the wave progresses through the tissue, it influences the spiking activity
of more distant neurons after further time delays, as visualized in Figure 3B as an expanding
spacetime cone. This diagram abstracts the causal structure of all inputs that can influence a
spike in a single neuron, which can then influence other neurons downstream. In a natural
scene, many neurons will be activated, potentially creating complex interference patterns
between all the sparse, expanding waves. This is reminiscent of a hologram formed by spatial
interference fringes, which contain all the information needed to recreate a 3D object when illumi-
nated by a coherent light source. In the cortex, spatial input is mixed with temporal delays to cre-
ate a dynamic spacetime representation containing information needed to recover the spatial and
temporal history of the sensory inputs.
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Figure 2. Schematic of stimulus-evoked waves in single regions of cortex and responses to multiple stimuli.
Top box: analysis of optical imaging data in awake, behaving primates has revealed that small, punctate visual stimuli
(stimulus space, top row) can create waves of activity that propagate outward from the point of feedforward input [34]
(retinotopic map), similar to ripples in a pond created by dropping a pebble. Bottom box: in the case of three visual stimuli
(stimulus space, top row), a specific temporal order of presentation (stimulus 1, then 2, then 3) can create one pattern of
waves (cortical response to sequence 1, 2, 3), while another order of presentation (stimulus 1, then 3, then 2) can create a
different spatiotemporal pattern (cortical response to sequence 1, 3, 2).
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Figure 3. Time delays between
laterally interacting neurons create
a spacetime population code.
(A) Neuron ‘A’ receives a direct input at
time t and an input from neuron ‘B’
delayed by Δt. (B) The response of a
spiking neuron (dark gray circle at the
intersection of the two blue triangles)
is influenced by the activity of all the
interacting neurons in the backward
spacetime cone (blue triangle from
t – Δt to t), as structured by the
temporal delays in the network. The
spike of the neuron at time t influences,
in turn, a population of interacting
neurons within the forward spacetime
cone (blue triangle from t to t + Δt). The
backward cone extends back in time to
include all inputs to the central neuron
and the forward cone extends forward
to all neurons in its projective field.
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Spacetime representationsmaybe useful for processing inputs across topographic
maps
The neural activity underlying population codes is traditionally viewed as a separable function of
space and time: that is, P(x,t) = F(x)G(t), where P(x,t) is a function describing the profile of neural
population activity and the other two terms are functions of only space and only time, respectively.
Here, ‘space’ refers to cortex or, equivalently, to sensory space when the cortical area is orga-
nized into a topographic map. By contrast, waves indicate that the neural activity underlying pop-
ulation codes may be spacetime non-separable at the moment-by-moment level, such that the
function P(x,t) cannot be decomposed into two independent functions for space and time. In
this case, neural population activity does not represent information at a single moment in time,
but instead can also contain activity from the recent past, in the form of waves propagating
over the topographic map: P(x-vt) where v is the velocity of the wave.

How could this ‘mixing’ of information possibly be useful in cortical computation? As noted earlier,
a key feature for computation may be that waves provide a mechanism to encode stimuli in the
Trends in Neurosciences, October 2024, Vol. 47, No. 10 795
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recent past in a structured manner, as continuous spatiotemporal structures traveling over the
topographic sensory maps. A theoretical model has shown that waves can indeed enact a con-
junctive encoding of where and when a stimulus occurred and, in addition, can drive short-term
predictions of incoming sensory inputs [49]. The recurrent network model driving these short-
term predictions incorporates the main architectural features of single regions in cortex: local
connectivity and distant-dependent time delays. Short-term predictions are possible in this recur-
rent network when the strength of feedforward and recurrent inputs is approximately matched, in
general agreement with the ratio of feedforward and recurrent input to individual neurons in V1
(measured under anesthesia) [50,51]. When connections in the recurrent network are randomly
shuffled, the network does not produce accurate predictions, even after retraining. These results
demonstrate that, when RNNs follow the basic architectural features found in visual cortex,
waves may provide a unique way to embed short-term predictions onto the retinotopic map, in
a more highly structured form than general patterns of activity produced by networks of randomly
connected neurons.

Recent evidence from training RNNs has also begun to suggest further roles that waves could
play in neural computation and prediction more generally. Training RNNs to predict sequences
naturally results in recurrent weight matrices with Mexican hat connectivity, which supports
waves [52] (see section ‘Potential implementations of self-attention in cortical networks’). Com-
paring locally connected RNNs that generate waves with randomly connected RNNs that do
not generate waves showed that wave-generating networks could be trained to perform more
complex sequence learning tasksmore easily, with training almost two orders of magnitude faster
than randomly connected networks [53]. Finally, waves in RNNs can drive elementary computer
vision tasks such as image segmentation [54]. These results were inspired by the main organiza-
tional features in single cortical areas (local recurrent connections and distance-dependent time
delays) and the principles learned from transformers.

Waves and transformers: bringing the encodings together
The potential similarity between transformers and waves is that they may be tapping into the
same computational principle, albeit with somewhat different physical mechanisms: by process-
ing inputs in parallel, using a highly structured encoding, transformer networks and cortical waves
may enable extracting meaningful relationships from these sequences. In the case of the trans-
former, the long encoding vector contains the attention mechanism that enables capturing the
long-range dependencies critical for NLP. In the case of waves in the visual cortex, the highly
structured spatiotemporal patterns, earlier tagged as sparse, may enable encoding temporal
relationships directly onto populations of neurons over the retinotopic map, facilitating flexible
storage of the recent past in a way that enables extracting the temporal relationships from the
spatial map.

This potential similarity between the computational principle underlying both waves and trans-
formers may explain the function of waves in single regions of the visual cortex. Since the intro-
duction of the feedforward model of the visual system by Hubel and Wiesel [21,22], and its
refinement through successive network implementations [46,55], it has often been implicitly
assumed that the visual cortex contains a veridical image of sensory input, albeit filtered in
some way by the receptive field selectivity in each area. Waves in single regions of visual cortex,
however, indicate that input encoding in the visual system may be much more sophisticated,
since local populations of neurons can influence networks far across the retinotopic map in a
highly structured manner. Encoding long input sequences in parallel provides transformers with
an advanced capacity to extract meaningful relationships in natural sensory input. This stunning
but conceptually simple achievement suggests that nervous systems could conveniently
796 Trends in Neurosciences, October 2024, Vol. 47, No. 10
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implement roughly comparable encoding to extract relationships across input sequences.
Although the complex activity patterns of the visual system – from spontaneous activity in the
absence of visual input, to variable neural responses to identical simple stimuli, and finally to
the dynamics in response to naturalistic inputs that are difficult to explain from selectivity esti-
mated from simple isolated stimuli [56–58] – may have at first been taken to be meaningless
fluctuations, it is possible that these fluctuations are not mere noise. Instead, they may reflect
computations that extract meaningful relationships from the continuous stream of visual input
and create short-term predictions of incoming stimuli. Althoughwe have largely focused on neural
circuit phenomena herein, experiments linking circuits to behavior, for example, with expectation
effects such as priming, show clear speed and accuracy benefits in making accurate predictions
of upcoming sensory inputs, such as auditory anticipations driven by experience [59,60].

Potential implementations of self-attention in cortical networks
As shown in Figure 1, the input to each layer projects to self-attention, which then is combined
with the feedforward projection. So-called self-attention is a relatively recent addition to deep
feedforward networks. The foundational paper for LLMs was entitled ‘Attention is all you
need’, emphasizing its importance [16]. Without self-attention, a transformer would be a conven-
tional feedforward network with limited capabilities. Here is how GPT-4 described self-attention:
‘Imagine you're reading a book and come across a sentence that refers to something mentioned
a few pages back. You might flip back to remind yourself. Self-attention allows the model to
look at other words in the sentence to better understand the current word.’ This is different
from how ‘attention’ is used in neuroscience, which typically is focused on single sensory items.
Nonetheless, ‘self-attention’ could be considered a generalization of attention that links items
across time.

How could ‘self-attention’ be implemented in the cortex, whose highly recurrent architecture dif-
fers from the matrix self-attention and feedforward layers in transformers? State space models
have recently emerged as a more efficient alternative to transformers, specifically by replacing
the matrix self-attention mechanismwith a muchmore computationally efficient linear convolution
[61–64]. A state–space model (SSM) takes in temporal sequences of vector inputs and trans-
forms them into sequences of vector outputs. SSMs are already well established in themotor sys-
tem, and in particular the motor cortex, where muscles are controlled to follow dynamical
trajectories [65]. One of the simplest SSMs that is amenable to analysis is given by a first-order
linear differential equation (Figure 4). In this system, the vector ‘x’ can represent the state of N
neurons in a recurrent network, whose connections are defined by ‘A’. The system is responding
to an input specified in vector ‘u’ by generating an output ‘y’. From this perspective, this simple
SSM is similar to a standard RNN with linear instead of non-linear activation function [66].

For the SSMs that are used to implement mechanisms similar to self-attention in transformers, ‘A’
has a special form, called a Toeplitz matrix, where the value of the parameters on each diagonal
x = Ax + Bu
y = Cx + DuC D

BAu y
Input Output

Update equation
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Figure 4. Input–output relationship
and equations for state–space
models (SSMs). In this figure, u is
the input vector and y is the outpu
vector. The vector x is an intermediate
dynamical variable and x dot is the
first derivative. The matrices A, B, C
and D control the dynamics. In contro
theory, A is a model of the dynamica

system, and in the cortex A is the connectivity matrix, which generally resembles a Mexican hat with excitatory
connections between nearby pyramidal neurons and inhibitory influence on more distant neurons.
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from left to right is a constant [67]. Mexican hat connectivity is an example of a Toeplitz matrix. We
have recently developed a mathematical theory that links the structure of these matrices (more
specifically, circulant matrices, which are a special kind of Toeplitz matrix [68]) to waves in net-
work systems, evenwhen the dynamics are nonlinear (N.B. this mathematical approach also gen-
eralizes to other types of connectivity patterns, including random graphs) [69,70]. If the dynamics
of individual nodes are nonlinear, then relating the pattern of connections in a connectivity matrix
to the network dynamics is a difficult problem. Fortunately, the new mathematical tools smoothly
handle this complexity, enabling the emerging theory to explain the connection between traveling
waves and the structure of SSMs that are now used for self-attention in machine-learning tasks. It
remains to be seen whether future theoretical work can identify significant links between the spa-
tiotemporal dynamics of neural populations and the dynamical activity patterns that result from
these SSMs (and recurrent networks more generally).

Future developments
Many open questions regarding traveling waves and their functions invite a range of conjectures
(see Outstanding questions). For example, are ‘self-attentional’ structures learned during child-
hood? How could events originating from separate cortical areas be linked together? Scaling
up spacetime cortical codes more broadly requires distant cortical regions to interact on a larger
scale.Waves at the whole-brain scale have been observed with electroencephalogram (EEG) and
magnetoencephalogram (MEG) recordings in humans during wake [71–76] and sleep [77]. While
signal blurring poses a significant challenge to quantifying spatiotemporal dynamics with these
noninvasive techniques, waves have also been studied with intracranial recordings in humans
during wake [78–80] and sleep [81], and in rodents, where an entire hemisphere of cortex can
be imaged simultaneously with optical techniques [82–86]. It is also tempting to wonder whether
major brain regions that have reciprocal loops with the cortex – the basal ganglia and the cerebel-
lum, for example, – might serve to coordinate interactions between distant cortical regions,
among other possible roles. The reciprocal loops between the cortex and the basal ganglia are
topographically organized [87,88] (Figure 5). The basal ganglia [89] are known to be involved in
learning and generating sequences of actions to achieve goals, and could be a site for self-
attention. Regarding the cerebellum, temporal context is essential for fast coarticulation in
speech, and transformer-style self-attention could facilitate coordinating muscular contractions
by extending motor representations over time as spatial activity patterns.

And surely the question arises: why are there large differences between traveling waves character-
istic of sleep, which likely involve thalamocortical loops and intracortical connections [90], and
those typical of the awake state? Analyses of spatiotemporal dynamics across different cortical
states, at different states of wake and anesthesia [91], could provide critical insights into how
waves are shaped by changing interactions between thalamus and cortex, in addition to other sub-
cortical structures [92–94]. Finally, how does spontaneous cortical activity – where waves occur in
individual cortical regions [45,95] and at the whole-brain scale [82,83] – interact with stimulus-
driven waves, and what are the implications for the computations discussed herein? For example,
by continually refreshing recent inputs, spontaneous waves could be extending working memory.

Moving forward, close interaction between theory and experiment will be critical for testing these
ideas with specific, model-driven predictions. Technological improvements are rapidly advancing
the scale of neural recordings, and new analytic techniques can be applied to test the predictions
of spacetime coding. One key prediction emerging from this framework is that, as strong
feedforward sensory input arrives at a cortical neuron, its response will be mixed with information
about inputs from distant spatial locations at previous times (Figure 3B). This can be experimen-
tally tested by reconstructing previous sensory inputs from current activity in large populations of
798 Trends in Neurosciences, October 2024, Vol. 47, No. 10
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Figure 5. Schematic diagram of
the loops between the basal
ganglia and the cortex. Cortical
areas project topographically to the
basal ganglia, which then feedback
topographically to the cortex through
the thalamus. Compare this with the
self-attention box in Figure 1 in the
main text. Cortical hierarchies are found
in the sensory cortex, motor cortex,
and prefrontal cortex. Associations
between input to the basal ganglia can
be learned through dopamine neurons,
which carry reward prediction signals.
The cortex receives inputs from
the thalamus, similar to the encoder
inputs that the decoder receives in a
transformer.
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Outstanding questions
In the framework of transformer-like
encoding, what would be the ‘context
length’ of a traveling wave, and could
multiple cycles of waves implement
longer context lengths?

How do the properties of traveling
waves change in different regions of
cortex, or at the whole-brain scale?
Could these changes be related to
changing ‘context length’ in terms of
transformers?

How can recurrent architectures, where
nodes have dense interconnections as
in the cortex, provide advantages in
sequence-to-sequence prediction in
transformer-type networks?

What role do feedback connections
play in shaping traveling waves in
cortex, and how could they play a role
in these artificial neural network
architectures?
neurons. Second, because the spacetime population code is spatially distributed, the information
extracted across the cortex should be highly overlapping. Some signals, such as efference copy
motor signals and neuromodulatory signals, are broadly represented. Finally, membrane poten-
tials recorded using voltage-sensitive dyes should have more information than spikes, which
are sparse, and there should be more information in the relative timing of spikes in neural popu-
lations about past sensory inputs compared with firing rates.

Concluding remarks
Waves traveling across single cortical regions are ubiquitous in the cerebral cortex, as observed in
sensory [34,43,96], motor [42,97–99], and prefrontal [100,101] regions during normal sensory
processing and behavior, as well as in the hippocampus [102–104] and basal ganglia [105]. Elec-
tromagnetic and sound waves carry delayed information across space, and neural waves carry
delayed information across cortical space.

We have focused herein on waves in single regions of cortex. A possible function for stimulus-
driven waves traveling over topographic maps is to provide a temporal context for sequences
of sensory inputs. In the prefrontal cortex this spacetime code could integrate words over a longer
timescale, for example, during an hour-long lecture, a form of long-term working memory [106].
The waves we discuss mix old information with new information delivered by feedforward inputs
to create a new type of spacetime population code. This form of encoding has computational
advantages similar to those found in the transformer architecture of LLMs, which map temporal
Trends in Neurosciences, October 2024, Vol. 47, No. 10 799
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sequences into a long input vector. Evolution may have found an alternative method to achieve
the same functionality, taking advantage of cortical dynamics in recurrent networks.

Throughout the biological world, evolution has repeatedly exploited the physics of oscillators to
extensively use waves in systems on a wide range of time scales, from the rotation of flagella to
whisking, digesting, egg-laying, and swimming [107]. We hypothesize that another evolutionary
adaptation deploys waves of neural activity especially suited to sparse spiking dynamics in the
cortex in mammalian and in lower vertebrate brains to support spacetime coding [47].

Population coding by waves traveling over topographicmapsmay not be as intuitive initially as the
traditional conceptual framework for coding with separable receptive fields in sensory maps.
Both, however, might be relevant to understanding neuronal function, specifically as multitier
levels of description of sensory systems. Receptive fields are measured under carefully controlled
conditions, repeating nearly identical sensory stimuli, and then averaging over neural responses
to many presentations. Receptive fields thus capture information about a neuron’s responses
on average to features of sensory stimuli, with trial-to-trial fluctuations about this average thought
to be a product of noise. This framework for neural coding has been highly successful in under-
standing responses to repeated visual stimuli and in understanding the elaboration of neuronal
selectivity across the visual system. However, when faced with an incoming stream of complex
whole-field visual inputs, extracting meaningful relationships across time, as in transformer net-
works, using spacetime coding may give sensory systems an important advantage in predicting
upcoming inputs and preparing behavioral responses.
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