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Temporal receptive fields are organized hierarchically across 
the cortex1,2. Areas important for higher cognitive functions 
are capable of integrating and processing information in a 

robust manner and reside at the top of the hierarchy1–3. The pre-
frontal cortex (PFC) is a higher-order cortical region that supports 
a wide range of complex cognitive processes including WM—an 
ability to encode and maintain information over a short period of 
time4,5. However, the underlying circuit mechanisms that give rise 
to the stable temporal receptive fields associated strongly with WM 
are not known and challenging to probe experimentally. A better 
understanding of possible mechanisms could elucidate not only 
how areal specialization in the cortex emerges, but also how local 
cortical microcircuits carry out WM computations.

Previous experimental studies reported that baseline activities of 
single neurons in the primate PFC contain unique temporal recep-
tive field structures. Using decay time constants of spike-count 
autocorrelation functions obtained from neurons at rest, these 
studies demonstrated that the primate PFC is composed mainly 
of neurons with large time constants or timescales1,6–8. In addition, 
neurons with longer timescales carried more information dur-
ing the delay period of a WM task compared with short-timescale 
neurons8. Chaudhuri et al.2 proposed a large-scale computational 
model where heterogeneous timescales were organized natu-
rally in a hierarchical manner that closely matched the hierarchy 
observed in the primate neocortex. The framework utilized a gradi-
ent of recurrent excitation to establish varying degrees of temporal 
dynamics2. Although their findings suggest that recurrent excitation 
is correlated with area-specific timescales, it is still unclear if recur-
rent excitation indeed directly regulates neuronal timescales and  
WM computations.

Recent experimental studies paint a different picture, in which 
diverse inhibitory interneurons form intricate microcircuits in the 
PFC to execute memory formation and retrieval9–13. Both soma-

tostatin (SST) and vasoactive intestinal peptide (VIP) interneurons 
have been shown to form a microcircuit that can disinhibit excit-
atory cells via inhibition of parvalbumin (PV) interneurons14,15. 
Furthermore, SST and VIP neurons at the center of such disinhibi-
tory microcircuitry were causally implicated with impaired asso-
ciative and working memory via optogenetic manipulations9,10,12,13. 
Consistent with these observations, the primate anterior cingulate 
cortex, which is at the top of the timescale hierarchy,1 was found 
to contain more diverse and stronger inhibitory inputs compared 
with the lateral PFC16. A recent theoretical study also showed that 
inhibitory-to-inhibitory synapses, although far fewer in number 
compared to excitatory connections, are critical components for 
implementing robust maintenance of memory patterns17.

To characterize how strong inhibitory signaling enables WM 
maintenance and leads to slow temporal dynamics, we constructed 
a spiking recurrent neural network (RNN) model to perform a WM 
task, and compared the emerging timescales with the timescales 
derived from the prefrontal cortex of rhesus monkeys trained to 
perform similar WM tasks. Here, we show that both the primate 
PFC and our RNN model utilize units with long timescales to sus-
tain stimulus information. By analyzing and dissecting the RNN 
model, we illustrate that inhibitory-to-inhibitory synapses incorpo-
rated into a disinhibitory microcircuit tightly control both neuro-
nal timescales and WM task performance. Finally, we show that the 
primate PFC exhibits signs that it is already equipped with strong 
inhibitory connectivity even before learning the WM task, implying 
that a gradient of recurrent inhibition could naturally result in func-
tional specialization in the cortex. We confirm this with our model 
and show that the task performance of RNNs with short timescales 
can be enhanced via increased recurrent inhibitory signals. Overall, 
our work offers timely insight into the role of diverse inhibitory sig-
naling in WM and provides a circuit mechanism that can explain 
previously observed experimental findings.
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Cortical neurons process information on multiple timescales, and areas important for working memory (WM) contain neurons 
capable of integrating information over a long timescale. However, the underlying mechanisms for the emergence of neuronal 
timescales stable enough to support WM are unclear. By analyzing a spiking recurrent neural network model trained on a WM 
task and activity of single neurons in the primate prefrontal cortex, we show that the temporal properties of our model and the 
neural data are remarkably similar. Dissecting our recurrent neural network model revealed strong inhibitory-to-inhibitory con-
nections underlying a disinhibitory microcircuit as a critical component for long neuronal timescales and WM maintenance. We 
also found that enhancing inhibitory-to-inhibitory connections led to more stable temporal dynamics and improved task per-
formance. Finally, we show that a network with such microcircuitry can perform other tasks without disrupting its pre-existing 
timescale architecture, suggesting that strong inhibitory signaling underlies a flexible WM network.
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Results
Spiking RNN model. To study how stable temporal dynamics asso-
ciated with WM emerge, we trained a spiking RNN model to per-
form a WM task. The model used in the present study is composed 
of leaky integrate-and-fire (LIF) units recurrently connected to one 
another (Methods).

The WM task we used to train the spiking RNNs was a delayed 
match-to-sample (DMS) task (Fig. 1a; Methods). The task began 
with a 1 s long fixation period (that is, no external input) followed by 
two sequential input stimuli (each stimulus lasting for 0.25 s) sepa-
rated by a delay period (0.75 s). The input signal was set to either −1 
or +1 during the stimulus window. If the two sequential stimuli had 
the same sign (−1/−1 or +1/+1), the network was trained to pro-
duce an output signal approaching +1 after the offset of the second 
stimulus. If the stimuli had opposite signs (−1/+1 or +1/−1), the 
network produced an output signal approaching −1.

Using a method that we had developed previously, we config-
ured the recurrent connections and synaptic decay time constants 
(τd) required for the spiking model to perform the task18. Briefly, we 
trained continuous-variable rate RNNs to perform the task using 
a gradient-descent algorithm, and the trained networks were then 
mapped to LIF networks. In total, we ‘trained’ 40 LIF RNNs of 200 
units (80% excitatory and 20% inhibitory units) to perform the task 
with high accuracy (accuracy > 95%; Methods).

Experimental data. To ensure that our spiking model is a bio-
logically valid one for probing neuronal timescales observed in 
the cortex, we also analyzed a publicly available dataset contain-
ing extracellular spike trains recorded from the dorsolateral pre-
frontal cortex (dlPFC) of four rhesus monkeys19–21. The monkeys 
were trained on spatial and feature DMS tasks. A trial for both task 
types began with a fixation period (1 s in duration) during which 
the monkeys were required to maintain their gaze at a fixation tar-
get. For a spatial DMS trial, the monkeys were trained to report if 
two sequential stimuli separated by a delay period (1.5 s) matched 
in spatial location (Fig. 1b). More details regarding the dataset 
and the tasks can be found in the Methods and in Qi et al.19 and  
Meyer et al.20.

Long neuronal timescales in both RNN model and experimen-
tal data. Previous studies demonstrated that higher cortical areas 
consist of neurons with long, heterogeneous timescales using the 
spike-count autocorrelation decay time constant as a measure of 
a neuron’s timescale1,7,8. Here, we sought to confirm that our spik-
ing RNNs trained on the DMS task and the neural data were also 
composed of units with predominantly long timescales. For each 
unit from our RNNs and the dlPFC, we computed the autocorrela-
tion decay time constant (τ) of its spike-count during the 1 s fixa-
tion period (sMethods)1. The baseline activities (average firing rates 
during the fixation period) of the units that satisfied the inclusion 
criteria were comparable between the dlPFC data and our model 
(Fig. 2a; Methods). Both data contained units with slow temporal 
dynamics (that is, long τ values) and short τ units whose autocorre-
lation function decayed fast (Fig. 2b). Furthermore, the distribution 
of the timescales was heavily left-skewed for both data (Fig. 2c,d, 
left and middle panels) underscoring overall slow temporal prop-
erties associated with WM. On the other hand, the RNNs before 
training (that is, sparse, random Gaussian connectivity weights; 
Methods) were dominated by units with extremely short timescales  
(Fig. 2c,d, right panels), suggesting that the long τ units observed in 
the trained RNNs were the result of the supervised training.

Long neuronal timescales are essential for stable coding of 
stimuli. Next, we investigated whether units with longer τ values 
were involved with more stable coding compared with short τ units 
using cross-temporal decoding analysis8,22,23. We performed the 

cross-temporal decoding analysis on short and long neuronal tim-
escale subgroups from the neural data and the RNN model. A unit 
was assigned to the short τ group if its timescale was smaller than 
the lower quartile value. The upper quartile was used to identify 
units with large τ values. There were 64 units in each subgroup for 
the experimental data. For the RNN model, there were 230 units in 
each subgroup.

The cross-temporal discriminability analysis revealed that stron-
ger cue-specific differences (that is, higher discriminability) across 
the delay period were present in the long τ subgroup compared 
with the short τ subgroup for both data (Fig. 3a). The significant 
decodability during the delay period for the dlPFC dataset stemmed 
mainly from the spatial task dataset (Supplementary Fig. 1). The 
within-delay discriminability (that is, taking the diagonal values of 
the cross-temporal decoding matrices) for the long τ group was sig-
nificantly higher than the discriminability observed from the short τ 
group throughout the delay period for the RNN model (Fig. 3b). For 
the dlPFC dataset, we observed a significant correlation between 
the τ values and the average fixation firing rate (Supplementary  
Fig. 2), but stratifying the dataset to remove the relationship and 
repeating the cross-temporal discriminability analysis led to quali-
tatively similar results (Methods; Supplementary Fig. 3). Although 
significant within-delay discriminability was not observed for the 
dlPFC data (Fig. 3b, top), Wasmuht et al.8 reported significant 
within-delay decodability during the delay period in the primate 
lateral prefrontal cortex, consistent with our model findings.

Strong inhibitory connections give rise to task-specific temporal 
receptive fields. Neuronal timescales extracted from cortical areas 
have been shown to closely track the anatomical and functional 
organization of the primate cortex1,2. To investigate if such func-
tional specialization also emerges in our spiking model, we trained 
another group of spiking RNNs (n = 40 RNNs) on a simpler task 
that did not require WM. The non-WM task, which we refer to as 
a two-alternative forced choice (AFC) task, required the RNNs to 
respond immediately after the cue stimulus: output approaching −1 
for the ‘−1’ cue and +1 for the ‘+1’ cue (Fig. 4a; Methods). Apart 
from the task paradigm, all the other model parameters were identi-
cal to the parameters used for the DMS RNNs.

Because the AFC task paradigm did not require the RNNs to store 
information related to the cue stimulus, we expected that these net-
works would exhibit faster timescales compared with the DMS RNNs. 
Consistent with this hypothesis, the AFC RNNs did not contain as 
many long τ units as the DMS RNNs (Fig. 4b), and the timescales 
averaged by network were also significantly faster for the AFC RNNs 
(Fig. 4c). To demonstrate that the timescale hierarchy we observed 
in Fig. 4c is not largely driven by the synaptic decay time constants 
(τd) we optimized, we trained additional RNNs without optimizing τd 
(fixed to a constant value) for each task model. Fixing τd did not dis-
rupt the timescale hierarchy and resulted in moderate, yet significant, 
changes in neuronal timescales (Supplementary Fig. 4).

To gain insight into the circuit mechanisms underlying the dif-
ference in the timescale distributions of the AFC and DMS RNN 
models, we compared the recurrent connectivity patterns between 
these two models. Interestingly, mean excitatory and inhibitory syn-
aptic strength was significantly greater for the DMS RNNs (Fig. 4d). 
To identify which connections led to the long timescales observed in 
the DMS model, we randomly rewired all the connections belong-
ing to each of the four synaptic types (I → I, I → E, E → I, E → E) and 
computed the timescales again (Methods). Of the four conditions, 
only rewiring I → I synapses resulted in significantly shorter tim-
escales than the timescales from the intact DMS model (Fig. 4e), 
and the distribution of the timescales pooled from all 40 RNNs with 
I → I connections shuffled resembled the distribution obtained from 
the AFC model (Supplementary Fig. 5). In addition, the amount 
of cue-specific information maintained during the delay period  
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(as measured by the within-delay decoding time courses) was low-
est for the I → I rewired condition (Fig. 4f), suggesting that shuffling 
I → I synapses was detrimental to memory maintenance.

Inhibitory-to-inhibitory connections regulate both neuronal 
timescales and task performance. We next investigated if I → I  

synapses could be manipulated to provide more stable temporal 
receptive fields and to improve WM maintenance.

Recent studies revealed that optogenetically stimulating SST 
or VIP interneurons that specifically inhibit PV interneurons 
could improve memory retrieval10–12. Based on these experimental 
observations, we expected that strengthening I → I synapses would 
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increase neuronal timescales and task performance of the DMS 
RNNs. To test this hypothesis, we identified a group of RNNs with 
poor DMS task performance (26 RNNs; mean accuracy ± s.e.m., 
71.77 ± 1.43%). This group of RNNs allowed us to observe the 
effects of synaptic manipulations on memory maintenance more 
easily than in the group of RNNs used in the previous section, which 
performed the task with very high accuracy. Next, we modeled the 
effects of optogenetic manipulation of VIP, SST and PV neurons 
by either decreasing or increasing I → I synaptic strength (WI → I) 
in each network by 30% (Methods). Decreasing the connection 
strength led to significantly shorter timescales compared with 
the RNNs without any modification (Fig. 5a, left). Strengthening 
WI → I resulted in a moderate but significant increase in neuro-
nal timescale (Fig. 5a, left). The average within-delay decodability 
measure during the delay period (Methods) of the RNNs followed 
the same pattern: decreasing WI → I severely impaired WM main-
tenance, whereas increasing WI → I significantly improved task 
performance (Fig. 5a, right). For I → E connections, enhancing 
only WI → E resulted in significant changes in both timescale and 
within-delay decodability (Fig. 5b). Manipulating E → I synapses 
did not affect the within-delay discriminability, but decreasing 
WE → I significantly shortened the timescales (Fig. 5c). Altering the 

excitatory-to-excitatory connections did not produce any signifi-
cant changes (Fig. 5d). Consistent with these observations, RNNs 
with only I → I connections trainable were able to learn the task (26 
out of 40 rate RNNs trained successfully), while RNNs with plastic 
I → E, E → I, or E → E connections could not be trained to perform 
the DMS task (data not shown). Overall, these findings suggest 
that I → I synapses tightly mediate both temporal stability and WM 
maintenance. The findings also indicate that the main downstream 
effect of I → I connections is to disinhibit excitatory units.

Unique inhibitory-to-inhibitory circuitry for WM maintenance. 
Here, we dissect the DMS RNN model to elucidate how specific and 
strong I → I connections lead to stable memory retention.

Focusing on inhibitory units only, we first characterized the cue 
stimulus selectivity from each inhibitory unit in an example DMS 
network (Methods). Analyzing the selectivity index values revealed 
two distinct subgroups of inhibitory units in the network: one group 
of units favoring the positive cue stimulus and the other group 
selective for the negative stimulus (Fig. 6a, top). The input weights 
(Win) that project to these units closely followed the selectivity pat-
tern (Fig. 6a, bottom). Similar selectivity patterns were observed in 
the excitatory population (Supplementary Fig. 6).
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Given these two subgroups with distinct selectivity patterns, we 
next hypothesized that mutual inhibition between these two groups 
(across-group inhibition) was stronger than within-group inhibi-
tion. Indeed, inhibition between the oppositely tuned inhibitory 
populations was significantly greater (both in synaptic strength 
and number of connections) than inhibition within each subgroup 
across all RNNs (Fig. 6b). To confirm that the behavioral improve-
ment we observed with I → I enhancement in Fig. 5a was due 
largely to the strengthened across-group inhibition, we increased 
across-group and within-group I → I connections separately 
(Methods). The maintenance of the cue stimulus improved follow-
ing enhancement of the across-group inhibition, whereas increas-
ing the within-group inhibition impaired maintenance (Fig. 6c). In 
addition, across-group I → I enhancement resulted in a significant 
increase in neuronal timescale (Fig. 6d).

In summary, these findings imply that robust inhibition of 
oppositely tuned inhibitory subpopulations is critical for memory 
maintenance in our RNN model. For example, a positive cue stim-
ulus activates the inhibitory and excitatory subgroups selective 
for that stimulus and deactivates the negative stimulus subgroups  
(Fig. 6e). During the delay period, the inhibition strength 
between these two inhibitory subgroups dictates the stability of 
the cue-specific activity patterns generated during the stimulus 
window (Fig. 6f). The positive feedback provided by the similarly 
tuned excitatory neurons sustains the stimulus-specific activity of 
the inhibitory subgroups (Supplementary Fig. 7). The circuit dia-
gram shown in Fig. 6f is further validated by repeating the analyses 
performed in Fig. 5 to cue-selective inhibitory and excitatory sub-
groups (Supplementary Fig. 8).

Circuit mechanism for WM generates units with long neuronal 
timescales. The circuit mechanism (Fig. 6e,f) explains why enhanc-
ing I → I connections results in improved WM performance, but it 
is still not clear how this same mechanism also produces units with 
long timescales.

Here, we first demonstrate that a high trial-to-trial spike-count 
variability during the fixation period could give rise to slow decay of 
the spike-count autocorrelation function. If a neuron exhibits highly 
variable activity patterns across trials such that it is highly active 
(that is, persistent firing) in some trials and relatively silent in other 
trials, the Pearson correlation between any two time bins within the 
fixation window could be large (Fig. 7a). On the other hand, firing 
activities with a low trial-to-trial variability could result in a weak 
correlation between two time bins. To directly test this positive 
relationship between trial-to-trial variability and neuronal times-
cales, we computed spike-count Fano factors (spike-count variance 
divided by spike-count mean across trials; Methods) for the short 
and long τ subgroups in both neural and model data. The Fano 
factor values for the short-timescale subgroup were significantly 
smaller than the values obtained from the long τ group for both data 
(Fig. 7b). There was also a significant positive correlation between 
the spike-count Fano factors and neuronal timescales across all the 
units in both data (Spearman rank correlation, r = 0.25, P < 0.0001 
for dlPFC; r = 0.28, P < 0.0001 for RNN; Supplementary Fig. 9).

Manipulating each of the four synaptic types (decreasing or 
increasing synaptic strength by 30%) in our DMS RNN model 
revealed that I → I connections strongly modulated the spike-count 
Fano factors (Fig. 7c). Enhancing I → I synaptic strength led to units 
with more variable spiking patterns across trials, whereas reducing 
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the strength resulted in smaller Fano factors (see example shown in 
Supplementary Fig. 10).

In our RNN model, strong I → I synapses give rise to both excit-
atory and inhibitory units behaving in a highly variable manner 
during the fixation period (Fig. 7d). For instance, an inhibitory unit 
selective for the positive stimulus could be partially activated in 
some trials by chance (that is, via random noise during the fixation 
period), and this, in turn, could silence a portion of the negative 
stimulus inhibitory population (light blue circle in Fig. 7d). This 
leads to variable firing activities across trials in inhibitory units. 
Furthermore, the dynamic activity of the inhibitory population 
could be transferred to the excitatory population via disinhibition. 
Therefore, I → I connections play a central role in conferring the 
network with highly dynamic baseline firing patterns, which then 
translate to high τ values.

Strong I → I is an intrinsic property of prefrontal cortex. Cognitive 
flexibility is one of the hallmarks of the prefrontal cortex24,25. If 
higher-order areas are indeed wired with specific and robust I → I 
synapses that give rise to stable temporal receptive fields, then what 
would happen to these connections during learning? Would learn-
ing a new task disrupt the existing I → I connectivity structure, 
thereby abolishing the previously established timescale distribu-
tion? To answer these questions, we analyzed neuronal timescales 
from the same monkeys before they learned the DMS task. For 
the pretraining condition, the monkeys were trained on a passive 
task (Fig. 8a): they were trained to maintain their gaze at a central  

fixation point throughout the trial regardless of the stimuli pre-
sented around the fixation point26.

Surprisingly, the timescales from the spike-train data from the 
dlPFC of the same four monkeys that learned the passive task were 
similar to the timescales obtained after the monkeys learned the 
DMS task (Fig. 8b). In addition, the cue-specific information main-
tenance during the delay period by long τ units was largely abol-
ished, and the within-delay decoding was similar between long τ 
and short τ neurons (Fig. 8c). These findings suggest that the pri-
mate dlPFC was already equipped with stable temporal receptive 
fields and that learning the DMS task resulted in long τ neurons 
carrying more information during the delay period while preserv-
ing the network temporal dynamic architecture.

Based on these findings, we reasoned that prefrontal cortical 
areas and other higher cognitive areas are endowed with strong I → I 
connections, the connectivity patterns of which do not undergo sig-
nificant plastic changes during learning. Instead, learning-related 
changes occur to the connections stemming from upstream net-
works that project to these areas. To test this, we asked if we could 
optimize only the upstream connections (that is, input weights; Win) 
of the good performance DMS RNNs (n = 40) to perform a passive 
version of the DMS task (Supplementary Fig. 11; Methods). By freez-
ing the recurrent connections (W), we ensured that the previously 
observed distribution of the timescales (Fig. 2b) was preserved. The 
readout weights (Wout) were frozen to ensure that they were not 
simply set to 0 to do the passive task. Repeating the cross-temporal 
discriminability analysis on the retrained RNNs showed that the cue 
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stimulus information during the delay period was not maintained 
as robustly by long τ units (Supplementary Fig. 11). Retuning the 
recurrent connections instead of the input weights for the passive 
task disrupted the existing timescale structure and resulted in sig-
nificantly faster timescales (Supplementary Fig. 12).

The above results from the experimental data and our model 
suggest strongly that higher cortical areas might have intrinsically 
diverse and robust inhibitory signaling. This innate property, in 
turn, would give rise to long neuronal timescales, and the incom-
ing connections to these areas could undergo plastic changes to 
support various higher cognitive functions that require integration 
of information on a slower timescale. Along this line of thought, 
we wanted to probe if the AFC RNNs, which do not have strong 
inhibitory-to-inhibitory signaling, are flexible enough to perform 
other tasks. Previous modeling studies have demonstrated the 
importance of disinhibitory circuitry for gating incoming stimuli 
and decision-making27,28. We first investigated if disinhibitory cir-
cuitry without strong I → I synapses was sufficient for flexible 
decision-making by retraining the AFC RNNs (with the recur-
rent architecture, W, frozen) to perform a task that requires flex-
ible input gating. The new task is modeled after the design used by 
the previous studies18,29 and required selective gating of incoming 
stimuli (Fig. 8d; Methods). Both AFC (39 out of 40 RNNs) and DMS 
models (40 out of 40 RNNs) were successfully retrained to perform 
the new task (Fig. 8e). Next, we retrained both models to perform 
a different WM task, DNMS task (Methods). As shown in Fig. 8f, 
none of the AFC RNNs could be trained to perform the DNMS task. 
When we repeated the retraining procedure with the I → I recur-
rent connections strengthened (Methods) and the performance of 

the AFC RNNs improved significantly (Fig. 8f right). On the other 
hand, the input weights of the DMS RNNs could be tuned to per-
form the DNMS task (Fig. 8g). Taken together, these results suggest 
that strong I → I connections might not be necessary for selective 
attention and integrating incoming stimuli, but these connections 
become important for carrying out WM computations.

Discussion
In this study, we provide a computational model that gives rise to 
task-specific spontaneous temporal dynamics, reminiscent of the 
hierarchy of neuronal timescales observed across primate cortical 
areas1. When trained on a WM task, our RNN model was composed 
of units with long timescales, the distribution of which was surpris-
ingly similar to that obtained from the primate dlPFC. In addition, 
the long-timescale units encoded and maintained WM-related 
information more robustly than the short-timescale units during the 
delay period. By analyzing the connectivity structure of the model, 
we showed that a unique circuit motif that incorporates strong I → I 
synapses is an integral component of WM computations and slow 
baseline temporal properties. Interestingly, I → I synaptic weights 
could be manipulated to control both memory maintenance and 
neuronal timescales tightly. Our work also provides mechanistic 
insight into how I → I connectivity supports the memory storage 
and dynamic baseline activity patterns crucial for long neuronal 
timescales. Lastly, we propose that the microcircuitry we identified 
is intrinsic to higher-order cortical areas, enabling them to perform 
cognitive tasks that require steady integration of information.

Relating specific baseline spiking activities to the underlying 
circuit mechanisms has been challenging, due partly to the lack 
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of computational models capable of both performing cognitive 
tasks and capturing temporal dynamics derived from experiments. 
Bouchacourt et al.30 employed Poisson spiking neurons wired ran-
domly to present a flexible WM model, whereas Mongillo et al.17 
used LIF RNNs constrained by experimental measurements to 
underscore the importance of inhibitory connectivity in WM. 
These studies provide biologically plausible models that can explain 
several experimental and behavioral aspects of WM, but it is unclear 
whether units with stable baseline temporal dynamics are recruited 
for performing WM maintenance in these models. It is also pos-
sible to study neuronal timescales using continuous rate (that is 
nonspiking) RNNs, which have been used widely to uncover neural 
mechanisms behind cognitive processes29,31–34. Although sponta-
neous firing rate estimates could be used in place of spike counts 
to compute the autocorrelation decay time constants, our spiking 
RNN model allowed us to (1) use the same experimental procedures 
previously used to estimate neuronal timescales, (2) easily interpret 
and compare our model results with experimental findings, and (3) 
uncover spiking statistics (spike-count Fano factors) associated with 
long neuronal timescales.

Our work revealed that strong I → I connections are critical for 
long neuronal timescales, and we investigated the functional impli-
cation of such connections in WM-related behavior. Despite the 

fact that excitatory pyramidal cells make up the majority of neurons 
in cortical areas, inhibitory interneurons have been shown to exert 
greater influence at the local network level35,36. Furthermore, differ-
ent subtypes of interneurons play functionally distinct roles in cor-
tical computations9,14. In agreement with these observations, recent 
studies uncovered the importance of disinhibitory gating imposed 
by VIP interneurons10,13,37,38. Surprisingly, optogenetically activat-
ing VIP neurons in the PFC of mice trained to perform a WM task 
significantly enhanced their task performance, highlighting that 
disinhibitory signaling is vital for memory formation and recall10. 
Similar to VIP neurons, SST interneurons have also been shown to 
disinhibit excitatory cells for fear memory12,13. Intriguingly, the con-
nectivity structures of the RNNs we trained on a WM task using 
supervised learning also centered around disinhibitory circuitry 
with strong I → I synapses (Fig. 6). The strength of the I → I con-
nections was coupled tightly to the task performance of the RNNs. 
Thus, our work suggests that microcircuitry with robust I → I syn-
apses could be a common substrate in higher-order cortical areas 
that require short-term memory maintenance.

Most notably, our results shed light on exactly how robust I → I 
connections maintain stable memory storage and long neuronal 
timescales. By dissecting our WM RNN model, we found that 
strong mutual inhibition between two oppositely tuned inhibitory 
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subgroups was necessary for maintaining stimulus-specific infor-
mation during the delay period (Fig. 6). This emerging circuit mech-
anism of mutual inhibition is similar to previous decision-making 
models where feedback inhibition was utilized to produce 
winner-take-all competition39. In the current study, we demon-
strated that a winner-take-all motif without strong I → I synapses is 
sufficient for selective gating of information and decision-making 
(Fig. 8e) and that strong mutual inhibition can confer the disinhibi-
tory circuit with WM capability (Fig. 8f,g). We also illustrated that 
our model units, which were strongly modulated by I → I synapses, 
displayed highly dynamic baseline activities, leading to both large 
trial-to-trial Fano factors and long neuronal timescales (Fig. 7). 
Our findings suggest that baseline trial-to-trial spike-count vari-
ability and neuronal timescales are reliable indicators of the under-
lying circuit mechanisms: neurons with asynchronously occurring 
synchronous firing patterns (that is, high variability) could make 

up WM-related microcircuits. Furthermore, we propose that these 
signatures are area-specific and do not undergo significant changes 
during learning.

One of the testable hypotheses that our modeling work provides 
is that strength of I → I connections defines the cortical hierarchy: 
higher cortical areas contain stronger and more diverse inhibitory 
signaling than lower cortical regions. This hypothesis is supported 
strongly by a large-scale experimental study quantifying the density 
of SST and PV interneurons across cortical and subcortical regions 
in mice40. The study found the density of SST interneurons to closely 
parallel the hierarchical organization of the cortex: PV interneurons 
were predominant in sensory-motor areas, while SST interneurons 
were prevalent in association areas. On a smaller scale, Medalla et al. 
discovered that inhibitory signaling strength and diversity were 
higher in the anterior cingulate cortex than the prefrontal cortex16,41. 
This observation is consistent with the neuronal timescale hierarchy  
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that Murray et al. have reported previously1. Thus, our findings 
and the proposed hypothesis that I → I connections become stron-
ger and more prevalent along the cortical hierarchy are supported 
strongly by previous experimental observations.

Although our model can capture several experimental findings, 
a few interesting questions remain for future studies. For example, 
our spiking RNN model utilizes connectivity patterns derived from a 
gradient-descent approach, which is not biologically plausible. It will 
be important to characterize whether more biologically valid learning  

mechanisms, such as reinforcement learning or Hebbian learning, 
also generate spiking networks with heterogeneous neuronal tim-
escales. In addition, our training method did not allow for robust 
training of RNNs on a DMS task with a long delay window. This was 
circumvented by training RNNs on a DMS task with a short delay 
period and identifying the networks that could perform the 750-ms 
delay DMS task (Methods). It will be important in the future to study 
if our method can be modified to be more generalizable. Another 
unexplored aspect is the working memory capacity of our model. 
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Although the WM task design employed here involves only one WM 
item, that is, the identity of the cue stimulus (−1 or +1), our proposed 
circuit mechanism can be extended to store more than one item at a 
time (Supplementary Fig. 13). Lastly, we have not investigated how 
our proposed model could be modified to maintain nonbinary stim-
uli. One possible method would be to connect multiple disinhibitory 
motifs with overlapping but distinct receptive fields (Supplementary 
Fig. 14), similar to the bump attractor model proposed previously42. 
Future work will investigate if such a mechanism is also employed in 
the cortex to sustain nonbinary items in WM. In summary, we have 
explored a neural circuit mechanism that performs logical computa-
tions over time with stable temporal receptive fields.
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Methods
Continuous rate RNN model. The spiking RNNs used in the main text were 
generated by fi st training their counterpart continuous-variable rate RNNs using 
a gradient-descent algorithm. After training, the continuous RNNs were converted 
to LIF RNNs using the method that we developed previously18. The continuous 
RNN model contained N = 200 recurrently connected units that were governed by

τd  dx
dt

¼ �x þWraterrate þ Iext ð1Þ

rrate ¼ 1
1þ expð�xÞ

where 20 ms ≤ τd ≤ 125 ms corresponds to the synaptic decay time constants for 
the N units in the network, x ∈ R1 × N is the synaptic current variable, and rrate ∈ R1 × N 
refers to the firing rate estimates of the units. A standard logistic sigmoid function 
was used to estimate a firing rate of a neuron from its synaptic current (x). The 
synaptic connectivity matrix (Wrate ∈ RN × N) is initialized as a random, sparse matrix 
drawn from a normal distribution with zero mean and s.d. of 1:5=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N ´Pc

p
I

, where 
Pc = 0.20 is the initial connectivity probability.

For the synaptic decay time constants (τd) for all the units in a network, we first 
initialized the constants with random values ranging between 20 ms and 125 ms:

τd ¼ σ N 0; 1ð Þð Þτstep þ τdmin

where σ(⋅) is the sigmoid function, τdmin
I

 is the minimum time constant (that 
is, 20 ms), and τstep was used to set the maximum constant value (that is, 
τdmax ¼ τstep þ τdmin ¼ 125ms
I

). Backpropagation was then used to optimize the time 
constants along with the recurrent connections and the readout weights.

The external currents (Iext) include task-specific input stimulus signals 
(Training details) along with a Gaussian white-noise variable:

Iext ¼ WinuþN 0; 0:01ð Þ

where the time-varying, task-specific stimulus signals u 2 RNin ´ 1
� �

I
 are given to 

the network via Win ∈ RN×N
in, a Gaussian random matrix with zero mean and unit 

variance. Nin corresponds to the number of input signals associated with a specific 
task, and N 0; 0:01ð Þ 2 RN ´ 1

I
 represents a Gaussian random noise with zero mean 

and variance of 0.01.
A linear readout of the population activity was used to define the output of the 

rate network:

orate tð Þ ¼ Wrate
out r

rate tð Þ

where Wrate
out 2 R1´N

I
 refers to the readout weights.

Equation (1) is discretized using the first-order Euler approximation method:

xt ¼ 1� Δt
τd

� �
 xt�1 þ

Δt
τd

 Wraterratet�1 þWinut�1
� �

þN 0; 0:01ð Þ

where Δt = 5 ms is the discretization time step size used throughout this study.

Training details. Adam (adaptive moment estimation), a stochastic 
gradient-descent algorithm, was used to update the synaptic decay variable (τd), 
recurrent connections (Wrate) and readout weights Wrate

out

� �

I
. The learning rate was 

set to 0.01, and the TensorFlow default values were used for the first and second 
moment decay rates. In addition, Dale’s principle (that is, separate excitatory and 
inhibitory populations) was imposed using the method previously proposed31. 
For retraining previously trained RNNs (Fig. 8), only the input weights (Win) were 
trainable, and the recurrent weights and the readout weights were fixed to their 
trained values.

Two LIF RNN models were employed in this study by training rate RNNs on 
two different tasks: DMS and AFC tasks.

DMS RNNs. For the DMS RNN model, the input matrix (u ∈ R2 × 500) contained two 
input channels for two sequential stimuli (over 500 time steps with 5 ms step size). 
The task began with a 1-s (200 time steps) fixation period during which the input 
matrix was set to 0. During the fixation, stimulus and delay windows, the RNN 
was required to maintain its output close to 0. The first channel delivered the first 
stimulus (250 ms in duration) after 1 s (200 time steps) of fixation, while the second 
channel modeled the second stimulus (250 ms in duration), which began 50 ms 
after the offset of the first stimulus. The short delay (50 ms) allowed rate RNNs to 
learn the task efficiently, and the delay duration was increased after training (see 
below). During each stimulus window, the corresponding input channel was set to 
either −1 or +1. If the two sequential stimuli had the same sign (−1/−1 or +1/+1), 
the network was trained to produce an output signal approaching +1 after the 
offset of the second stimulus. If the stimuli had opposite signs (−1/+1 or +1/−1), 
then the network produced an output signal approaching −1. The training was 
stopped when the loss function fell below 7 and the task performance was greater 
than 95%. After the rate RNNs were trained successfully and converted to LIF 

networks, a subgroup of LIF RNNs that performed the actual DMS paradigm used 
in the main text (that is, delay duration set to 750 ms) with accuracy greater than 
95% were identified and analyzed. We trained 142 rate RNNs, and a subset of the 
trained RNNs (41 out of 142 RNNs) were converted successfully to spiking RNNs 
that could perform the 750-ms delay DMS task. For Figs. 5–7, a group of LIF RNNs 
that performed the DMS task with accuracy between 60% and 80% was used.

AFC RNNs. The input matrix (u ∈ R1 × 350) for the AFC paradigm was set to 0 for 
the first 200 time steps (that is, 1 s fixation). A short stimulus (125 ms in duration) 
of either −1 or +1 was given after the fixation period. After the stimulus offset, 
the network was trained to produce an output signal approaching −1 for the ‘−1’ 
stimulus and +1 for the ‘+1’ stimulus. The training termination criteria were the 
same as those used for the DMS model above.

Spiking RNN model. For our spiking RNN model, we considered a network of LIF 
units recurrently connected to one another. These units are governed by:

τm
dvi tð Þ
dt

¼ �vi tð Þ þ xi tð Þ þ Iext tð Þð ÞR ð2Þ

where τm is the membrane time constant (10 ms), vi(t) is the membrane voltage of 
unit i at time t, xi(t) is the synaptic input current that unit i receives at time t, Iext is 
the external input current and R is the leak resistance (set to 1). The synaptic input 
current (x) is modeled using a double-exponential synaptic filter applied to the 
presynaptic spike trains:

xi ¼
PN
j¼1

Wspk
ij rspkj

drspki
dt ¼ � rspki

τdi
þ si

dsi
dt ¼ � si

τr
þ 1

τrτdi

P
tki < t

δ t � tki
� 

where Wspk
ij

I
 is the recurrent connection strength from unit j to unit i, τr = 2 ms is the 

synaptic rise time and τdi
I

 refers to the synaptic decay time for unit i. The synaptic 
decay time constant values and the recurrent connectivity matrix were transferred 
from the trained rate RNNs (more details described in Kim et al.18). The spike train 
produced by unit i is represented as a sum of Dirac δ functions, and tki  refers to the 
kth spike emitted by unit i.

The external current input (Iext) contained task-specific input values along with 
a constant background current set near the action potential threshold. The output 
of our spiking model at time t is given by

ospk tð Þ ¼ Wspk
out r

spk tð Þ

where the readout weights Wspk
out

� �

I

 are also transferred from the trained rate RNN 
model.

Other LIF model parameters included the action potential threshold (−40 mV), 
the reset potential (−65 mV), the absolute refractory period (2 ms), and the 
constant bias current (−40 pA). Equation (2) was discretized using a first-order 
Euler method with Δt = 0.05 ms.

Electrophysiological recordings. Extracellular recordings, previously published 
and described in detail19–21, were analyzed to validate our RNN model. The dataset 
contained spike-train recordings from four rhesus macaque monkeys before 
and after they learned two DMS tasks. Briefly, for the pretraining condition, the 
monkeys were rewarded for maintaining fixation on the center of the screen 
regardless of the visual stimuli shown throughout the trial (Fig. 8a). For the 
post-training condition, the monkeys were trained on two DMS tasks: spatial 
and feature DMS tasks. For the spatial task (Fig. 1b), the monkeys were trained to 
report if two sequential stimuli matched in their spatial locations. For the feature 
task, they had to distinguish if two sequential stimuli matched in their shapes. The 
dataset included spike times from single neurons in the dorsal and ventral PFC, but 
only the units from the dorsal PFC were analyzed for this study.

Estimation of neuronal timescales. To estimate neuronal timescales, we computed 
the decay time constant of the spike-count autocorrelation function for each unit 
during the fixation period1. For each unit, we first binned its spike trains during 
the fixation period over multiple trials using a nonoverlapping 50-ms moving 
window. Since the fixation duration was 1 s for the experimental data and our 
model, this resulted in a [Number of Trials × 20] spike-count matrix for each unit. 
For the experimental data, the minimum number of trials required for a neuron to 
be considered for analysis was 11 trials. The average number of trials from all the 
neurons from the post-training condition was 86.8 ± 35.1 (mean ± s.d.) trials. For 
the pretraining condition, the average number of trials was 95.4 ± 344.4. For the 
RNN model, we generated 50 trials for each unit.

Next, Pearson’s correlation coefficient (ρ) was computed between two time 
bins (that is, two columns in the spike-count matrix) separated by a lag (Δ). The 
coefficient was calculated for all possible pairs with a maximum lag of 600 ms. The 
coefficients were averaged for each lag value, and an exponential decay function 
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was fitted across the average coefficient values �ρð Þ
I

 using the Levenberg-Marquardt 
nonlinear least-squares method:

�ρ Δð Þ ¼ A exp �Δ

τ

� �
þ B

� �
ð3Þ

where A and B are the amplitude and the offset of the fit, respectively. The timescale 
(τ) defines how fast the autocorrelation decays and was used to estimate each 
neuron’s timescale.

The following inclusion criteria (commonly used in previous experimental 
studies) were applied to the RNN model and the experimental data: (1) minimum 
average firing rate of 1 Hz during the fixation period for the experimental data 
and 2.5 Hz for the RNN model, (2) 0 < τ ≤ 500 ms, (3) A > 0 and (4) a first decrease 
in ρ earlier than Δ = 150 ms. In addition, the fitting was started after the first 
decrease in autocorrelation. For the experimental dataset, 325 dlPFC units from 
the post-training condition and 434 units from the pretraining condition satisfied 
the above criteria. For the DMS RNN model, 931 units from 40 good performance 
RNNs and 604 units from 26 poor performance RNNs met the criteria. For the 
AFC model, 1138 units from 40 RNNs satisfied the criteria.

Cross-temporal decoding analysis. The amount of information encoded by 
each unit was estimated using cross-temporal decoding analysis8,22,23. For both 
experimental and model data, a Gaussian kernel (s.d. = 50 ms) was first applied to 
the spike trains to obtain the firing rate estimates over time. For each cue stimulus 
identity, each neuron’s firing rate time courses were divided into two splits (even 
vs. odd trials) and averaged across trials within each split. There were nine cue 
conditions (that is, nine spatial locations) for the spatial DMS task and eight cue 
conditions (that is, eight shapes) for the feature DMS task. Within each task, all 
possible pairwise differences in mean firing rates between any two cue conditions 
for each neuron in each split were computed. Next, Pearson’s correlation coefficient 
was determined for each pairwise difference condition between the two splits (at 
each time point across neurons). The correlation coefficients from both tasks (36 
pairwise difference conditions for the spatial task and 28 conditions for the feature 
task) at each time point were averaged after applying the Fisher’s z-transformation, 
resulting in a single measure we refer to as a discriminability or decodability score. 
The within-delay discriminability scores were computed from the correlation 
coefficients at t1 = t2 where t1 and t2 refer to the time points used for the two splits. 
To estimate the stability of the cue stimulus maintenance during the delay window, 
we averaged the within-delay discriminability scores across the delay period for 
each RNN. Cross-temporal decoding matrices and within-delay decoding time 
courses for the dlPFC data (Figs. 3 and 8) were smoothed for better visualization, 
but all statistical tests were performed on unsmoothed data.

Connectivity rewiring method. For Fig. 4e, we characterized which connection 
type contributed the most to the long neuronal timescales observed in the DMS 
RNN model by randomly shuffling connections belonging to each type (I → I, 
I → E, E → I, or E → E) while preserving the original distribution of the connection 
types. For the I → I type, all the outward connections from each inhibitory unit to 
other inhibitory units were first identified. These connections were then rewired 
randomly in a manner that preserved their connection identity (that is, I → I). 
This procedure was repeated for the other three synaptic types. For Fig. 5, all the 
synaptic weights corresponding to each connection type were either decreased or 
increased by 30% without rewiring.

To quantify the amount of cue-specific information maintained during the 
delay period in each of the four shuffling conditions (Fig. 4f), we performed the 
within-delay decoding analysis (see above) for all the units in each RNN per 
shuffling condition. This resulted in 40 within-delay decoding time courses (one 
for each RNN) for each rewiring condition.

Cue stimulus selectivity. To identify inhibitory units selective for each of the two 
cue stimuli (−1 or +1), we computed a cue preference index (θ) for each unit using:

θi ¼
ri;þ1 � ri;�1

ri;þ1 þ ri;�1

where ri,+1 refers to the average firing rate of unit i across positive cue stimulus 
trials (50 trials) during the cue stimulus window, while ri,−1 indicates the average 
activity across negative cue stimulus trials (50 trials). Thus, θi > 0 indicates that 
unit i prefers the positive cue stimulus over the negative stimulus. Based on this 
selectivity measure, two subgroups of inhibitory units (one for θ > 0 and the other 
for θ < 0) were identified for each DMS RNN.

Spike-count Fano factors. The relationship between spike-count variability and 
neuronal timescales was investigated by computing trial-to-trial spike-count Fano 
factors during the fixation period (Fig. 7). For each unit included in the timescale 
analysis, the variance of the total number of spikes within the 1-s fixation window 
across trials was first computed. The Fano factor was then calculated by dividing 
the variance by the mean spike count. The trials used for computing the Fano 
factors were identical to those used for estimating the neuronal timescales for both 
neural and RNN data.

Reconfiguring pretrained RNNs. In Fig. 8e–g, the continuous-variable rate 
RNNs trained to perform the AFC and DMS tasks were used. For Fig. 8e, the 
input weights (Win) of the AFC and DMS RNNs were retrained via the same 
gradient-descent algorithm to perform the CTX task (see below). For Fig. 8f, the 
input weights (Win) of the AFC RNNs were retrained to perform the DNMS task 
(see below). The I → I connections were either unaltered (yellow in Fig. 8f) or 
increased by 200% (orange in Fig. 8f). In Fig. 8g, only the input weights for the 
DMS RNNs were reconfigured to perform the DNMS task. The maximum number 
of training trials was set to 6,000 trials for computational efficiency.

Context-dependent input integration (CTX) task. The implementation of the 
context-dependent input integration (CTX) task was identical to the one previously 
studied18. Briefly, the input stimuli contained four streams of signals where the first 
two channels corresponded to noisy input signals from modality 1 and modality 2, 
respectively. The last two channels (context signals in Fig. 8d) were used to instruct 
the network which modality to pay attention to. For example, the third channel was 
turned on (that is, set to 1 throughout the trial) and the fourth channel was set to 
0 to instruct the network to integrate the modality 1 input signal. Each modality 
input signal was modeled as white-noise signal (sampled form the standard normal 
distribution) with constant offset bias terms. More details on the implementation 
of the task paradigm are described in Kim and Sejnowski18.

Delayed-non-match-to-sample (DNMS) task. The DNMS task paradigm was similar 
to the DMS task paradigm. The network was trained to produce an output signal 
approaching +1 if the two sequential input stimuli had opposite signs. If the two 
input stimuli had the same sign, the network was trained to produce an output 
signal approaching −1.

Statistical analysis. No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in previous publications19,20,34. 
All the RNNs trained in the study were randomly initialized (with random seeds) 
before training. Our RNNs were retrained three times and the main findings 
presented in this study were replicated each time. Blinding was not performed for 
the RNN model analysis since the data were simulated by the authors. Data points 
that did not meet the inclusion criteria described above (Estimation of neuronal 
timescales) were excluded.

Throughout this study, we employed nonparametric statistical methods. 
For all the figures utilizing boxplots, we used two-sided Wilcoxon rank-sum or 
signed-rank method to determine statistically significant difference between 
two groups. For comparing more than two groups, we used either Friedman 
(Fig. 4e) or Kruskal–Wallis test (Fig. 7c) with Dunn’s post hoc test to correct for 
multiple comparisons. In addition, we employed a nonparametric cluster-based 
permutation test to account for multiple comparisons and to determine significant 
discriminability (Fig. 3a) and differences in discriminability between short and 
long τ subgroups (Figs. 3 and 8) (ref. 43). To identify significant clusters in the 
cross-temporal matrices (Figs. 3a and 8c), cue stimulus condition labels were 
randomly shuffled 1,000 times within each split to construct the null distribution. 
A point was considered significant if its value exceeded the 95th percentile of the 
null distribution, and the largest cluster size (that is, number of contiguous points 
that were significant) from the data was compared against the null distribution of 
the largest cluster size values to correct for multiple comparisons. To determine if 
within-delay decoding time courses were significantly different between long and 
short τ groups (Figs. 3b and 8c), τ group labels were shuffled randomly 1,000 times 
within each split and each task. Again, a time point was considered significant if 
it was greater than the 95th percentile of the null distribution. Similar multiple 
comparison correction, as described above, was applied. More information can be 
found in the Nature Research Reporting Summary.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
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experimental data used in the study can be obtained from Constantinidis et al.21.
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