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Hebbian synapses lie at the heart of most associative matrix memories 
(Kohonen 1987; Hinton and Anderson 1981) and are also biologically 
plausible (Brown et al. 1990; Baudry and Davis 1991). Their analytical 
and computational tractability make these memories the best understood 
form of distributed information storage. A variety of Hebbian algorithms 
for estimating the covariance between input and output patterns has been 
proposed. This note points out that one class of these involves stochastic 
estimation of the covariance, shows that the signal-to-noise ratios of the 
rules are governed by the variances of their estimates, and considers 
some parallels in reinforcement learning. 

Associations are to be stored between R pairs [a(w), b(w)] of patterns, 
where a(w) E (0, l)'n and b(w) E (0, lIn, using the real-valued elements of 
an rn x n matrix W. Elements of a(w) and b(w) are set independently with 
probabilities p and r, respectively, of being 1. A learning rule specifies 
how element W ,  changes in response to the input and output values of 
a particular pair-the model adopted here (from Palm 1988a,b) considers 
local rules with additive weight changes for which: 

n 
Wq = AO(w), where Aij(w) = f [ai(w), bj(w)] 

w = l  

and f can be represented as [a, /3, y, 61 based on 

One way to measure the quality of a rule is the signal-to-noise ratio 
(S/N) of the output of a single "line" or element of the matrix, which 
is a measure of how well outputs that should be 0 can be discriminated 
from outputs that should be 1. The larger the S/N, the better the mem- 
ory will perform (see Willshaw and Dayan, 1990 for a discussion). A 
wide variety of Hebbian learning rules has been proposed for hetero- 
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and autoassociative networks (Kohonen 1987; Sejnowski 1977a; Hopfield 
1982; Perez-Vincente and Amit 1989; Tsodyks and Feigel'man 1988). The 
covariance learning rule fcov = [pr, -p(l - r), -(I - p)r, (1 - p)(l - r)], 
has the highest S/N (Willshaw and Dayan 1990; Dayan and Willshaw 
1991); however, both it and a related rule, fprd = [-pr, -pr, -pr, 1 - pr] 
(Sejnowski 1977a), have the drawback that a # 0, that is, a weight should 
change even if both input and output are silent. Note the motivations 
behind these rules: 

fcov N (input - p) x (output - r) 

fprd input x output - pr 

Alternative rules have been suggested that better model the physiolog- 
ical phenomena of long-term potentiation (LTP) and depression (LTD) 
in the visual cortex and hippocampus, including the heterosynaptic rule 
fhet = [0, -p, O , 1  - p] (Stent 1973; Rauschecker and Singer 1979), and the 
homosynaptic rule fhom = [O, 0, -r,1 - r] (Sejnowski 1977b; Stanton and 
Sejnowski 1989), motivated as 

fhet (input - p) x output 
fhom N input x (output - r) 

These have been shown to have lower S/Ns than the covariance rule 
(Willshaw and Dayan 1990); however, for the sparse patterns, that is, 
low values of p and r, this difference becomes small. The sparse limit is 
interesting theoretically, because many more patterns can be stored, and 
empirically, because the cortex has been thought to employ it (see, for 
example, Abeles et al. 1990). 

All of these rules are effectively stochastic ap roximations of the co- 
variance between input and output ((ai(w) - a,) &(w) - hi)) where the 
averages 0, are taken over the distributions generating the pi%terns; they 
all share this as their common mean.' If inputs and outputs are indepen- 
dent, as is typically the case for heteroassociative memories, or autoas- 
sociative ones without the identity terms, then their common expected 
value is zero. However, the rules differ in their variances as estimates of 
the covariance. Since it is departures of this quantity from its expected 
value that mark the particular patterns the matrix has learned, one would 
expect that the lower the variance of the estimate the better the rule. This 
turns out to be true, and for independent inputs and outputs the S/N of 
the rules: 

'This is true for all rules [yr, -y(l - r), -(I - y)r, (1 - y)(l  - r)] and bv, -p(l - 
111, -0 -PI% (1 - p)(l - all for any 7 or 17. 
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are inversely proportional to their variances. fco, is the best, f,,d the 
worst, but the ordering of the other two depends on p and r. Cir- 
cumstances arise under which the optimal rule differs, as for instance 
if patterns are presented multiple times but input lines can fail to fire on 
particular occasions-this would favor the homosynaptic rule. 

Exactly the same effect underlies the differences in efficacy between 
various comparison rules for reinforcement learning. Sutton (1984) stud- 
ied a variety of two-armed bandit problems, which are conventional 
tasks for stochastic learning automata. On trial w, a system emits ac- 
tion y(w)  E {O,1} (ie., pulls either the left or the right arm) and receives 
a probabilistic reward r (w)  E {0,1} from its environment, where 

In the supervised learning case above, the goal was to calculate the co- 
variance between the input and output. Here, however, the agent has 
to measure the covariance between its output and the reward in order 
to work out which action it is best to emit (i.e., which arm it is best 
to pull). Sutton evaluated r(w)[y(w) - ( y ( w ) ) ]  and an approximation to 
[r(w) - ( r (w))][Y(w)  - ( ~ ( w ) ) ] ,  where ( y ( w ) )  averages over the stochastic 
process generating the outputs and 

is the expected reinforcement given the stochastic choice of y(w) .  These 
are direct analogues of fhet or fhom [depending on whether y(w) is mapped 
to a(w)  or b ( w ) ]  and fco,, respectively, and Sutton showed the latter sig- 
nificantly outperformed the former. There is, however, an even better 
estimator. In the previous case, a and b were independent; here, by 
contrast, r (w)  is a stochastic function of y(w) .  The learning rule that 
minimizes the variance of the estimate of the covariance is actually 

where 3 = P[Y(w) = O]p, + P[y(w) = l]po pairs the probability of emit- 
ting action 0 with the reinforcement for emitting action 1. Williams (per- 
sonal communication) suggested 3 on just these grounds and simulations 
(Dayan 1991) confirm that it does indeed afford an improvement. 

Four previously suggested Hebbian learning rules have been shown to 
be variants of stochastic covariance estimators. The differences between 
their performances in terms of the signal-to-noise ratio they produce in 
an associative matrix memory may be attributed to the differences in 
the variance of their estimates of the covariance. The same effect under- 
lies the performance of reinforcement comparison learning rules, albeit 
suggesting a different optimum. 
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