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Terrence Sejnowski assesses von Neumann's contribution of mathematical 
and computational tools for the development of computational 
neuroscience. He surveys the progress that has been made in this field 
since von Neumann's death and outlines the difficulties that remain. 

Categories and Subject Descriptors: K.2 [Computer Milieux] : History of 
Computing-hardware, people, systems, theory. H. 1.2 [Information 
Systems]: Models and Principles-Systems and lnformation Theory; H. 1.2 
[Information Systems]: UserlMachine Systems-Human information 
processing. 

I first read John von Neumann7s book The Com- 
puter and the Brain in the summer of 1970, while 
studying for the general examination for doctoral 
candidacy in physics at Princeton. Ever since then, 
I have been thinking about the issues von Neu- 
mann raised in his book. Rereading the book re- 
cently has highlighted the progress that has been 
made on trying to understand information-pro- 
cessing in the brain, as well as the difficulties 
that remain. 

When von Neumann wrote the manuscript for 
the Silliman Lectures a t  Yale in 1956, the gen- 
eral character of electrical transmission and 
communication between neurons had just re- 
cently been elucidated through the seminal work 
of Alan Hodgkin and Andrew Huxley on the squid 
giant axon, and Bernard Katz on the frog neu- 
romuscular junction. The all-or-none nature of the 
action potential had suggested analogies with bi- 
nary gates in digital computers (McCulloch and 
Pitts 1943), but the analog nature of neural in- 
tegration was just beginning to be fully appre- 
ciated. Typically, the accuracy of numerical cal- 
culation in a modern digital computer is 8 to 16 
significant figures. But in a neuron, signaling by 
means of the average firing rate has at  best one 
or two significant figures of accuracy. We still do 
not understand how information is represented 
in the brain in such a way that low accuracy is 
not a problem. 

Von Neumann recognized that the reliance of 
the brain on analog-signal processing had far- 
reaching significance for the style of computa- 
tion that the brain was capable of supporting. He 
pointed out that the logical depth of a calcula- 
tion, for example, can be very great for a digital 
computer that retains high accuracy at each step 
in the calculation; but for an analog system like 
the brain, the compounding of errors causes se- 
vere problems after only a few steps. Much of the 
work in artificial intelligence depends on the ef- 
ficient use of a sequential, symbol-processing ar- 
chitecture, and on tree searches that have great 
logical depth. The model of computation based on 
logic that led to sequential architecture also served 
as a model for human reasoning in cognitive sci- 
ence (Newel1 and Simon 1976). The recent avail- 
ability of digital computers with parallel archi- 
tectures makes apparent the extent to which 
cognitive science and artificial intelligence have 
been shaped by hardware that is based on se- 
quential symbol processing. 

It is somewhat ironic that the sequential ar- 
chitecture of digital computers is generally called 
von Neumann architecture. Von Neumann was 
well aware of the need for a broader science of 
computation and contributed not just to the de- 
velopment of sequential architecture but also to 
the foundations of cellular automata (von Neu- 
mann 1963)-an early parallel architecture that 
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has only recently been exploited (Wolfram 1983). 
It is also apparent from The Computer and the 
Brain that von Neumann was skeptical about se- 
quential architecture as a model for how the brain 
works. 

The use of memory in digital computers to store 
both sequences of instructions and data was a 
breakthrough to which von Neumann made ma- 
jor contributions. Memory is one of the central 
themes in his book. Very little was known at the 
time concerning memory mechanisms at the cel- 
lular level or the locations where memories are 
stored in the brain. "We are as ignorant," he 
stated, "of its nature and position as were the 
Greeks, who suspected the location of the mind 
in the diaphragm." Today we have a much better 
knowledge of the condition for neural plasticity 
in many different areas of the brain. In the hip- 
pocampus, for example, a form of plasticity called 
long-term potentiation has been found that re- 
sults in changes that can last for many days. 
Moreover, the plasticity in some parts of the hip- 
pocampus seems to depend on a learning rule first 
proposed by Hebb (1949), and molecular mecha- 
nisms are being identified that control this plas- 
ticity (Brown et al. 1989). However, the organi- 
zation of knowledge in networks of neurons is still 
a mystery (Sejnowski and Tesauro 1989). 

Information in digital computers is stored at 
locations that can be individually addressed. In 
humans, information is organized in a complex 
web of structured associations, so that memory 
is accessed through content. Von Neumann cal- 
culated an upper bound for how much informa- 
tion could be stored in the brain. Assuming that 
a trace of all information impinging on our sen- 
sory receptors is stored, he arrived at a capacity 
of about loz0 bits, which is probably a vast over- 
estimate of what we actually retain. A lower 
bound on memory capacity, based on how much 
information can be consciously recalled, is 10' bits 
(Landauer 1986). This is, however, only one type 
of memory, the declarative memory that we have 
for facts and events (Squire 1987). Other memory 
systems, such as motor learning and procedural 
knowledge, appear to be organized separately from 
the memory system for facts. It is more difficult 
to quantify the capacity of nondeclarative mem- 
ory sytems because they are not easy to dissect 
into components. One approach to this problem 
is to estimate the total amount of information that 
can be stored a t  synapses, the specialized con- 
tacts between neurons that are used for signal- 
ing. 
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A synapse is activated when an action poten- 
tial-an impulse emanating from a neuron-in- 
vades a synaptic terminal, a chemical neuro- 
transmitter is released, and a signal is 
communicated to the postsynaptic cell. The elec- 
trical response produced in the postsynaptic cell 
can be excitatory or inhibitory; that is, it can bring 
the cell either closer to or farther away from the 
threshold for initiating an action potential. 
Thousands of synapses converge on a single neu- 
ron. The process of integrating information, of 
collecting signals from thousands of sources, in- 
volves filtering processes and nonlinear decisions 
that we are just beginning to understand at the 
molecular level. Von Neumann made many nu- 
merical estimates of memory capacity, neural 
power dissipation, and time scales in his book, 
but, curiously, he did not estimate the number of 
synapses in the brain. Since it would be physi- 
cally impossible to count every synapse in the 
brain, estimates are based on sampling tech- 
niques. When I first looked in the literature for 
this number in 1970, I found estimates of around 
1013 synapses, but this now appears to be an un- 
derestimate. The best current estimate is 1014 
synapses, and the number may continue to change 
as automated anatomical methods continue to 
improve. If we assume that synapses are sites of 
information storage, then we can make a rough 
estimate for the total information stored in the 
brain. A single synapse can store only a few bits 
of information in the form of a coupling strength. 
Thus, a rough estimate for the information stored 
in our brain is around 1014 bits. Compared to the 
estimate of 10' bits of information that is con- 
sciously available to us, our nondeclarative mem- 
ory could be larger by as much as lo5. 

One of the most difficult problems facing us is 
that of trying to understand thought processes 
through understanding the brain (Sejnowski and 
Churchland 1989). Here too, von Neumann stated 
a very clear position: "Thus, logics and mathe- 
matics in the central nervous system, when viewed 
as languages, must structurally be essentially 
different from those languages to which our com- 
mon experience refers." This statement reflects a 
lifetime of thinking about computation and 
mathematics. It was perhaps his last thought on 
this issue and was in many ways deeply prophet- 
ic of current research on brain models as the sub- 
strate for cognition (Churchland 1986; Rumel- 
hart and McClelland 1986). We are still very far 
from knowing what the hidden language of the 
central nervous system might be. Given what we 
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now know about the structure of the brain, is it 
possible to begin to study the hidden language of 
brain systems? 

A new field is developing called computational 
neuroscience; its goal is to understand how the 
brain represents and processes information 
(Sejnowski et al. 1988). One of the principal tech- 
niques used is the modeling of brain function at 
many different levels of investigation, from the 
molecular to the systems levels. The digital com- 
puter provides for the first time, enough com- 
puting power to explore the complexity of the 
brain by simulating massively parallel models of 
brain structures at  the level of neurons and syn- 
apses. At present, it is possible to model only small 
parts of the brain system; however, computing 
power is rapidly increasing, and we may even- 
tually learn some of the design principles of the 
brain. 

In 1970, inspired by von Neumann's numerical 
estimates of brain capacities, I ,attempted to es- 
timate the computing power needed to simulate 
a brain. Without knowing how the brain is de- 
signed, it is not possible to provide a definitive 
answer; however, a rough lower bound is possi- 
ble, and here, very briefly, is the answer I found. 
The first thing I did was to define an elementary 
operation in the brain as a single synaptic event. 
In a digital computer an elementary operation 
constitutes a set of instructions corresponding to 
the simulated update at  a synapse (typically, a 
few instructions such as load, add, and multiply). 
In Figure 1, the logarithm of the number of el- 
ementary operations per second that the largest 
existing digital computer could accomplish is 
plotted as a function of time. In the 1950s, the 
earliest digital computers based on vacuum tubes 
could do about 10,000 operations per second. In 
1970, when I made my first estimate, the largest 
computer available was a computer that could 
perform about one million operations per second. 
Given that there are on the order of lo1* syn- 
apses in the brain, and that they are being ac- 
tivated on the average of about 10 per second, one 
can estimate that the brain is performing, at  
minimum, on the order of 1015 operations per sec- 
ond. This is a lower bound, because we know that 
very sophisticated analog processing occurs within 
a neuron. If we optimistically extrapolate the 
straight line in Figure 1, which is an empirical 
fit to the data, we find that it crosses the mini- 
mum processing capabilities of the human brain 
sometime around 2010. A more thorough analy- 
sis, which takes into account other important fac- 
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Figure 1. The logarithm of the number of elementary 
operations per second by the largest digital computer 
plotted as a function of time. 

tors, such as the communication bandwidth, leads 
to the same conclusion (Waltz 1988). 

The straight line in Figure 1 represents an ex- 
ponential increase in processing power that is a 
cascade of many different technologies, starting 
from the vacuum tube, to discrete transistors, to 
integrated circuits. The most recent generation 
of computers, such as the Connection Machine, 
are highly parallel architectures. Although my 
extrapolation seemed somewhat dubious in the 
1970s, and a bit discouraging because so much 
more computing power was needed, the process- 
ing power has continued to march up the curve. 
It is now halfway between 1970 and 2010 and 
computers exist that can process a billion oper- 
ations per second. However, there is still no guar- 
antee that we will continue to move up the curve. 
New technology is now being developed that may 
make it possible to achieve rates of computation 
that we only dream about today. For example, 
analog very large scale integration (VLSI) tech- 
nology will make an enormous difference in our 
ability to process sensory information in parallel. 
The accuracy and dynamic range of analog pro- 
cessing in silicon is low, as it is in the brain, but 
the speedup from massively parallel processing 
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in wafer-scale integration has the potential to 
produce spectacular results (Mead 1988). 

It is apparent in Figure 1 that we are also far 
from performing simulations on a scale large 
enough to test our ideas of how the brain over- 
comes problems of low accuracy and shallow log- 
ical depth. Some progress has already been made 
using simplified models of neural networks which 
can be used to explore issues, such as how infor- 
mation about single items or relationships can be 
represented in a distributed fashion over many 
synapses and neurons (Hinton and Anderson 1981; 
Rumelhart and McClelland 1986; Hopfield and 
Tank 1986). These models demonstrate that dif- 
ficult problems can be solved with relatively sim- 
ple network architectures, and that the perfor- 
mance of a network model is surprisingly immune 
to damage and noise. However, they do not prove 
that the brain solves these problems in the same 
way; the next step is to scale up these simula- 
tions to more complex networks with more real- 
istic assumptions. It is very likely that we are 
still missing a crucial insight into the informa- 
tion codes used by the brain to represent abstrac- 
tions and symbolic relationships. There are al- 
ready hints that spatially and temporally coherent 
bursts of action potentials at high frequencies may 
carry such a code (Brown et al. 1989; Crick 1984; 
von der Malsburg 1987; Sejnowski 1976). Von 
Neumann called this the problem of the "short 
code"; this is the problem of finding a represen- 
tation in the brain sufficiently powerful to allow 
the brain to imitate the behavior of another com- 
puting system. 

We owe much to von Neumann for the math- 
ematical and computational tools that we now 
bring to bear on problems of the mind and brain. 
The next few decades should prove to be very ex- 
citing ones for computational neuroscience. By 
2010 we should have enough computing power to 
simulate large brain systems, and many of the 
problems raised by von Neumann in The Com- 
puter and the Brain should become amenable to 
experimental investigation and modeling stud- 
ies. It is difficult to predict what methods for 
studying complex systems may be needed before , 
an understanding of cognition is achieved, and 
what information will be found with these meth- 
ods. The traditional analytic techniques in math- 
ematics may not be sufficiently powerful for the 
exploration of nonlinear brain models. It may even 
be possible that all existing traditional tech- 
niques based on the manipulation of symbols will 
be inadequate. The last words in von Neumann's 

book will also be ours: "However, the above re- 
marks about reliability and logical and arith- 
metical depth prove that whatever the system is, 
it cannot fail to differ considerably from what we 
consciously and explicitly consider mathemat- 
ics." 
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