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ABSTRACT 

NETtalk is a massively-parallel network that learns to convert English text to phonemes. In 
NETtalk, the memory representations are shared among many processing units, and these 
representations are learned by practice. In humans, distributed practice is more effective for long- 
term retention than massed practice, and we wondered whether learning in NETtalk had similar 
properties. NETtalk was tested on cued paired-associate recall using nonwords as stimuli. 
Retention of these target items was measured as a function of spacing, or the number of 
interspersed items between successive repetitions of the target. A significant advantage for spaced 
or distributed items was found for spacings of up to forty intervening items when tested at a 
retention interval of 64 items. Conversely, a significant advantage for massed items was found if 
testing immediately followed study. These results'are strikingly similar to the results of many 
experiments using human subjects and suggest an explanation based on distributed representations 
in massively-parallel network architectures. 
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In 1885, Ebbinghaus noted that "with any considerable number of repetitions a suitable 
distribution of them over a space of time is decidedly more advantageous than the massing of 

them at a single time" (Ebbinghaus, 188511964 p.89). Since *en, the spacing effect has been 

found across a wide range of stimulus materials and tasks, semantic as well as 

perceptuallmotor, and has even been found when the repetitions are across modality, or across 

. languages, if bilinguals are employed as subjects (see Hintzman, 1974, for a review). The 

ubiquity of these results suggests that spacing reflects something of central importance in 

memory. However, despite over a hundred years of research, the spacing effect, as general as 

it is, continues to defy adequate, or at least, simple, explanation. 

Perhaps the most popular account of the spacing effect is the encoding variability 

hypothesis (e.g. Melton, 1970; Martin, 1968; Glenberg, 1979). This hypothesis makes two 

major assumptions: (1) stimuli are encoded relative to the context, or environment, in which 

they occur, and (2) the probability of retrieval is positively correlated with the similarity of 

the context at retrieval to the context at encoding.l Given a continuously evolving 

environment, two trials that occur back-to-back will tend to share more context with each 

other than two trials widely separated' in time.2 Distributing practice will hence be 

advantageous to the extentf that the two repeats of the to-be-remembered (TBR) item are 
encoded more independently, thus boosting the probability of the item's retrieval in a 

randomly chosen context presumably by increasing the number of possible retrieval routes. 

Overall, the encoding variability hypothesis has found only limited empirical support 

(Hintzman, 1976). One recent failure of the hypothesis is the study by Postman and Knecht 

(1983) in which the encoding contexts of words were varied by embedding them in different 

sentences, either one sentence repested three times or in three sentences each only once 

repeated. In the cued recall task, cueing was with one or three of the sentence frames (with 

the TBR word deleted). According to the encoding variability hypothesis, retrieval shoul'd be 

greater in the multiple context condition. Nevertheless, they found no difference in free recall 

of the target words, tested either immediately or after 24 hours. In fact, cued recall with a 

single sentence frame led to higher recall rates for targets that appeared in single contexts than 

targets that appeared in multiple contexts, a trend in a direction opposite to that predicted by 

the hypothesis. 

%e notions underlying the encoding variability hypothesis were originally derived from Estes's stimulus 
sampling and fluctuation model (1959). 

2 The precise use of the term "context" has not always been consistent among investigators. See Maki & 
Hasher (1975) for a discussion and empirical investigation of this issue. 

73 



ROSENBERG & SEJNOWSKI 

Postman and Knecht concluded that encoding items in different contexts does not 

necessarily improve retention, and may, in fact, lead to diminished retention. An overriding 

factor may be the strength of specific cue-target associations, built up by repeating the item in 

identical contexts. That is, many weak retrieval routes are not necessarily better than one 

strong one. 

If we assume, as the Postman and Knecht study suggests, that the spacing effect depends 

to some extent upon the repetition of specific items, and not necessarily on the encoding of 

items relative to a continuously varying context, then the following question arises: Which 

repetition of the item, the first or the second, is less effectively processed or encoded when 

the two presentations occur back-to-back? Those theories that claim that the first presentation 

is deficient include the rehearsal-buffer theory (Atkinson & Shiffron, 1968; Rundus, 1971) and 

a version of consolidation theory (Landauer, 1969). In either case, the disadvantage found for 

massed practice is the result of the interruption of an ongoing encoding process by the 

immediate occurrence of the second item. Bjork and Allen (1970) found, however, that 

interposing a more difficult task between repetitions did not disrupt this encoding process, as 

both rehearsal-buffer theory and the consolidation hypothesis would predict. To the contrary, 

they found improved retention in the difficult task ~ o n d i t i o n . ~  This result is hard to reconcile 

with either theory. 

The other alternative is that the second massed presentation is more poorly processed or 

somehow less effective. It has been proposed that subjects habituate (e.g. Hintzman, Block, & 

Summers, 1973) and therefore cannot process the second massed presentation as effectively as 

they can the first. It is not clear how this proposal could explain the Bjork and Allen result, 

unless the intervening difficult task in some way releases the habituation from the first item. 

In addition, attempts to overhabituate to a target item by presenting the item for longer 

durations have been unsuccessful (Hintzman, Summers, & Block, 1975). 

Another suggestion is that subjects do not attend as effectively (e.g. Shaughnessy, 

Zimmerman, & Underwood, 1972) to the second occurrence of an item if it closely follows an 

identical first item in time. But efforts to force subjects to attend to the second occurrence in 

various ways have indicated no reduction in the spacing effect (e.g. Hintzman, Summers, Eki, 

& Moore, 1975). 

Jacoby (1978) has offered an account of spacing in terms of processing effort. That is, 

in the massed presentation condition, subjects have the first item consciously available when 

This result has been repIicated by Tzeng (1973). 
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they are presented with the second item and consequently do not have to process the second 

item to the same degree. As a result, processing on the second massed item is not as great as 

that on the first and does not form as rich a code. This explanation seems to give a coherent 

account of all the evidence thus far mentioned: It does not depend on encoding items relative 

to a dynamic context, and it accounts for the Bjork and Allen results, since interposing a 

difficult task could plausibly make the second item less available, requiring more processing. 

However, it leaves unclear what "processing effort" (not to mention "consciousness") involves. 

All these theories attempt to explain spacing in terms of concepts such as encoding, 

habituation, and consolidation, which make little reference to the actual form of the memory 

representation, although implicit in some of the explanations is the assumption that individual 

items have local representations. Another approach is to seek an explanation at the level of 

the representation: It  may matter how the information is stored in the system. One way to 

explore this possibility is to construct explicit models that incorporate particular memory 

representations and learning mechanisms and to test them with the same experimental 

paradigms that have been used to study human memory. 

It will be demonstrated that the spacing effect is a natural consequence of learning in a 

network with distributed memory representations and an incremental learning procedure. In 

this framework, learning consists of modifying connections in the network so that this 

information is retained as accurately as possible within the constraints imposed by the number 

of available connections. This way of storing information is fundamentally different from a 

local representation where individual items can be stored independently of one another, as in a 

computer memory. In a distributed representation a single connection can participate in the 

storage of many items, and conversely a single item is stored in many connections. 

Approaching memory in this way has already led to new insights in the domains of 

categorization and concept formation (McClelland & Rumelhart, 1985; Anderson, Silverstein, 

Ritz, & Jones, 1977; Eich, 1982; Amari, 1977; Kohonen, Oja, & Lehtio, 198 1). These models 

of memory are inspired by the parallel architecture of the brain (Ballard, Hinton, & 

Sejnowski, 1983; Feldman & Ballard, 1982). 

NETtalk 

We have recently described NETtalk (Sejnowski & Rosenberg, 1986), a massively- 

parallel network that learns to translate letters in English text into phonemes and associated 

word stress. It achieves approximately 95% accuracy per letter without access to information 

about semantics or syntax. In NETtalk, the learning occurs by modifying the strengths of 

connections between a large number of simple and identical processors, or units. These 
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Output 
Units 

Input Units 

Figure 1. A schematic drawing of the NETtalk architecture. The little circles represent units (there are  
many more units than shown here) and the arrows represent bundles of connections, or  weights, between 
the groups of units. Connectivity is complete between the connected groups, so each unit in each of the 
five input groups shown has connections to all of the units in the hidden layer, all of which a re  in turn 
connected to each of the output units. For the present experiments, there were 29 units in each of the in- 
put groups, 60 units in the hidden layer, and 26 units in the output layer. In  addition, all units have a 
connection to a special unit that is always "on" (not shown), which serves as a variable threshold. 

connections, which are real-valued and directional, determine how the activity of one unit 

affects the activity of another unit. If unit A is in an active state and there is a positively- 

valued (excitatory) connection going from unit A to unit B, then the activity level of unit B 

will be driven towards one. Conversely, a negatively-valued (inhibitory) connection between 

the two units will drive the activity level in unit B towards zero. A given unit typically has 

connections to a large number of other such units. The behavior of the network is the 

collective result of a large number of these simple, local, computations that are performed in 

parallel. 

NETtalk has access to the correct pronunciations of the words during the learning, so it 

is "supervised" and akin to learning with a teacher. The back-propagation of error was used 

to adjust the values of - the connection strengths (Rumelhart, Hinton, & Williams, 1986), 

which is a generalization of the perceptron learning rule (Rosenblatt, 1962) to multi-layered 

networks. 
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There are 231 units and 10,346 connections in the version of NETtalk used in the present 

experiments. As shown in Figure 1, the units that compose NETtalk are arranged in a layered 

hierarchy, consisting of three layers: an input layer, which encodes letters, an output layer, 

which encodes phonemes and stress, and a hidden layer that connects the input layer to the 

output layer. Each of the layers is completely connected to the layer just above and/or just 
below it. Letters are "clamped at the input layer, and information (in the form of unit 

activity levels) passes up through the hidden layer, finally reaching the output layer where the 

pattern of activity on the output units is interpreted as a phoneme and stress. 

The decision of how each letter is to be pronounced must be made on the basis of the 

surrounding letter context, since all letters can be pronounced in .several ways. Using 

NETtalk, we have been able to examine how performance varies with window size. In this 

version, the network "sees" five lettek at a time: the'current letter, the preceding two letters, 

and the following two letterse4 Each of these five letters is encoded simultaneously in a set or 

group of twenty-six dedicated units, locally representing each of the twenty-six English letters. 

Imposed on the network is a control structure that steps this five-letter window through the 

corpus, letter-by-letter. 

More specifically, the value of each unit is a function of the values of all the units in the 

layer below it and the strength of the connection between the two units. The value of the ith 

unit is determined by first summing &I of its inputs 

where pi is' the value of the jth unit and wU is the weight value of the connection between the 
two units, and then applying a sigmoidal transformation 

The resulting pattern of activity produced at the qutput layer is interpreted as the "guess" of 

how the middle letter in the window should be i r o n ~ u n c e d . ~  This output vector is then 

compared with the "correct" phoneme provided it, and the connection strengths in the network 

This window size has been reduced from seven in the original NETtalk in order to speed training. 
This was done by computing the projection of the output vector on all the possible phonemes (there are 55 

of them) and selecting the phoneme with the highest overlap. 
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are recursively adjusted to minimize their differences (see Rumelhart, Hinton, & Williams, 

1986, for details). 

There were two adjustable learning parameters in the model: The rate of learning, E, was 

set to 4.0, and the smoothing parameter, a,  was set to zero (see Sejnowski & Rosenberg, 

1986, for an explanation of these parameters). Continuous decay of the weight values towards 

zero has been experimented with, but was not used in the piesent experiments. 

The purpose of the present experiment was to investigate the spacing effect in NETtalk, 

a network with two layers of modifiable weights. The design was modeled after Experiment 

1 by Glenberg (1976). In this experiment, subjects were presented with paired associates, 

repeated twice at spacings of approxirnately 0, 1, 4, 8, 20, and 40 intervening items, and 

tested at retention intervals of approximately 2, 8, 32, and 64 items. Each pair was composed 

of two four-letter common nouns, "constructed to avoid common pre-experimental 

associations, rhymes, and orthographic similarities" (pg. 4). At test, just the stimulus word 

was presented, and the subject was to recall the associated response term. Glenberg's results 

are reproduced here as Figure 2. A significant interaction was found between spacing (lag) 

and retention interval. At short retention intervals, massed repetitions led to a higher 

probability of recall, whereas at long retention intervals, distributed repetitions were 

advantageous. Glenberg also noted that retention at the 64-item retention interval was a 

monotonic and negatively accelerating function of spacing. 

As in Glenberg's experiment, the retention of target stimuli repeated a certain number of 

times at various spacing intervals was measured as a function of retention interval. If 

NETtalk exhibits the spacing effect, then long-term retention of these items should be better 

when a large number of other items intervene between successive repeats of the target 

(distributed practice). Conversely, short- term retention of the target items should be better 

when fewer i terns are presented between repeats (massed practice). 

METHOD 

Pre-Experimental Training 

The network was first trained to pronounce a set of commonly occurring English words. 

These words were obtained by selecting the one thousand most frequent words from the 

Webster's Pocket Dictionary, based on frequency counts in the Brown corpus (Kucera & 

Francis, 1967). The network cycled through this one thousand word corpus a total of eleven 

times. The performance of the network at this point in training, as determined by the 

percentage of the correct phonemes "guessed", was 85%, and could have been improved with 
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RETENTION IhTER 

0 ZITEMS 
-+ 8ITEMS 
++ 32ITEMS 
+ 64ITEMS 

0 1  4 8 2 0 

SPACING INTERVAL (ITEMS) 

Figure 2. The proportion of response terms recalled as a function of spacing interval and retention inter- 
vaL (After Glenberg, 1976.) 

further practice. 

The weight values of the network were stored following this initial training, and served 

as a common starting point for all of the subsequent experimental trials. 

Target Stimuli 

In order to force new learning to take place, random character strings of length six were 

employed as target stimuli. Thus there was no orderly relation between the cue and response. 

Whatever performance level NETtalk was able to reach on these items could not have been 

due to the utilization of rules acquired either prior or subsequent to study. 

Twenty six-letter cues were generated by choosing six letters at random (with 

replacement) out of the twenty-six letters of the English alphabet. Likewise, the response 

terms associated with each of these cues were randomly generated phoneme and stress strings, 

also six characters each in length. There were 53 possible phonemes and five possible stress 

charactem6 The frequency of occurrence of the characters in natural language were not taken 

into account in this selection process. Some of these items and several items from the 
-- - 

In generating the target itimuli, two "phonemes", the s'pace between words C) and the period (.), were not 
possible choices. 
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Table I. Examples s f  some training (distractor) and target items used. 

letters 

file 
all 
second 
take 
together 
neck 
atmosphere 

letters 

fozepd 
sccfyk 
bmy qcl 
gmfn 
eqhxxu 
ncssvr 
wxsale 
djzxde 
krnfj qi 

DISTRACTORS 

' phonemes 

fAl- 
cl- 
sEkxnd 
tek- 
txgED--R 
nEk- 
@ trnxsf-Ir- 

RANDOM TARGET ITEMS 

phonemes 

WdicnK 
p-UdSp 
bzgTlz 
KCczOL 
ANTlvM 
zTSdWg 
M p f l l  
YbyAyI 
WGenGN 

stress 

stress 

training corpus are presented in Table 1. 

Procedure 

The twenty target items were tested individually on separate trials. A trial consisted of 

first reading in the pre-experimental weights (described above), presenting a target item either 

two, ten, or twenty times, and then measuring the retention of the target as it was interfered 

with by subsequent learning. Furthermore, each target was presented at each of six spacing 

intervals, with either 0 (massed), 1, 4, 8, 20, or 40 (distributed) intervening items. Thus, 

eighteen trials were devoted to each target item (3 repetition groups x 6 spacing intervals). 

Between successive repeats of the target,'words were presented from the original training 

corpus. Following the last repeat, the training corpus was again presented, and retention of the 

response terms of the target item was assessed after every item by presenting the cue term and 

measuring the mean squared difference between the output of the network and the correct 
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response 

for the J units in the output layer, where pi ' is the target activation of the jth output unit, and 

pi is it's actual value. Response accuracy was defined as one minus the mean error for the 

word s s 

N 
error 

where N is the number of letters in the word. Learning was turned off (achieved by setting 
the learning rate to zero) for these tests, so that no changes were made to the strengths of the 
connections in the network. 

RESULTS 

Accuracy, as defined above, was averaged over the twenty target items and plotted as a 

function of retention interval for each repetition group (Figure 3). Following Glenberg (1976), 

values were selected from this curve at retention intervals of 2, 8, 32, and 64 items and re- 

plotted as a function of spacing interval (Figure 4). 

A 6 (spacing intervals) x 4 (retention intervals) analysis of variance was performed on 

these selected values, treating target items as subjects. The main effect of retention interval 

was highly significant in all repetition groups, F (3, 57) = 32.82, 58.50, and 48.29,'all p c 

0.001, for the two, ten, and twenty repetition groups, respectively, indicating that a 
considerable amount of forgetting of the target items did take place. The main effect of 

spacing was highly significant only in the twenty repetition condition, F (5, 95) = 5.10, p c 
0.001, and marginally significant in the ten repetition condition, F (5, 95) = 3.02, p < 0.05. 
Of interest, however, was the interaction between spacing and retention interval. This 

interaction was significant for all three repetition groups: F (15, 285) = 27.68 and 37.29, both 

p < 0.001, for the ten and twenty repetition conditions, respectively, and F (15, 285) = 2.73, p 

< 0.03, in the two repetition condition. 

A trends analysis of the accuracy measures was performed across spacings for retention 

intervals of 0 (short-term) and 64 (long-term) items. The downward trend in retention for 

immediate rete,ntion as spacing increased was highly significant following ten and twenty 

repeats of the target, F (5, 95) = 17.14 for the ten, and F (5, 95) = 6.70 for the twenty 

repetition groups, both p < 0.001. In both cases, the linear trend was highly significant, F (1, 
8 1 

v*<-p.- -mm 
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RETENTION INTERVAL (ITEMS) 

10 20 30 40 50 €4 

RETENTION INTERVAL (ITEMS) 

RETENTION INTERVAL (ITEMS) 

Figure 3. Mean response accuracy over all target items plotted as a function of retention interval following 
two (a), ten (b), and twenty (c) repetitions of the target item. Only spacing intervals of zero (solid) and for- 
ty (dots) items are shown. 

19) = 38.43, p < 0.001, and F (1, 19) = 11.80, p < 0.001, for the ten and twenty repetition 

groups, respectively. This downward trend was not significant after only two repeats, 

however, F (5,15) < 0.5. Neither the quadratic nor the cubic trends reached significant levels 

in any of the three repetition groups. 

The upward trend at the 64-item retention interval was significant for all repetition 

groups, F (5, 95) = 2.31, p = 0.05, for two repeats, and F (5, 95) = 8.92 and 22.40, both p < 
0.001 for the ten and twenty repetition groups. The shape of the curve varied, however. As 

the number of repetitions increased from two to ten to twenty, the trend varied from cubic, F 

(1, 19), p < 0.05, to linear, quadratic, and cubic, F (1, 19) = 6.06, 24.94, and 6.12, p < 0.05, 

0.001, and 0.05, respectively, to only lineai. and quadratic, F (1, 19) = 16.21 and 66.63, both p 

< 0.001. 

DISCUSSION 
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SPACING INTERVAL (ITE'MS) SPACING I N T E R V A L  (ITEMS) 

SPACING INTERVAL (ITEhIS) 

Figure 4. Mean response accuracy plotted as a function of spacing interval a t  2, 8, 32, and  64 item reten- 
tion intervals for the two (a), ten (b) and twenty (c) repetition groups. 

A significant spacing effect was observed in NETtalk: Retention of nonwords after a 64- 

item retention interval was significantly better when presented at the longer spacings 

(distributed presentation) than at the shorter spacings. In, addition, a significant advantage for 

massed presentations was found for short- term retention of the items. Although stimulus 

materials, response measures, and procedure differ sufficiently to make direct comparison 

impossible, the overall pattern of these results resembles that found by Glenberg (1976), in an 

experiment using human subjects. We obtained our results without making additional 

assumptions or including additional mechanisms such as consolidation, rehearsal, or attention. 

Nor were explicit assunlptions made about a continuously changing context other than the 

context implicitly provided by the network. 

Recency effects, similar to those reported here, are common in the human literature and 

have been reported in spacing experiments (e.g. Peterson, Warnpler, Kirkpatsick, & Saltzman, 

1963; Sperber, 1974). This short-term advantage for massed practice is commonly discussed 

with reference to a limited-capacity memory buffer. The present experiments indicate that 

some of the effects such a mechanism was designed to account for can be produced without 

such a device. 
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Why should NETtalk exhibit these characteristics? The answer, as we attempt to show, 

depends on the way in which learning and the resulting knowledge is represented in NETtalk. 

An intuitive understanding of learning in NETtalk can be obtained by thinking of the set 

of n weight values, the many sites of learning in the network, as specifying a point in an n- 

dimensional hyperspace. The goal of learning is to move on a trajectory through this 

hyperspace towards a point where the error on the entire training corpus is minimized. The 

direction in which to move at any one point is determined by estimating the error gradient. If 

a global minimum for a given corpus can be reached, no further learning (i.e. weight 

adjustments) is required. A minimum is consequently a point of high stability, until a new 

item is presented that is irregular, or is for some other reason not like the other items in the 

training corpus. Our hypothesis is that distributing practice leads to a more stable position in 

this hyperspace upon the re-presentation of the training corpus. 

For the sake of simplicity, suppose that NETtalk has only three connections, so that its 

state at any one time can easily be represented in a 3-dimensional space (see Figure 5). 

Suppose further that, as in the present simulations, this network has been trained on a large 

pre-experimental training corpus and that it has reached an optimum (where the error is at a 

global minimum) for these items (Point A). Now a new and unusual target item is presented 

in either a massed or spaced condition to our mini-network. If the target is presented several 

times back-to-back, as in the massed condition, minimizing the error following each 

presentation will lead us down a path toward a point that is optimal for this target item, 

perhaps even reaching this optimum (Point B). But because this voyage will have taken us 

quite out of the way from our starting point (A), this new position is not likely to be stable to 

the re-presentation of the training corpus, and so the massed learning of the new item will be 

10s t quickly. 

Assuming, however, that there is a point that is optimal for both the training corpus and 

the target item (Point C in the figure), alternating presentations of the target with items from 

the training set is one way of moving closer to this highly stable point.7 Upon the first 

presentation of the target item, the error gradient for that item is estimated and the error is 

reduced by adjusting the weights in the direction of the steepest descent (to position 1). So 

far, this procedure has been identical to that for the massed condition, and so the network is at 

Another way is to update the weight values less frequently. Instead of learning in small increments, as in 
NETtalk, which updates after every word, one could' also collect data over many trials and then take one big 
jump. Although this procedu& (within its resolution) overcomes the problems associated with presentation order 
(such as the spacing effect), it may be a hazardous one, since new infornation is integrated at a slow rate. 
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Figure 5. Movements in weight-space during learning for massed (solid) and distributed (textured) condi- 
tions. Point A is a global optimum for the pre-experimental training corpus (the assumed starting point 
for all experimental trials), Point B is an optimum for the target item, and Point C is an  optimum for both 
the target and  the training corpus. (See text for explanation.) 

the same point in hyperspace. Now, however, instead of presenting the target again, an itern 

from the original training corpus is presented. Again, the weights are adjusted to minimize 

the error on the item (to position 2), only this time the direction of movement is more likely 

to be towards Point A than Point B, since A was a global minimum for the training corpus. 

Presenting the target again will cause a movement back towards B (to position 3), and so on. 

We see that distributing practice causes the network to weave back and forth in this 

hyperspace, allowing it to perform a more complete search of the error space for both the 

training corpus and the target item. The network therefore has a better chance of finding the 

optimal position (Point C) than it would if practice were massed, and its encoding of the 

target item will consequently be more able to withstand interference due to further training on 

both types of material. 

The explanation of the spacing effect fiat we offer here is not meant as an alternative to 

previous suggestions; it  is a different type of explanation, relying as it does on the underlying 

structure of the representations. The decline in learning rate as local optima u e  approached is 

reminiscent of the process of habituation: less is effectively learned each time the item is 
8 5 
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repeated. Other aspects of our model bear a resemblance to encoding variability to the extent 

that items are encoded relative to the current state of the network, which is in a state of 

continual flux. And if we identify Jacoby's processing effort with the degree of change 

required to construct a distributed representation, then our simulations can be considered 

support for this proposal as well. Nevertheless, while these concepts of habituation, encoding 

variability, and processing effort may be reinterpreted within the framework of connectionist 

models such as ours, they are at a different level of explanation. 

Our results are limited to a particular network architecture in a particular domain. To 

what extent is this conclusion dependent on the details of our model? If the spacing effect is 

a direct consequence of incremental learning in memory systems that use distributed 

representations, as we suspect, then the same effects of massed and distributed learning should 

occur in other task domains and with other network architectures that also have learning 

algorithms with distributed representations, such as Boltzmann machines (Hinton & 

Sejnowski, 1983; Ackley, Hinton, & Sejnowski, 1985). We predict as well that the same 

general principles may underlie the spacing effect in human learning. 
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