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Abstract

Learning the distribution of natural images is one
of the hardest problems in machine learning. We
break down this challenging problem by map-
ping images into a hierarchy of binary images
(bit-planes). In this representation, the top bit-
plane is critical, having fluctuations in structures
over a vast range of scales. The ones below go
through a gradual stochastic heating process to
disorder. We turn this representation into a di-
rected probabilistic graphical model, transform-
ing the learning problem into the unsupervised
learning of the distribution of the critical bit-
plane and the supervised learning of the condi-
tional distributions for the remaining bit-planes.
We learnt the conditional distributions by logistic
regression in a convolutional architecture. Con-
ditioned on the critical binary image, this simple
architecture can generate large natural-looking
images with many shades of gray, without the use
of hidden units.

1. Introduction
Learning the distribution of natural images remains one of
the hardest problems in unsupervised learning. Structures
in natural images are complex, varied, and most impor-
tantly span a vast range of scales, from the smallest within
a few dozen pixels to large structures the size of the im-
age itself. In this respect, they are very similar to criti-
cal points, realized for physical systems near continuous
(second-order) phase transitions (Wilson, 1979). There is a
deep connection underlying this similarity as critical large-
scale fluctuations emerge after mapping natural images to a
stack of binary images (Saremi & Sejnowski, 2013; 2014;
2015). In this work, we introduce an algorithm to utilize
this criticality in learning the distribution of natural images.

The binary representation of (Saremi & Sejnowski, 2013)
contained ordered and disordered phases, with a critical bit-
plane close to a phase transition. It was interpreted that
the existence of the critical bit-plane underlies the large-
scale fluctuations of the structures in natural images. Here,
we build on those results and exploit the binary representa-
tion, turning it into a directed probabilistic graphical model
by placing the critical bit-plane at the root of the directed
graph. This transforms learning the distribution of natural
images into the unsupervised learning of the distribution
of the critical bit-plane and the supervised learning of the
conditional distributions of all other bit-planes in a parent-
child hierarchy outlined below. The network architecture
for learning is simple. We approximate the conditional dis-
tributions by logistic regression, where the weights to the
children nodes are learnt in a convolutional architecture by
weight-sharing.

Turning unsupervised learning into supervised learning has
a rich history and goes back to the wake-sleep algorithm
and the Helmholtz machine, which trained inference and
generative models against each other (Hinton et al., 1995;
Dayan et al., 1995). Here, in contrast, the supervision is
given by the input itself. Instead of learning hierarchi-
cal representations with hidden units (LeCun et al., 2015;
Schmidhuber, 2015), we show that the “hierarchy” of struc-
tures “hidden” in the data itself can be utilized for learning.

The starting point is to construct an exact binary represen-
tation so that the top layer is critical and the bottom ones
go through a stochastic heating process to disorder. In the
bit representation that was studied in (Saremi & Sejnowski,
2013; 2015), the critical bit-plane was in the middle of the
hierarchy, with different types of structures emerging in re-
lation to the critical bit-plane, “ordered” towards the top,
and “disordered” towards the bottom. It is not clear in that
representation how the layers just above and just below the
critical layer could influence each other in a directed graph.
However in the new representation, the causal direction is
clear: the stochastic heating process from criticality (top)
to disorder (bottom).
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2. Binary Representations for Images
In this section, we present a new binary representation for
images compared to what was presented in (Saremi & Se-
jnowski, 2013). The new representation is a tweak on the
original but it turns out to be key in how we map the binary
representation to a directed graphical model. We first give
a brief review of the original representation.

The analog values I (assumed to be non-negative inte-
gers for simplicity) were mapped to a binary representation
{B1, B2, · · · , BΛ} by the following decomposition:

I =
Λ∑
λ=1

2Λ−λ Bλ, (1)

where Bλ ∈ {0, 1} was found iteratively by evaluating
b(I −∑λ−1

l=1 2Λ−l Bl)/2
Λ−λc starting from λ = 1. The

visual representation of the map from analog pixel values
to its corresponding bits is given in Fig. 1. For gray-scale
images I, Eq. 1 is replaced with matrices of binary images:

B = {B1,B2, · · · ,BΛ}, (2)

mapping I to a stack of bit-planes B.

The plan is to make this representation into the following
probabilistic graphical model,

P (B) = P (B1)P (B2|B1) · · ·P (BΛ|B1,B2, · · · ,BΛ−1).
(3)

However, to find good estimates for the conditional dis-
tributions, the structure of the directed graph should be
dictated by a “physical” causal process. This is what we
achieve by changing the original binary representation.

One of the main conclusions of (Saremi & Sejnowski,
2013; 2015) was that there exists a critical bit-plane in the
bit representation hierarchy, which underlies the scale in-
variance of natural images. Therefore in building the di-
rected graph the critical bit-plane must be the root and the
parent of other bit-planes. In the representation B, the
critical bit-plane is in the middle (B6 in the van Hateren
database) and is surrounded by ordered/cold, and disor-
dered/hot phases. That representation cannot be made into
a directed graph, since the causal direction from the bit-
planes just above and just below the phase transition cannot
be deduced. In a simple tweak, we change the binary rep-
resentation so that B1 is critical and the bit-planes below go
through a gradual heating process to disorder. The parent-
child hierarchy becomes clear: from criticality to disorder.

The change in the representation is illustrated in Fig. 1; we
simply change all the half-point dividing lines to the me-
dian values of their corresponding intervals. This hierar-
chical median-thresholding is exactly equivalent to apply-
ing half-point thresholding of Fig. 1 after first performing
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Figure 1. The binary representation for the Λ−bit integer value I
in the range [0, 2Λ−1]. The first three bits is shown schematically
here, where each bit divide the interval in half iteratively starting
from the most significant bit B1.

histogram equalization by the cumulative integral of the
marginal distribution of the pixel intensities P (I):

I → I ′ =

∫ I

−∞
P (x)dx, . (4)

By definition, I ′ is in the range [0, 1]. The half-point thresh-
olding of the histogram-equalized image is the same as
median-thresholding of the original image because P (x) ≥
0 and therefore the transformation of Eq. 4 does not change
the rank of entries: Ik > Il ⇔ I ′k > I ′l for two pixel
locations k and l. The illustration of this new binary rep-
resentation for an image in the Geisler database (Geisler &
Perry, 2011) is given in Fig. 2.

The first bit in the new representation B1 = I >
median(I) is the median-thresholded image, which was
studied at length in (Stephens et al., 2013; Saremi & Se-
jnowski, 2014). The median-thresholded images were also
analyzed using percolation theory, which studies connected
clusters on graphs (Saremi & Sejnowski, 2015). It was
shown that they are at the onset of a percolation transition,
and their criticality is governed by percolating clusters. In
addition, it was demonstrated that B1 contains connected
clusters on all length scales and are governed by scaling
laws. These rich connected clusters at top of the graphi-
cal model provide the fuel to the algorithm presented here.
We refer the reader to (Stephens et al., 2013; Saremi & Se-
jnowski, 2014; 2015) for detailed analyses on the richness
of the median-thresholded natural images.

What we gain in the new representation is what we planned
to achieve in that the bit-planes Bλ go through a gradual
stochastic heating process to disorder as λ increases (see
Fig. 2), which naturally places them in the parent-child hi-
erarchy of the directed graphical model of Eq. 3. In sum-
mary, in the new representation B1 = I > median(I) is
critical, at the root of the graph, and Bλ is the parent of Bλ′

for λ < λ′. This hierarchy is the stochastic process to dis-
order, seen in Fig. 2 by islands of connected clusters grad-
ually dissolving in a sea of noise. With this construction
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of the graphical model, rooted in statistical physics and in
the theory of critical phenomena, we can hope to find good
estimates for conditional distributions of Eq. 3.

I B1

B2 B3

B4 B5

B6 B7

Figure 2. An image I (2844 × 4284 pixels) in the Geisler
database of natural images and its binary representation up to bit-
plane B7 are shown. The critical bit-plane B1 goes through a
gradual stochastic heating process to disorder.

3. Network Architecture
The network architecture for learning the conditional distri-
butions P (Bλ|B1,B2, · · · ,Bλ−1) is very simple. We first
assumed that pixels in the bit-plane Bλ are independent
conditioned on the layers above. This might appear as a
strong assumption for bit-planes close to B1 but since the
critical fluctuations happen at infinite scales, large struc-
tures in B1 induce marginal interactions in the layers be-
low. We estimated the conditional distributions by taking
L × L patches and performing logistic regression for bit-
plane Bλ taking bit-planes {B1,B2, · · · ,Bλ−1} as the in-
put. Since natural images are translation-invariant, we as-
sumed weight-sharing, making the logistic regression con-
volutional.

Figure 3. (a) The plot of the receptive field for the conditional
distribution P (B2|B1). The size of the receptive field in what is
shown is 41×41. The receptive fields to other bit-planes have the
same center-surround form. (b) The normalized histogram of the
logistic activation function after applying the convolution filter in
(a) to the bit-plane B1 from Fig. 2. The peaks come from the large
clusters in B1.

4. Experimental Results
We performed the learning of the convolutional weights by
maximizing the log likelihood with a single batch using the
second-order Newton’s method. The batch contained 105

samples of size 41 × 41, taken from 1024 images of size
2844×4284 pixels from the Geisler database of natural im-
ages (Geisler & Perry, 2011). The learnt center-surround
receptive field for P (B2|B1) is shown in Fig. 3. Recep-
tive fields for other conditional distributions have the same
center-surround form. The results reported here was ob-
tained by having `2 prior on the weights, but setting the
prior penalty term to zero did not change the results quali-
tatively.

After learning the convolutional weights, conditioning on
the first bit-plane, we found the logistic activations of the
lower bit-planes, up to B8. A key characteristic of natu-
ral images is the hierarchy in object sizes. This appears as
connected clusters in the bit-plane representation (Saremi
& Sejnowski, 2015). When the convolution filter scans
large clusters it will output the same logistic activation. The
peaks in Fig. 3 is the signature of those large clusters. To
preserve the bigger clusters in lower bit-planes, which are
key in natural images, we adopted a winner-take-all strat-
egy, except for the interval [0.4, 0.6]. In that interval we
took samples according to the logistic activation. We can
easily generate binary images by the order dictated in Eq. 3.
For example, the image in Fig. 4 was generated by condi-
tioning on the bit-plane B1 of Fig. 2 and obtaining other bit-
planes up to B8 by the logistic activations from the learnt
convolutional filters. The bit-planes were then combined to
obtain the gray-scale image.

The model performance was evaluated by the normalized
mean square error and the conditional log likelihood scores.
The normalized mean square error for the generated im-



The Wilson Machine for Image Modeling

ages, averaged over the database is 0.0588. The same er-
ror measured for the null model, where the convolutional
weights/biases are set to zero, is 0.1244. For the den-
sity estimation measure, the average negative log likeli-
hood for the conditional probabilities were evaluated and
are given in Table 1. For the null model, corresponding
to white noise, the negative log likelihood scores are 1
bit/pixel. Note that in this framework, the log likelihood
for all bit-planes B combined is not a good measure to
compare models, in part because the analog image is ob-
tained by a weighted sum of the bit-planes. In other words,
it is (much) more important to have a high log likelihood
score for bit-planes closer to the critical bit-plane B1 than
the ones further below.

NLL(B2|B1) NLL(B3|B1:2) NLL(B4|B1:3)
0.2369 0.2901 0.2749

Table 1. Results on the density estimation of the conditional
distributions of the bit-planes, where B1:λ is a shorthand for
{B1,B2, · · · ,Bλ}. The average negative log likelihood (NLL)
is reported in bits/pixel. There were about 1010 pixels in the ex-
periments. The null model is characterized by the negative log
likelihood of 1 bit/pixel.

The state of the art in natural image modeling has been lim-
ited to texture synthesis, dead leaf images, small patches,
or larger images that do not look natural — see (Gerhard
et al., 2015) for a recent review. That being said, the direct
comparison cannot be made to other models at the present
stage, since the results here were obtained by conditioning
on the critical bit-plane B1 with its rich structures. Our re-
sults, however, point to a new research direction in image
modeling, as learning the prior on the critical bit-plane B1

will transform this algorithm to a fully probabilistic model
and perhaps a very powerful model for natural images.

5. Discussions
We introduced a novel framework for modeling natural im-
ages. It is named after Kenneth G Wilson (1936 – 2013) for
his immense contributions to our understanding of the na-
ture of criticality. Infinite correlation lengths are one of the
key signatures of critical points, and we utilized that fully
in this algorithm. In contrast with the research focus in
the deep learning community on learning hierarchical rep-
resentations, we showed that the “hierarchy” of structures
“hidden” in the data itself can be utilized for learning.

The results here were obtained without hidden units, but
this algorithm will obviously become more powerful by hi-
erarchical architectures, especially in learning the distribu-
tion of the critical bit-plane, but also in finding better esti-
mates for the conditional distributions in the directed graph.
Along these lines, there has been a recent work in learn-
ing data distributions by turning them into noise through

Figure 4. The image on top was generated by conditioning on the
bit-plane B1 of Fig. 2 and obtaining other bit-planes up to B8 by
the logistic activations from the learnt convolutional filters. The
bit-planes were combined to obtain the gray-scale image. The
area enclosed in the yellow rectangle is blown up on the left and
the corresponding region in the original image is given on the
right.

stochastic processes with the use of hidden units (Sohl-
Dickstein et al., 2015). Learning in that framework is to fig-
ure out how to reverse that process, thus going from noise
to data. In contrast to that work, in the Wilson machine
described here, the learning happens due to the stochastic
heating process to disorder that is already “hidden” in the
data and is part of the data itself.

In addition, the results here point to a new direction in im-
age compression as learning a better probabilistic model in
this framework might push the (lossy) compression limit to
1 bit/pixel (i.e. the first bit-plane.) Finally, even though
we focused on natural images, the framework here is gen-
eral and we think it will be especially powerful for analog
signals with very long correlation lengths/times.
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