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I. Introduction 

In 1949 Donald Hebb published "The Organization of Behavior," in 
which he introduced several hypotheses about the neural substrate of 
learning and memory, including the Hebb learning rule or Hebb synapse. 
At that time very little was known about neural mechanisms of plasticity 
at the molecular and cellular levels. The primary data on which Hebb 
formulated his hypotheses was Golgi material, provided mainly by Lor- 
ente de No, and psychological evidence for short-term and long-term 
memory traces. Hebb's hypotheses were an attempt to understand the 
development and the organization of behavior based on the antamomical 
and physiological data available to him, though they did not constitute 
a model for learning or memory in a formal sense. 

Some 40 years later we now have solid physiological evidence, ver- 
ified in several laboratories, that long-term potentiation (LTP) in some 
parts of the mammalian hippocampus follows the Hebb rule (Kelso et 
al., 1986; Levy rt al., 1983; McNaughton et al., 1978; Wigstrom and Gus- 
tafsson, 1985; McNaughton and Morris, 1987; Brown et id., 1988; see 
Chapter 14 in this volume). However, Hebb was primarily concerned 
with cerebral cortex, not the hippocampus. The relevance of Hebbian 
plasticity in the hippocampus to Hebb's original motivation for making 
the hypothesis is not obvious, although LTP may well be found under 
somewhat different circumstances in cerebral cortex (Artola and Singer, 
1987; Komatsu et nl., 1988). 

The Hebb rule and variations on it have also served as the starting 
point for the study of information storage in simplified "neural network" 
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models (Sejnowski, 1981; Kohonen, 1984; Rumelhart and McClelland, 
1986; Hopfield and Tank, 1986). Many types of networks have been 
studied-networks with random connectivity, networks with layers, 
networks with feedback between layers, and a wide variety of local pat- 
terns of connectivity. Even the simpliest network model has complexities 
that are difficult to analyze. 

In this chapter we will provide a framework within which the Hebb 
rule and other related learning algorithms serve as an important link 

' 
between the implementation level of analysis, which is the level at which 
experimental work on neural mechanisms takes place, and the com- 
putational level, on which the behavioral aspects of learning and per- 
ception are studied. In particular, it will be shown how the Hebb rule 
can be built out of realistic neural components in several different ways. 

11. Levels of Analysis 

The notion of an algorithm is central in thinking about information pro- 
cessing in the nervous system. An algorithm is a well-defined procedure 
for solving a problem. It can be as formal as a set of mathematical equa- 
tions for finding the area under a curve or as informal as a step-by-step 
recipe for baking a cake. What is common to all algorithms is a level of 
abstraction beyond the details that must be specified in order to actually 
solve a particular problem. For example, the formulas for finding the 
area under a curve could be programmed into a digital computer or im- 
plemented by someone using a slide rule. When a cup of sugar is required 
in a recipe, the exact brand is not specified, nor is the actual method for 
estimating volume. 

Hebb's proposal for the neural substrate of learning has some ele- 
ments that make it implementational, inasmuch as he specified the con- 
ditions under which synapses are to be modified. However, he did not 
specify exactly which synapses, nor precisely how the modifications 
should be made. Hence, Hebb's proposal is more like an algorithmn, 
or, more accurately, one of the components of an algorithm. As such, 

- there are many possible ways that it could be implemented in the brain, 
and several examples will be given in the next section. 

Underlying the notion of an algorithm is the assumption that there 
is a problem to solve. Marr (1982) called the level at which problems are 
specified the computational level, and he emphasized the importance 
of this level of analysis for understanding how the brain processes in- 
formation. If we could specify precisely what these problems are, al- 
gorithms could be devised that could solve the problem, and imple- 
mentations of the algorithms could be looked for in the nervous system. 
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One problem with this top-down approach is that our intuition about 
the computational level is probably not very reliable, since the brain is 
the product of evolution and not designed by an engineer; second, even 
when a problem can be identified, there are too many possible algorithms 
to explore, and again our intuition may not lead us to the right ones. 
Finally, there are many structural levels of organization in the brain, and 
it is likely that there is a corresponding multiplicity of algorithmic and 
computational levels as well (Churchland and Sejnowski, 1988). 

What computation does the Hebb algorithm perform? Hebb saw t 

his postulate as a step toward understanding learning and memory, but 
there are many different aspects of learning and memory that could be 
involved (see Chapter 12, this volume). Examples of several forms of 
learning that could be based on algorithms using the Hebb rule include 
associative learning, classical conditioning, and error-correction learning 
(see Sejnowski and Tesauro, 1988, for a review). 

111. Implementations of the 
Hebb Rule 

Before considering the various possible ways of implementing the Hebb 
rule, one should examine what Hebb (1949, p. 62) actually proposed: 
"What an axon of cell A is near enough to excite cell B or repeatedly or 
persistently takes part in firing it, some growth process or metabolic 
change takes place in one or both cells such that A's efficiency, as one 
of the cells firing B, is increased." 

This statement can be translated into a precise quantitative expres- 
sion as follows. We consider the situation in which neuron A, with av- 
erage firing rate V,, projects to neuron B, with average firing rate V, . 
The synaptic connection from A to B has a strength value TBA, which 
determines the degree to which activity in A is capable of exciting B. 
(The postsynaptic depolarization of B due to A is usually taken to be 
the product of the firing rate VA times the synaptic strength value TBA .) 
Now the statement by Hebb above states that the strength of the synapse 
TBA should be modified in some way that is dependent on both activity 
in A and activity in B. The most general expression which captures this 
notion is 

which states that the change in the synaptic strength at any given time 
is some as yet unspecified function F of both the presynaptic firing rate 
and the postsynaptic firing rate. Strictly speaking, we should say that 
F(VA, V,) is a functional, since the plasticity may depend on the firing 
rates at previous times as well as at the current time. Given this general 
form of the assumed learning rule, it is then necessary to choose a par- 
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ticular form for the function F(V,, V,). The most straightforward inter- 
pretation of what Hebb said is a simple product: 

where E is a numerical constant usually taken to be small. However, we 
wish to emphasize that there are many other choices possible for the 
function F(VA, V,). The choice depends on the particular task at hand. 
Equation (2) might be appropriate for an simple associative memory task, 
but for other tasks one would need different forms of the function F(VA, 
V,) in Eq. (1). For example, in classical conditioning, as we shall see in 
the following section, the precise timing relationships of the presynaptic 
and postsynaptic signals are important, and the plasticity must then de- 
pend on the rate of change of firing, or on the "trace" of the firing rate 
(i.e., a weighted average over previous times), rather than simply de- 
pending on the current instantaneous firing rate (Klopf, 1982). Once the 
particular form of the learning algorithm is established, the next step is 
to decide how the algorithm is to be implemented. We shall describe 
here three possible implementation schemes. This is meant to illustrate 
the variety of schemes that is possible. 

The first implementation scheme, as shown in Fig. la, is the sim- 
plest way to implement the proposed plasticity rule. The circuit consists 
solely of neurons, A and B, and a conventional axo-dendritic or axo- 
somatic synapse from A to B. One postdates that there is some molecular 
mechanism that operates on the postsynaptic side of the synapse, that 
is capable of sensing the rate of firing of both cells, and that changes 
the strength of synaptic transmission from cell B to cell A according to 

A I B 

Figure 1. 
Three implementations of the Hebb rule for synaptic plasticity. The 
strength of the coupling between cell A and cell B is strengthened when 
they are both active at the same time. (a) Postsynaptic site for coincidence 
detection. (b) Presynaptic site for coincidence detection. (c) Interneuron 
detects coincidence. 
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the product of the two firing rates. This is in fact quite similar to the 
recently discovered mechanism of associative LTP that has been studied 
in rat hippocampus (Brown e f  al. ,  1988; this volume). [Strictly speaking, 
the plasticity in LTP depends not on the postsynaptic firing rate, but 
instead on the postsynaptic depolarization. However, in practice these 
two are usually closely related (Kelso et al., 1986).] Even here, there are 
many different molecular mechanisms possible. For example, even 
though it is hard to escape a postsynaptic site for the induction of plas- 

i d  ticity, the long-term structural change may well be presynaptic (Dolphin 
et al., 1982). 

A second possible implementation scheme for the Hebb rule is 
shown in Fig. lb. In this circuit there is now a feedback projection from 
the postsynpatic neuron, which forms an axo-axonic synapse on the 
projection from A to B. The plasticity mechanism involves presynaptic 
facilitations: one assumes that the strength of the synapse from A to B 
is increased in proportion to the product of the presynaptic firing rate 
times the facilitator firing rate (i.e., the postsynaptic firing rate). This 
type of mechanism also exists and has been extensively studied in Aplysia 
(Carew et al., 1983; Kandel et al., 1987; Walters and Byme, 1983). Several 
authors have pointed out that this circuit is a functionally equivalent 
way of implementing the Hebb rule (Hawkins and Kandel, 1984; Gelperin 
et al., 1985; Tesauro, 1986; Hawkins, Chapter 5 this volume). 

A third scheme for implementing the Hebb rule, one that does not 
specifically require plasticity in individual synapses, is shown in Fig. lc. 
In this scheme the modifiable synapse from A to B is replaced by an 
interneuron, I, with a modifiable threshold for initiation of action po- 
tentials. The Hebb rule is satisfied if the threshold of I decreases according 
to the product of the firing rate in the projection from A times the firing 
rate in the projection from B. This is quite similar, although not strictly 
equivalent, to the literal Hebb rule, because the effect of changing the 
interneuron threshold is not identical to the effect of changing the 
strength of a direct synaptic connection. A plasticity mechanism similar 
to the one proposed here has been studied in Hermisseizda (Farley and 
Alkon, 1985; Alkon, 1987) and in models (Tesauro, 1988). 

The three methods for implementing the Hebb rule shown in Fig. 
1 are by no means exhaustive. There is no doubt that nature is more 
clever than we are at designing mechanisms for plasticity, especially since 
we are not aware of most evolutionary constraints. These three circuits 
can be considered equivalent circuits, since they effectively perform the 
same function even though they differ in the way that they accomplish 
it. There also are many ways that each circuit could be instantiated at 
the cellular and molecular levels. Despite major differences between 
them, we can nonetheless say that they all implement the Hebb rule. 

Most synapses in cerebral cortex occur on dendrites where complex 
spatial interactions are possible. For example, the activation of a synapse 
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might depolarize the dendrite sufficiently to serve as the postsynaptic 
signal for modifying an adjacent synap e. Such cooperativity between 
synapses is a generalization of the Hebb rule in which a section of den- 
drite is considered the functional unit rather than the entire neuron (Fin- 
kel and Edelrnan, 1987). Dendritic compartments with voltage-dependent 
channels have all the properties needed for nonlinear processing units 
(Shepherd et nl., 1985). 

IV. Conditioning 

The Hebb rule can be used to form associations between one stimulus 
and another. Such associations can be either static, in which case the 
resulting neural circuit functions as an associative memory (Steinbuch, 
1961; Longuet-Higgins, 1968; Anderson, 1970; Kohonen, 1970), or they 
can be temporal, in which case the network learns to predict that one 
stimulus pattern will be followed at a later time by another. The latter 
case has been extensively studied in classical conditioning experiments, 
in which repeated temporally paired presentations of a conditioned 
stimulus (CS) followed by an unconditioned stimulus (US) cause the 
animal to respond to the CS in a way that is similar to its response to 
the US. The animal has learned that the presence of the CS predicts the 
subsequent presence of the US. A simple neural circuit model of the 
classical conditioning process that uses the Hebb rule is illustrated in 
Fig. 2. This circuit contains three neurons: a sensory neuron for the CS, 
a sensorv neuron for the US, and a motor neuron, R, that generates the 
unconditioned response. There is a strong, unmodifiable synapse from 
US to R, so that the presence of the US automatically evokes the response. 
There is also a modifiable synapse from CS to R, which in the naive 
untrained animal is initially weak. 

One might think that the straightforward application of the literal 
interpretation of the Hebb rule, as expressed in Eq. (2), would suffice 

Figure 2. 
Model of classical conditioning using a modified Hebb synapse. The 
unconditioned stimulus (US) elicits a response in the postsynaptic cell (R). 
Coincidence of the response with the conditioned stimulus (CS) leads to 
strengthening of the synapse between CS and R. 
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to generate the desired conditioning effects in the circuit of Fig. 2. How- 
ever, there are a number of serious problems with this learning algorithm. 
One of the most serious is the lack of timing sensitivity in Eq. (2). Leam- 
ing would occur regardless of the order in which the neurons came to 
be activated. However, in conditioning we know that the temporal order 
of stimuli is important-if the US followk the CS, then learning occurs, 
while if the US appears before the CS, then no learning occurs. Hence 

I 

I 
Eq. (2) must be modified in some way to include this timing sensitivity. . 1 
Another serious problem is a sort of "runaway instability" that occurs 
when the CS-R synapse is strengthened to the point where activity in 
the CS neuron is able to cause by itself firing of the R neuron. In that 
case, Eq. (2) would cause the synapse to be strengthened upon presen- 
tation of the CS alone, without being followed by the US. However, in 
real animals we know that presentation of CS alone causes a learned 
association to be extinguished; that is, the synaptic strength should de- 
crease, not increase. The basic problem is that algorithm 2 is only capable 
of generating positive learning, and has no way to generate zero or neg- 
ative learning. 

It is clear then that the literal Hebb rule needs to be modified to 
produce desired conditioning phenomena (Tesauro, 1986). One of the 
most popular ways to overcome the problems of the literal Hebb rule is 
by using algorithms such as the following (Klopf, 1982; Sutton and Barto, 

Here 7, represents the stimulus trace of V ,  , that is, the weighted average 
of V, over previous times, and V,  represents the time derivative of V, . 
The stimulus trace provides the required timing sensitivity so that learn- 
ing only occurs in forward conditioning and not in backward condition- 
ing.   he use of the time derivative of the postsynaptic firing rate, rather 
than the postsynaptic firing rate, is a way of changing the sign of learning 
and thus avoiding the runaway instability problem. With this algorithm, 
extinction would occur because upon onset of the CS, no positive learning 
takes place due to the presynaptic trace, and negative learning takes 
place upon offset of the CS. There are many other variations and elab- 
orations of Eq. (3), which behave in a slightly different way, and which 
take into account other conditioning behaviors such as second-order 
conditioning and blocking, and for the details we refer the reader to 
Sutton and Barto (1981), Sutton (1987), Klopf (1988), Gluck and Thomp- 
son (1987), Tesauro (1986), and Gelperin et al. (1985); see also Chapters 
4, 5, 7, 9, 11, this volume. However, all of these other algorithms are 
built upon the same basic notion of modifying the literal Hebb rule to 
incorporate a mechanism of timing sensitivity and a mechanism for 
changing the sign of learning. 
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V. Conclusions 

The algorithmic level is a fruitful one for pursuing network models at 
the present time for two reasons. First, working top-down from com- 
putational considerations is difficult since our intuitions about the com- 
putational level in the brain may be wrong or misleading. Knowing more 
about the computational capabilities of simple neural networks may help 
us gain a better intuition. Second, working from the bottom up can be 
treacherous, since we may not yet know the relevant signals in the ner- 
vous system that support information processing. The study of learning 
in model networks can help guide the search for neural mechanisms 
underlying learning and memory. Thus, network models at the algo- 
rithmic level are a unifying framework within which to explore neural 
information processing. 

Hebb's learning rule has led to a fruitful line of experimental re- 
search and a rich set of network models. The Hebb synapse is a building 
block for many different neural network algorithms. As experiments re- 
fine the parameters for Hebbian plasticity in particular brain areas, it 
should become possible to begin refining network models for those areas. 
There is still a formidable gap between the complexity of real brain circuits 
and the simplicity of the current generation of network models. As 
models and experiments evolve the common bonds linking them are 
likely to be postulates like the Hebb synapse, which serve as algorithmic 
building blocks. 

It is curious that the Golgi studies of Lorente de N6 should have 
led Hebb to suggest dynamic rules for synaptic plasticity and dynamic 
processing in neural assemblies. Ramon y Cajal, too, was inspired by 
static images of neurons to postulate many dynamical principles, such 
as the polarization of information flow in neurons and the pathfinding 
of growth cones during development. This suggests that structure in 
the brain may continue to be a source of inspiration for more algorithmic 
building blocks, if we could only see as clearly as Cajal and Hebb. 
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