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The computational leed  
S h a w n  R. L o c k e r y  a n d  T e r r e n c e  J. S e j n o w s k i  

The local bending reflex of the leech computes a well- 
defined sensorimotor input-output function in which 
each of several unique patterns of sensory input elicits a 
unique pattern of motoneuron activity. Interneurons 
in the reflex respond to most input patterns and 
contribute to most motor patterns, suggesting a 
distributed processing mechanism .for the reflex. This 
suggestion is supported by models in which connection 
strengths are adjusted by a neural network optimization 
algorithm to reproduce the local bending input--output 
function. In addition, computational parallels between 
the local bending network and the perceptron, a major 
class of artificial neural networks, brings the functional 
role of local bending interneurons into question and 
suggests new physiological experiments. 

A decade of research on parallel distributed pro- 
cessing (PDP) networks has demonstrated the im- 
pressive capacity of artificial networks to perform 
complex tasks. Using simplified neuron-like pro- 
cessing elements and a variety of computer al- 
gorithms for connecting them, networks have been 
created that do everything from reading zipcodes to 
predicting the stock market. In the study of biological 
neural systems, the PDP perspective provides theor- 
etical tools for the analysis of computational strat- 

egies and a range of powerful computer algorithms, 
such as backpropagation, for constructing working 
models of large, highly interconnected networks. 
Although these algorithms started as models of 
learning, there is now wide agreement that they are 
poor representations of the mechanisms of learning 
and memory. Rather, they have proven to be useful 
as biologically neutral ways to fit complex models to 
physiological data. 

To illustrate the utility of the PDP modeling 
approach, we describe our recent theoretical efforts 
to understand a simple, well-defined network of 
repeatably identifiable interneurons in the leech. A 
realistic model of the system was constructed by 
forcing backpropagation to operate within stringent 
physiological and anatomical constraints. The model 
has elucidated the functional role of interueurons in 
the network and the connectivity of interneurons still 
to be identified. In addition, the theoretical framework 
provided by neural network theory focuses future 
experimental work in new directions. 

N e t w o r k s  of  idea l i zed  n e u r o n s  
Perhaps the most widely studied artificial PDP 

network is the two-layered perceptron 1. Figure 1A 
shows a simple perceptron with two input lines (X1 
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Fig. 1. (A) A two-layered perceptron with two hidden 
units and one output unit. The number inside each unit 
is the threshold, the level of synaptic input at which 
the output equals 0.5. Net synaptic input is the sum of 
the outputs of each presynaptic unit weighted by the 
connection strengths indicated next to the arrowheads. 
(8) The sigmoidal function relating total synaptic input to 
the output of a unit. 

and X2), two interneuron-like hidden units and one 
output unit. Each connection in the network is 
assigned a numerical strength called a weight and the 
output of each unit (Fig. 1B) is a sigmoidal function of 
the net synaptic input, namely, the weighted sum of 
the outputs of the presynaptic units. The sigmoid 
curve idealizes the relation between synaptic input 
and firing frequency in real neurons. The level of net 
synaptic input at which the output of the unit equals 
0.5 is called the threshold of the unit because it 
determines where the transition from inactive (off) to 
active (on) occurs. Processing in a PDP network is 
parallel in the sense that all the units transform input 
into output simultaneously; processing is distributed 
in the sense that information from each input is spread 
out among many hidden units. 

A common task artificial networks perform is to 
classify particular combinations of features (e. g. pitch, 
color, shape, etc.). In the simple example of Fig. 1A, 
activity along input lines X1 and X2 could be used 
to represent the degree to which two independent 
features are present. The region enclosed by the X1 
and X2 axes defines the input space of the network. 
The receptive field of the output unit is visualized 
by plotting its activity as a function of all possible 
combinations of input unit activity (Fig. 2). By virtue 
of its threshold, each hidden unit cuts the input space 
into an 'on' and 'off' region. A variety of output unit 
receptive fields can be constructed by judiciously 

aligning the cuts made by each hidden unit. To il- 
lustrate, the weights in Fig. 1A were chosen to pro- 
duce the diagonally oriented receptive field in Fig. 2A. 

PDP networks owe their computational power to 
both the distributed nature of connections from one 
layer to the next, and to the nonlinearity of the units 
themselves. Selective alterations of the network in 
Fig. 1A provide a convenient demonstration of this 
point. For example, if one 'de-distributes' the input by 
deleting the crossed connections in Fig. 1A, one limits 
the possible cuts to those parallel to the X1 and X2 
axes, seriously limiting the range of receptive field 
shapes (Fig. 2B). If instead one replaces the sigmoidal 
input-output function with a linear relationship, no 
cuts are possible, and the receptive field becomes a 
plane (Fig. 2C). The output unit now responds to the 
entire input space, albeit with excitation in some 
regions and inhibition in others. Deleting the crossed 
connections in Fig. 2C produces a planar receptive 
field with a different slope. In fact, it can be shown 
that such a planar receptive field can be produced by 
an even simpler 'network': a single linear output unit 
together with its inputs 2. 

The computational power of PDP networks can be 
increased by additional circuit elements. For example, 
adding units to the hidden-unit layer in Fig. 1A would 
further subdivide the input space, and thereby 
sharpen the receptive field of the output unit. Indeed, 
by adding whole layers of hidden units, any receptive 
field is possible 3, though the number of hidden units 
needed may become impractically large. Another 
problem that must be overcome in multi-layered 
networks is how to choose the connection strengths 
between units. Indeed, research into PDP networks 
was hindered by this problem for many years 4, but 
interest in them was re-ignited by the introduction 
of a variety of network optimization or 'training' 
algorithms that could adjust the weights (and other 
network parameters) to achieve almost any input- 
output function 5. These include: 'supervised' pro- 
cedures in which the weight adjustments are cal- 
culated by taking the difference between actual and 
desired output for each unit6; 'reinforcement' pro- 
cedures that involve only a good-bad assessment of 
network output7; and 'unsupervised' procedures in 
which weights are adjusted according to local learning 
rules that depend on things like the correlation 
between presynaptic and postsynaptic activity 8-1°. 

Using these algorithms, it has been shown that 
expanded versions of the simple network in Fig. 1A 
can perform sophisticated information-processing 
tasks that have captured the imagination of the 
specialist and layman alike. These include many 
biologically relevant tasks such as pattern recog- 

11 12 13 nition ' , data compression , visually ~ided 1oco- 
14 15 16 motion , interpolation , signal detection , prediction 

of future events 17 and speech synthesis TM. Often, the 
network performs as well as or better than humans or 
specially designed computer programs 11'16'19. Thus, a 
variety of successful applications show the perceptron 
to be a surprisingly powerful and quite general 
computational strategy. 

Back to biology 
Biological PDP networks, to which artificial net- 

works owe their inspiration, are both common 2° and 
notoriously difficult to study 21. This has led to the 
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hope that artificial PDP networks may one day return 
the favor, so to speak, by providing insights and new 
tools for the investigation of distributed processing 
in biological networks. Two immediate possibilities 
come to mind. First, the idealized representation bf 
neurons embodied in artificial networks fosters theor- 
etical analyses t°'22 that can point experimentalists to 
new experiments that reveal essential computational 
details. Second, network optimization algorithms can 
be applied to realistic models of biological net- 
works 23'24. This exciting development may provide a 
way out of the double-bind that characterizes the 
study of biological PDP networks: models are essen- 
tial tools in the design and interpretation of exper- 
iments, yet the size and complexity of most distrib- 
uted systems far exceeds the physiological data 
available to construct the model in the first place. 
There is an urgent need, therefore, for what we might 
loosely call a 'physiologist's assistant': an automated 
procedure that provides educated guesses as to the 
value of unknown model parameters in anticipation of 
our making the necessary physiological measure- 
ments. By sharpening our experimental insights, 
these working models could greatly accelerate col- 
lection of relevant physiological data, hastening the 
day when working models are supplanted by models 
fully constrained by physiological measurements 25. 

Local bending behavior 
We have been exploring this possibility using the 

local bending reflex of the leech as a test case in the 
analysis of biological PDP networks (Fig. 3A). In 
response to a moderate mechanical stimulus, the 
leech withdraws from the point of contact by contract- 
ing longitudinal muscles beneath the stimulus and 
relaxing those on the opposite side of the body, 
resulting in a U-shaped local bend 26. For example, a 
dorsal stimulus causes dorsal longitudinal muscles to 
contract and ventral ones to relax. Analogous patterns 
of contraction and relaxation underlie ventral and 
lateral bends. 

The local bending network 
The circuitry underlying the local bending reflex 

invites comparison to a two-layered perceptron 
(Fig. 3B). The nervous system of the leech consists 
of a chain of segmental ganglia, each of which con- 
tains circuitry sufficient to produce the behavior. This 
has made possible a detailed description of the local 
bending circuit 26-31. Major input to the reflex is pro- 
vided by dorsal and ventral pressure-sensitive mech- 
anoreceptors, the P cells. Contraction and relax- 
ation of longitudinal muscles is controlled by eight 
types of motoneurons, an excitatory (DE or VE) 
type and an inhibitory (DI or VI) type for the dorsal 
and ventral quadrants, respectively, on the left and 
right side of each body segment. Motoneurons are 
connected by numerous chemical and electrical 
synapses introducing feedback within the motor layer. 
Input from sensory neurons to motoneurons is 
mediated by a layer of interneurons. Synaptic trans- 
mission from interneurons to motoneurons, and 
among motoneurons, is a graded function of 
presynaptic voltage (Fig. 3C) a2'33. Pairwise intra- 
cellular recordings showed that the synaptic transfer 
function is approximately linear at low presynaptic 
voltage but saturates (flattens out) at higher voltages. 
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Fig. 2. (A) The receptive field of the output unit in Fig. IA. The input space of 
the network is the region between the X1 and X2 axes. Activity of the output 
unit is plotted on the vertical axis. Each hidden unit divides the input space into 
an 'on' and 'off' region separated by diagonal lines in the X1-X2 plane. The 
output unit subtracts the activity of hidden unit 2 from hidden unit 1, resulting 
in a diagonally oriented receptive field. (B) The receptive field of the output 
unit after deleting the crossed connections in (A). The lines separating the on 
and off regions must now be parallel to the X1 or X2 axis because each hidden 
unit is sensitive only to one input. (C) The receptive field of the output unit 
when the sigmoidal function is replaced by a linear input-output relationship. 
The receptive field becomes a plane with excitation near the origin and 
inhibition elsewhere. Linearization of the network precludes spatially restricted 
receptive fields. Moreover, the hidden units now serve no function, because 
the same receptive field can be produced by a single unit receiving inhibitory 
connections with a strength of -1  from each input and a resting activation 
level of 2.5. 

Local bending and neural computation 
The p r i m a r y  function of interneurons in the local 

bending network is to associate with each sensory 
stimulus that pattern of motoneuron excitation and 
inhibition sufficient to withdraw from the site of 
contact. In computational terms, the reflex computes 
a function that maps a four-dimensional input vector, 
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Fig. 3. The local bending reflex. (A) Behavior: dorsal, ventral and lateral stimufi produce local 
U-shaped bends. (B) Simpfified neural circuit: the main input to the reflex is provided by the dorsal 
and ventral P cells (PD and PV). Control of local bending movements is largely provided by 
motoneurons whose projective fields are restricted to one quadrant (left or right, dorsal or ventral) 
of the body. Dorsal and ventral quadrants are innervated by both excitatory (DE and VE) and 
inhibitory (DI and VI) motoneurons. There are two to four representatives of each motoneuron 
type in a midbody leech ganglion. Motoneurons are connected by numerous chemical and 
electrical synapses. A subpopulation of intemeurons has been identified (small hatched circles) that 
receive excitatory input from dorsal P cells and excite the dorsal excitatory motoneurons. Other 
interneurons, including those that excite the ventral excitors, remain to be identified (small open 
circles). (C) The synaptic transfer function for the DI to DE and Vl to VE connections. Data points 
are from pairwise intracellular recordings of steady-state postsynaptic voltage following prolonged 
current injection in the presynaptic neuron 33. The smooth curve is an empirical fit to the data 
points 34. This function is believed to be typical of the transfer function at other synapses in the local 
bending network. 

encoding stimulus location (the activity of the four P 
cells), onto an eight-dimensional output vector, en- 
coding the associated movement (the activity of the 
eight types of motoneurons). One of the strengths of 
the local bending reflex as an experimental system is 
that the input-output function can be measured 
precisely by recording the motoneuron synaptic 
potentials produced by stimulation of P cells in various 
combinations a°. To date, we know the patterns of 
motoneuron excitation and inhibition produced by 
eight different combinations of single or paired P cell 
stimulation (e.g. Fig. 4). Each of the patterns is 
consistent with the withdrawal behavior observed in 
response to mechanical stimuli that would activate the 
same P cells. A major focus of our physiological 
studies has been to determine how this input--output 
function is computed. 

Identification of local bending interneurons 
In perhaps the simplest conceptual model of how 

the computation is performed, local bends are pro- 
duced by dedicated interneurons specific for dorsal, 
ventral or lateral forms of the response (Fig. 5A). To 
determine how the interneurons in the reflex actually 
compute the local bending input-output function, a 

subpopulation of local bending 
interneurons contributing to dorsal 
bending was identified using 
physiological and morphological 
criteria 31. Nine types of dorsal 
bending interneurons, which have 
excitatory connections to the dor- 
sal excitatory motoneurons and 
receive excitatory connections 
from the dorsal P cells, have been 
identified (Fig. 5B). All but one of 
these types occur as left-right 
bilateral homologues. This means 
there are at least 17 dorsal bending 
intemeurons per ganglion. Con- 
sistent with the number of inter- 
neurons in each ganglion, remov- 
ing single interneurons from the 
circuit produced small but detect- 
able decrements in motoneuron 
responses during behavior. Other 
types of local bending intemeurons, 
e.g. those that inhibit the dorsal 
excitors, remain to be identified. 

Two aspects of the connections 
made by the subpopulation of 
identified interneurons are in- 
consistent with a commitment to 
only dorsal bending, and thus with 
the simplest model. First, all but 
one type of dorsal bending inter- 
neuron receives substantial ex- 
citatory input from one or more 
ventral P cells, indicating that 
those neurons previously con- 
sidered to be dorsal bending inter- 
neurons are also active in the 
ventral and lateral bending be- 
haviors. Second, the effect of an 
interneuron on an inhibitory moto- 
neuron is not always opposite in 
sign to its effect on the excitatory 

motoneuron controlling the same body quadrant (Fig. 
5B, arrows). Thus, the connections of the local 
bending interneurons suggest a distributed processing 
strategy in which each interneuron is active in some 
or all forms of local bending and has output connec- 
tions that are not completely consistent with any 
single form of the response. 

A dynamic neural network model of the local 
bending reflex 

Modeling the reflex was prompted by the need to 
show that a network of interneurons with distributed 
sensory inputs could produce the physiological re- 
sponses seen in the motoneurons during the reflex. 
The possibility remained that other intemeurons, 
perhaps like the dedicated neurons of Fig. 5A, are the 
ones actually responsible for the reflex and that these 
had been missed in the original search. 

The basic model we studied had four sensory 
neurons, eight motoneurons and 40 interneurons, 
and thus 480 connections, representing the actual 
local bending circuit (Fig. 3B) 34. The number of 
interneurons was based on an upper estimate of the 
number of local bending interneurons that remain to 
be identified in the biological network. Each neuron in 
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the model was represented as an isopotential cellular 
element called an electrical compartment 3s with a 
physiologically determined input resistance and time 
constant. The strengths of connections between 
motoneurons were adjusted by trial and error to 
reproduce the results of pairwise motoneuron 
recordings as. However, because of the larger number 
of connections between sensory neurons and inter- 
neurons, and between interneurons and motoneur- 
ons, it was not practical to adjust these by trial and 
error. We therefore used backpropagation 6 as an 
optimization procedure to select a set of weights that 
could reproduce the input-output function of the re- 
flex. Our model differs from typical backpropagation net- 
works, however, because the neurons are dynamic 
(the response of each neuron evolves in time), due 
to the resistance and capacitance of the cellular com- 
partments. This makes the model more realistic, but 
necessitates the use of a variation of the backpropa- 
gation algorithm for dynamic neurons 36. 

At the start of optimization, the weights to be 
optimized are randomly assigned small initial values. 
Each input-output association is then presented and 
the total discrepancy between the network's output 
and the desired output, called the error, is calculated. 
Weights that increase the error are decreased and 
those that decrease the error are increased. This 
procedure is repeated many (typically 1000-100 000) 
times until the total error is small. Because it must 
calculate the effect on the error of each weight, 
backpropagation is not intended as a model for 
learning or development. It is used here as a curve- 
fitting technique, where the input-output relation- 
ships of the network are the data points to be fit and 
the weights are the adjustable coefficients or par- 
ameters. In the local bending model, weights were 
optimized to reproduce the amplitude and timecourse 
of synaptic potentials recorded in the motoneurons 
in response to each pattern of sensory input (Fig. 4). 
Thus, after optimization, the model reproduced al- 
most exactly the input-output behavior seen in 
physiological experiments. 

To make the model more realistic, the optimization 
algorithm was forced to operate under five additional 
physiological constraints. (1) Only excitatory con- 
nections were allowed from sensory neurons to 
interneurons in the model, because only excitatory 
connections have so far been found at this layer in 
the biological network 31. (2) The sigmoidal function 
commonly used in artificial networks (Fig. 1B) was 
replaced by the physiologically determined relation- 
ship between presynaptic voltage and postsynaptic 
response (Fig. 3C). (3) Each interneuron on the left of 
the ganglion was paired with one on the right to 
maintain homologous input and output connections, 
reflecting the bilateral symmetry of the leech nervous 
system. (4) No connections between interneurons 
were allowed because none have so far been found. 
(5) The model included all of the known chemical and 
electrical connections between the motoneurons. 
Thus, the model differs from artificial networks de- 
signed by computer scientists and engineers who are 
under no obligation to remain true to any particular 
biological network. 

After optimization, the input and output connec- 
tions of interneurons in the model network quali- 
tatively resemble the connections of identified local 
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Fig. 4, The local bending input-output function. Intra- 
cellular recordings from four motoneurons in response to 
stimulation of one or two P cells (filled circles). The 
motoneurons have projective fields ipsilateral to the 
stimulated P cell(s). Co-stimulation of ipsilateral dorsal and 
ventral P cells (right column) activates excitatory and 
inhibits inhibitory motoneurons on the stimulated side. 
This pattern is consistent with withdrawal from a lateral 
stimulus. Similar recordings were obtained with other 
patterns of P cell stimulation and from contralateral 
motoneurons. (Reproduced, with permission, from 
Ref. 30.) 

bending interneurons (Figs 5B,C). In particular, all 
interneurons receive inputs from ventral as well as 
dorsal P cells, most have connections to all moto- 
neurons, and the connections to the inhibitory moto- 
neurons are not always opposite in sign to those onto 
the excitatory motoneurons controlling the same 
body quadrant (Fig. 5C, arrows). 

The model led to several new insights that could 
not have been reached without optimization. First, 
the similarity between model interneurons and inter- 
neurons in the biological network shows that ad- 
ditional interneurons with receptive or projective 
fields (defined by the postsynaptic motoneurons) 
that differ radically from those of the subpopulation of 
identified interneurons are not required. Second, in 
hundreds of optimization runs from different randomly 
chosen initial connection strengths, a different final 
network was reached each time. Thus, there are 
many different networks, with different sets of 
connections, that produce a physiologically accurate 
local bending input-output function. The multiplicity of 
networks raises the intriguing possibility that, as a 
result of differences in genetics or experience, 
different leeches may achieve the same reflex 
behavior using very different local bending networks. 
At present, however, this possibility has not been 
tested experimentally. 

Variations on the local bending model 
Varying the constraints placed on the algorithm 

provided additional insights 34. For instance, we 
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Fig. 5. Comparison of input and output connections of model and actual local bending interneurons. In each gray box, 
the upper panel shows input connections from sensory neurons, the middle panel shows output connections to 
inhibitory motoneurons, and the lower panel shows output connections to excitatory motoneurons (see key). Open 
boxes are excitatory connections and filled boxes are inhibitory connections. Box area is proportional to synaptic 
strength (see scale). Panels (B)-(D) are shown at the same scale. Each intemeuron is one of a bilaterally symmetrical 
pair. (A) A hypothetical network of dedicated intemeurons in which each intemeuron has inputs and outputs specific for 
dorsal, ventral or lateral bends. (B) Connections of identified local-bending intemeurons 115L and 125L. Output 
connections to excitatory motoneurons are as predicted for a dedicated dorsal bending intemeuron [see (A)], but input 
connections and conflicting effects on excitatory and inhibitory motoneurons of the same body quadrant (arrows) 
suggest a distributed processing strategy for the reflex. (C) Connections of two interneurons in a model network after 
optimization by backpropagation. Model intemeurons, like the real ones [see (B)] received dorsal and ventral P cell 
inputs, had output effects on all motoneurons, and exhibited conflicting effects on excitatory and inhibitory 
motoneurons of the same body quadrant (arrows). (D) Connections of intemeurons in a model network with two 
subpopulations of intemeurons. The subpopulation (a) was constrained to have output effects on excitatory 
motoneurons that were the same sign as those of the identified neurons [see (B)]. No such constraint was placed on (b), 
the unconstrained subpopulation. The model demonstrated that all three forms of local bending can be achieved by a 
model having just two basic types of interneurons. (F) Connections of intemeurons in a minimal model network with 
just two pairs of intemeurons. These intemeurons have input connections specific for dorsal or ventral inputs, but 
outputs consistent with lateral bending. Optimization thus revealed a previously unanticipated solution involving 
dedicated interneurons with a dissociation between input and output specificities. (Data are reproduced, with 
permission, from Figs 5, 12 and 14 of Ref. 34.) 

divided the 40 interneurons into two populations, (a) 
and (b). Population (a) represented the identified 
interneurons in being constrained to excite the dorsal 
excitatory motoneurons and inhibit the ventral 
excitatory motoneurons. Population (b) was under 
no additional constraints. After optimization, the con- 
nectivity of population (b) represents the possible 
connections of interneurons yet to be identified in the 
biological network (Fig. 5D). Most of the inter- 
neurons had outputs consistent with a major contri- 
bution to ventral bending, suggesting that all three 
forms of local bending could be produced by just two 
basic types of interneuron: one specialized for dorsal 
bending, the other for ventral bending. This notion 
was supported by reducing the number of uncon- 
strained interneurons and re-optimizing the network. 
All the constrained interneurons then had outputs 
consistent with ventral bending. In a different model- 
ing experiment, we reduced the number of inter- 
neurons in the network and found that recognizable 
local bending motor patterns can be produced by 
networks with as few as four interneurons (Fig. 5E). 

Interneurons in these networks resembled the dedi- 
cated interneurons in Fig. 5A, except they were 
specific for either dorsal or ventral inputs, yet had 
outputs consistent with lateral bending. Before the 
modeling, we had not anticipated such a possibility. 

T h e  l o c a l  b e n d i n g  n e t w o r k  a s  a b i o l o g i c a l  
p e r c e p t r o n  

The essential computational aspects of the bio- 
logical local bending network are captured in a sub- 
network containing just two sensory inputs (e.g. 
ipsilateral PV and PD neurons) and a single moto- 
neuron (DE) (Fig. 6A). This is because of the bilateral 
symmetry of both the local bending input--output 
function and the interneurons that compute it. Such a 
sub-network is like the simple two-layered perceptron 
in Fig. 1A, except that there are more interneurons. 
Thus we can compare the performance of the sub- 
network and the perceptron by plotting the moto- 
neuron's receptive field, so to speak, i.e. the synaptic 
potentials actually recorded from motoneuron DE in 
response to either single or simultaneous activation of 
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the two P cells (Fig. 6B). This demonstrates that the 
output of the biological network is nearly planar, like 
that of the linearized perceptron of Fig. 1D. In theory 
then, the interneurons in the local bending network 
could be replaced by direct connections from sensory 
neurons to motoneurons without loss of function. 
This is because, as noted above, a one-layer net- 
work is sufficient to produce a planar receptive field 
(Fig. 2C). Similar results are obtained for the other 
motoneurons in the biological network. 

That the output of the network appears to be linear 
suggests the interneurons in the local bending net- 
work are not there to divide the input space into 
localized receptive fields as we saw for the perceptron 
of Fig. 2A. A wide range of alternative functional roles 
are conceivable. These include increasing the gain 
from sensory neurons to motoneurons 37, serving 
as control points for dynamical gain modulation 37'3s, 
increasing the stability of the output in the event of 
noise in (or loss of) individual interneurons or 
synapses, and effecting a compromise between local 
bending and other behaviors 39. One might also 
suggest, albeit with some disappointment, that the 
local bending interneurons are merely vestiges of 
evolutionary tinkering 4°. 

It is worth noting, however, that the reflex could 
turn out to be nonlinear, and interneurons essential, 
after all. This is because we have not yet recorded the 
response of motoneurons to stronger P cell stimuli, 
which might be capable of driving the interneurons 
into the nonlinear (saturating) region of the synaptic 
transfer function (Fig. 3C). In light of the previous 
discussion of simple perceptrons, it is interesting to 
speculate on what the functional consequences of this 
could be. One possibility is that the saturating 
nonlinearity could partition the receptive field of 
individual motoneurons into restricted on and off 
regions as is the case for the output unit in Fig. lB. 
For example, if the effects of excitatory and inhibitory 
interneurons saturated at different presynaptic volt- 
ages (Fig. 6C), the non-zero output of the motor 
neuron (labeled 'sum') would be confined to a small 
region of the input space near the origin. Complex 
receptive fields could be constructed out of the simple 
building blocks provided by this mechanism. For 
example, the receptive field in Fig. 6D was produced 
by linking the dorsal P cell to two different sets of 
interneurons. The net effect on the motoneuron of 
the first set is as shown in Fig. 6C. Thus, the profile 
of the receptive field along the PD axis is equivalent to 
the line marked 'sum' in Fig. 6C. The net effect on the 
motoneuron of the second set is opposite in sign. 
This can be seen by examining the profile along the 
PV axis. When all combinations of PV and PD activity 
levels are examined, the result is a receptive field 
with intersecting excitatory and inhibitory troughs. 
Note that this receptive field has an approximately 
planar region (dark shaded zone) near the origin that 
is consistent with physiological data gathered to date 
(Fig. 6B). 

Concluding remarks 
The close parallels between simple perceptrons and 

many biological networks make it natural to model and 
analyse these systems using theoretical contributions 
from artificial neural networks. In our study of the 
local bending reflex, optimization algorithms enabled 
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Fig. 6. The local bending network as a perceptron. (A) The local bending 
network reduced to ipsilateral dorsal and ventral P cells and the dorsal excitor 
motoneuron (DE). Each of the nine or more intemeurons is excited by both 
P cells and has either an excitatory or inhibitory effect on the motoneuron. 
(B) The actual receptive field of the dorsal excitor in the input space defined by 
the activation level of the two P cells (number of impulses per stimulus). The 
points indicate average peak synaptic potentials of the motoneuron in exper- 
iments like the one illustrated in Fig. 4, in which P cells are stimulated (lOHz 
for 0.5 s) alone or in pairs. The receptive field is nearly planar, with the point for 
paired stimulation (PV + PD) lying just above the plane. Thus, in the range of 
low-intensity stimufi studied to date, the network behaves as a linearized 
perceptron (Fig. 2C). (C) Hypothetical effect on a motoneuron of excitatory 
and inhibitory intemeurons that saturate at different presynaptic voltages. In 
future experiments, the P cells will be stimulated at higher frequencies 
expected to drive interneurons into the saturating region of their synaptic 
transfer function (Fig. 3C). In the example illustrated, an excitatory moto- 
neuron saturates at a lower voltage than an inhibitory neuron, resulting in a 
net excitation of the motoneuron at low P cell stimulus intensities and no 
response at high intensities. (D) Hypothetical receptive field of a motoneuron 
in response to paired P cell stimulation. The first P cell, PD, is assumed to affect 
the motoneuron as shown in (C). A second P cell, PV, is assumed to have the 
opposite effect. These two effects sum linearly to produce a complex receptive 
field in which an excitatory ridge intersects an inhibitory trough. 

us to construct a working model in advance of a 
complete set of physiological measurements. This 
demonstrated that our conceptual model of the reflex 
could be made to work in practice. Moreover, analysis 
of the reflex in light of neural network theory has 
raised interesting new experimental questions regard- 
ing the role of interneurons in the reflex when 
stronger P cell stimuli are considered. 

Although backpropagation is a powerful and efficient 
means of adjusting connections in model networks, 
we do not believe the leech uses anything like 
backpropagation to set the weights in the biological 
network. Connection weights in the biological net- 
work are probably set by some combination of genetic 
and epigenetic factors, although at this point one can 
only speculate. We use backpropagation, therefore, 
not as a model for development or learning, but as 
a curve-fitting technique, where the input-output 
relationships of the network are the data points to be 
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fit and the weights are the adjustable coefficients or 
parameters. This is justified because we are primarily 
concerned with how the fully mature system oper- 
ates, not how it is built. The same strategy has 
elucidated the functional role of interneurons in the 
shortening reflex of the leech 41 and provided a variety 
of working models of larger systems that are less 
tractable physiologically. These include sensorimotor 
integration in the vestibulo--ocular re f lex  42'43, spatial 
localization of visual stimuli 23'~, shape from shading 24 
and cortical motor control 45. Optimization in these 
models, as in the local bending model, provides novel 
interpretations of existing physiological data and the 
impetus for new experiments. 

Optimization is thus emerging as a general tool for a 
wide range of problems in systems neuroscience. For 
example, we have used optimization to study possible 
sites of synaptic plasticity underlying nonassociative 
learning in the local bending reflex 46'47. Optimization 
can also be applied to the networks that do not have 
perceptron-like circuitry, including networks with 
recurrent or feedback connections like invertebrate 
central pattern generators 48-s° and possible cortical 
circuits for short-term memory 5z. The range of 
applications can be greatly increased by using neural 
network units to represent quantities other than firing 
rate or voltage. For example, one can optimize 
models in which units represent subcellular processes 
such as Hodgkin-Huxley variables 52, the biochemical 
mechanisms of the genetic control of development ~3 
or even environmental quantities like force and torque 
in models of animal orientation S°'~. In the future, we 
can expect to see a variety of models thought 
impossible until recently, and for each model, many 
new challenges for experimentalists. 
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