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Spontaneous travelling cortical waves gate 
perception in behaving primates

Zachary W. Davis1,7 ✉, Lyle Muller1,2,3,4,7, Julio Martinez-Trujillo3,5,6, Terrence Sejnowski1 &  
John H. Reynolds1 ✉

Perceptual sensitivity varies from moment to moment. One potential source of this 
variability is spontaneous 	uctuations in cortical activity that can travel as waves1. 
Spontaneous travelling waves have been reported during anaesthesia2–7, but it is not 
known whether they have a role during waking perception. Here, using newly 
developed analytic techniques to characterize the moment-to-moment dynamics of 
noisy multielectrode data, we identify spontaneous waves of activity in the 
extrastriate visual cortex of awake, behaving marmosets (Callithrix jacchus). In 
monkeys trained to detect faint visual targets, the timing and position of spontaneous 
travelling waves before target onset predicted the magnitude of target-evoked 
activity and the likelihood of target detection. By contrast, spatially disorganized 
	uctuations of neural activity were much less predictive. These results reveal an 
important role for spontaneous travelling waves in sensory processing through 
the modulation of neural and perceptual sensitivity.

Our perceptual experience can be highly variable. A faint stimulus 
presented at perceptual threshold may be detected in one instance 
but go undetected at another time. Cortical neurons emit variable 
spike patterns in response to repeated presentations of an identical 
stimulus8,9. This variability is partly a result of ongoing spontaneous 
fluctuations in the local network state that regularly show periods of 
high or low excitability10–12 and are reflected in the local field potential 
(LFP)13,14. Spontaneous fluctuations have been observed to propagate in 
a wave-like fashion in visual2,4,5,7, auditory6 and somatosensory3 cortex 
under anaesthesia, but only in slow-wave fluctuations associated with 
sleep or low arousal. Therefore, it remains unresolved whether waking 
spontaneous fluctuations travel as waves and, if they do, whether they 
contribute meaningfully to waking cortical function15. In this study 
we report that moment-by-moment fluctuations of neural activity 
recorded in behaving, non-human primates propagate as waves across 
the extrastriate middle temporal (MT) visual area and strongly influence 
spontaneous spike rates. Critically, these waves are generated endog-
enously, without requiring an external event to trigger them. They are 
thus an internally generated brain state, distinct from sensory- and 
behaviour-evoked waves5,16–19. Furthermore, we find that spontaneous 
waves strongly regulate visual perception. In particular, in the excitable 
phase of a travelling wave, both target-evoked neuronal responses and 
perceptual sensitivity are elevated in monkeys performing a challeng-
ing visual detection task.

We chronically implanted multi-electrode arrays (Utah Arrays, 
Blackrock Microsystems) into the motion-selective visual area MT 
of two marmosets. The structure and small size of the lissencephalic 
cortex enabled us to record simultaneously from the majority of 
the cortical area (Fig. 1a, b). We measured receptive fields of well 
isolated neurons and multi-unit activity in these monkeys as they 

maintained fixation (Extended Data Fig. 1). We also examined LFPs, 
which are driven by synaptic currents in the vicinity of the electrode 
and reflect the activity within the local network10,13,14. From the per-
spective of a single electrode, the raw LFP spontaneously fluctuated 
with broad spectral energy20. However, these fluctuations were not 
synchronous across the cortical area. Rather, the peak of a fluctua-
tion often moved coherently with the spatiotemporal profile of a 
travelling wave (Fig. 1b, Supplementary Video 1). Peaks and troughs 
in the LFP have been found to correspond to epochs of relatively 
low and high excitability in the local network14. We hypothesized 
that, when organized as waves, these excitability states might gate 
the flow of spiking activity through cortical circuits, depending on 
their alignment (Fig. 1c).

Reliably detecting spontaneous waves in noisy multichannel data is 
challenging. Many wave-detection techniques rely on spike-triggered 
averaging5, spatial smoothing4 or narrowband temporal filtering16,19,21, 
which can distort phase estimations of the underlying veridical fluctua-
tion, giving false positives or unreliable measures of wave dynamics. 
Furthermore, unlike during anaesthesia, waking cortical dynamics are 
more complex, dominated by higher frequency, lower amplitude fluc-
tuations that are more variable across the cortex22,23. To address this, we 
adapted a recently introduced statistical method for detecting travel-
ling waves in noisy multichannel data24 that is better suited to studying 
the dynamics of awake cortex (Extended Data Fig. 2). This method uses 
LFP phase to detect coherent flows of activity. However, whereas phase 
is conventionally analysed only for narrowband oscillations, such as 
the theta (4–8 Hz) and alpha (8–13 Hz) frequency bands25–27, the net-
work fluctuations we observed were not stable, sustained narrowband 
oscillations20 (Fig. 2b). Rather, they were broad in frequency content, 
which shifted from moment to moment.
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To track these fluctuating patterns, we developed a technique 
for computing the generalized phase (GP) of the wideband filtered 
(5–40 Hz) LFP (Fig. 2a). The wide frequency band captured the domi-
nant fluctuating components of the LFP while excluding (1) the lowest 
frequencies that are thought to reflect slow global changes such as 
arousal23,28 and (2) higher frequencies to avoid contamination of the 
LFP by spike artefacts29. Consistent with the identification of wave 
peaks and troughs as reflecting less- and more-excitable states, spon-
taneous spiking was strongly dependent on GP, with spike probability 
at the more-excitable state (±π rad) approximately twice that of the 
less-excitable state (0 rad; monkey W, n > 1.5 × 105 spikes across 20 
recording sessions; P < 1 × 10−5, Rayleigh test for circular uniformity; 
Fig. 2c). The wide-band filter captured the waveform of the LFP better 
than alpha and theta narrowband filters (681 ms example LFP trace; 
Pearson’s correlation: wideband r = 0.91, significantly different from 
alpha r = 0.38 and theta r = 0.23, α = 1 × 10−5 confidence interval (CI) test; 
Extended Data Fig. 3a) and spontaneous spiking activity was more cou-
pled to GP than the phase of theta or alpha (Extended Data Fig. 3b, c).  
The strong spike–GP coupling was spatially specific13,30, as phases from 
adjacent electrodes were significantly less coupled to spike timing 
(monkey W, P < 1 × 10−4; monkey T, n = 18 sessions, P < 1 × 10−3; two-sided 
Wilcoxon signed-rank test; Extended Data Fig. 4).

Use of a wideband filter avoids phase distortions that could arti-
ficially produce waves or distort estimates of wave properties. Our 
wave-detection algorithm was applied to spatially unsmoothed data, 
thus preserving as much of the veridical relationship between phase and 
spatial position as possible. The strength of wave-like spatiotemporal 
organization across electrodes was quantified by the circular–linear 

correlation (ρΦ,d) of GP (Φ) with distance (d) from putative sources 
on the recording array (Fig. 2d). ρΦ,d spans from 0 (perfectly uncor-
related random noise) to 1 (perfect radial wave organization). During 
spontaneous fluctuations on the Utah array, the distribution of this 
measure spans up to 0.8, whereas for a matched number of trials of 
filtered Gaussian random noise, the 99th percentile is approximately 
0.3 (Fig. 2e). We then took this value as a threshold for wave-like states.

We found that spontaneous waves occurred frequently (monkey 
W, 11.98 ± 4.38 s−1; monkey T, 9.18 ± 4.18 s−1 (mean ± s.d.)). Spontane-
ous waves travelled at speeds consistent with the conduction velocity 
of spikes travelling along unmyelinated horizontal projection axons 
(0.1–0.6 m s−1; Extended Data Fig. 2d), suggesting that waves propagate 
via the horizontal fibres that populate the superficial and deep layers 
of cortex31–33. The average power spectrum for detected wave epochs 
exhibited reduced low-frequency power (<12 Hz; monkey W, n = 215 
fixation epochs with waves and 524 epochs without waves, P < 1 × 10−4; 
monkey T, n = 113 epochs with wave and 938 epochs without waves, 
P < 1 × 10−5, two-sided Wilcoxon rank-sum test; Extended Data Fig. 2c) 
and consistent power distributed over a broad range from 10 to 30 Hz, 
suggesting that spontaneous waves reflect a distinct cortical state. It 
was not the case that larger fluctuations were more likely to be waves, 
as there was no difference in the amplitude distribution between wave 
and non-wave fluctuations (monkey W, n = 798 wave and 216 non-wave 
fluctuations, P = 0.85; monkey T, n = 696 wave and 565 non-wave fluctua-
tions, P = 0.79; two-sample F-test for equal variances; Extended Data 
Fig. 2e). Furthermore, although previous work found that high-contrast 
visual stimulation attenuates waves with a spike-triggered average (STA) 
analysis5, our method identified travelling waves while the monkeys 
freely viewed high-contrast naturalistic images (with −50 to +100 ms 
perisaccadic activity excluded; Extended Data Fig. 5), indicating that 
travelling waves are present during natural vision.
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cut-off of noise distribution, dashed line; example wave correlation value, red line).
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To test whether spontaneous waves have a role in perception, we 
trained two marmosets to perform a simple detection task. During 
the task, the monkeys were required to maintain fixation while wait-
ing for the appearance of a low-contrast (<2% Michelson contrast) 
200-ms drifting Gabor target that appeared at an unpredictable time 
at one of two equally eccentric locations, coinciding with retinotopic 
locations of channels on the array (Fig. 3a). Juice reward was provided 
if the monkey made a saccade to the location of a target within 500 ms 
of target onset. For each monkey, target contrast was set to a value that 
was detected approximately 50% of the time (Extended Data Fig. 7a).

We hypothesized that target detection should be facilitated when 
spontaneous waves align a more-excitable state with target locations. 
To test this, we collected trials in which waves were detected (monkey 
W, 80.05% of trials; monkey T, 57.37%; collapsed across both target 
locations) and determined whether detection probability varied with 
the state of the wave, measured at the retinotopically aligned electrode 
(Fig. 3b, c). We only included trials in which fixation had been main-
tained for at least 300 ms before target onset to avoid including waves 
triggered by the saccade to fixation that initiated each trial19. To avoid 
any confounding effect owing to the activation by the target itself, we 
leveraged the observation that similar wave phases tend to recur over 
1–2 sequential cycles34, and examined wave alignments before the pres-
entation of the target that predicted detection performance. Detected 
targets (hits) tended to be preceded by the alignment of a particular 
wave phase (peak was −60 ms relative to target onset for monkey W, 
P < 1 × 10−3; −33 ms for monkey T, P < 1 × 10−5; Rayleigh test; Fig. 3d–g). 
We refer to this as the pre-target phase alignment (PPA). No significant 
phase alignment was observed in non-wave trials (not shown).

Next, we investigated how the alignment of waves before the target 
appeared affected detection performance. We hypothesized that this 
aligned phase was predictive because it led to a more-excitable state 
during the target-evoked response, which favoured detection. To test 

this hypothesis, we selected trials with detected waves that had a phase 
at the peak of PPA within ±π/6 of the aligned phase. For these trials, 
we computed the LFP phase during the target-evoked response. Con-
sistent with our prediction, the target-evoked LFP was more likely to 
be in the more-excitable state (±π; blue trace, Fig. 3e) than expected 
from randomly selected hit trials (grey trace, Fig. 3e; permutation test, 
α = 0.01). This indicates that PPA is indicative of waves that lead directly 
to a more-excitable network state during the target-evoked response.

We wanted to know whether this predictive wave alignment reflected 
a shift in sensitivity for faint targets, or an increase in response bias to 
the target location. We therefore tested whether waves were predictive 
of false alarms, defined as a saccade to a potential target location when 
no target was presented. We found no evidence that more-excitable 
wave states were predictive of false alarms (Extended Data Fig. 6). We 
therefore conclude that the alignment of spontaneous waves modu-
lated the monkeys’ sensitivity to the appearance of a faint target.

If true, the wave state should modulate the magnitude of evoked 
responses caused by the appearance of the target. Consistent with the 
observation that stronger target-evoked responses are correlated with 
better detection performance35, we found that firing rates during the 
target-evoked response (80–200 ms from target onset) were higher 
for hits than misses for both monkeys (monkey W, n = 25 single units 
and 83 multi units, P = 0.0015; monkey T, n = 27 single units and 110 
multi units, P < 1 × 10−5; two-sided Wilcoxon signed-rank test; Extended 
Data Fig. 7d, e). We hypothesized that the more-excitable states fol-
lowing PPA increased the magnitude of evoked activity, producing 
the stronger evoked responses correlated with improved detection. 
To test this, we calculated average multi-unit firing rates collapsed 
across target-aligned electrodes for trials in which waves were of the 
aligned phase, or in the opposite phase at PPA (Fig. 4a, c). Consistent 
with our hypothesis, the evoked firing rate was larger across units for 
trials in which a wave occurred and aligned the more-excitable state 
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to the target location rather than an oppositely aligned wave (±π/3 
rad, n = 43 multi-units across both monkeys; P < 1 × 10−5; two-tailed 
Wilcoxon sign-rank test). We performed the same analysis on trials 
that did not meet our statistical criterion for waves (that is, non-wave 
trials) and found that the phase did not modulate firing rates (n = 143 
multi-units; P = 0.074; Fig. 4b, c).

Finally, because the pre-target wave state predicted the magnitude 
of target-evoked spiking, we aimed to quantify how well the monkey’s 
likelihood of detecting the faint target could be predicted solely on 
the basis of knowledge of the wave state at the time of PPA. We cal-
culated the monkey’s conditional probability of target detection as 
a function of phase distance from the optimally aligned wave in each 
monkey (rotated to 0 rad). In both monkeys, the conditional prob-
ability of detection reached a maximum for the optimal phases and a 
minimum for opposite phases (Fig. 4d, e), with a depth of modulation 
of 33% (monkey T) and 35% (monkey W) from peak to trough. When we 
took the perspective of a single electrode, with no knowledge about 
the state of the wave, there remained a strong, but significantly lower 
phase-dependent probability of detection (17% monkey T, 19% monkey 
W; CI test, α = 0.05).

Next, to quantify how wave state compared relative to other indica-
tors of network state that have previously been found to be predic-
tive of perceptual performance, we constructed a generalized linear 
model (GLM) regressing perceptual performance (hit, miss) against 
target-evoked spike rate35,36, pre-target baseline activity, a measure of 
attentional state37, pupillary diameter, a measure of arousal28,38,39 and 
pre-target alpha power40 (logit link function, binomial error distribu-
tion, n = 1,277 trials; Supplementary Table 1). On trials in which waves 
were detected, GP at the time of PPA was the strongest predictor of 
perceptual performance (GLM weight for GP, βGP = 0.25, P < 0.0001) 
compared with arousal (GLM weight for pupil diameter, βPUP = 0.15, 
P < 0.05) and target-evoked spiking activity (GLM weight for firing  
rate, βFR = 0.13, P < 0.05). Pre-target alpha power and spontaneous 
pre-target firing rate were not significant predictors (P = 0.69 and 
P = 0.80, respectively).

Together, these results demonstrate that spontaneous travelling 
waves occur in the neocortex of the awake monkey, and that they modu-
late sensory-evoked responses and gate perception. The waves travel 
at speeds consistent with the conduction velocity of unmyelinated 
horizontal axons that populate the superficial and deep layers of cortex, 
suggesting that they emerge from the activation of cortical populations 
by spikes travelling along topographic connections that fall off with 
distance. These waves are distinct from the large, slow-wave deflec-
tions reported during anaesthesia or quiet wakefulness41,42. Rather, 
they are present during active vision, and their alignment preceding 
the presentation of a target predicts detection performance. Notably, 
these wave effects are only apparent because of our measurement  
of the GP, and cannot be explained by latent narrowband oscillations 
embedded in the wideband signal. Narrowband filtering in alpha or 
beta bands fails to reveal any phase alignment predictive of perception 
(Extended Data Fig. 8), and GP provides a better estimate of perceptual 
state than instantaneous voltage amplitude (Extended Data Fig. 9).

The importance of waves to perception is further underscored by 
the fact that they are more predictive of perceptual sensitivity than 
previous reports of pre-target alpha-oscillation phase in visual detec-
tion43–45 or theta-oscillation phase in frontal-parietal networks during 
the deployment of attention46,47. We speculate, given that we observe 
weaker predictive effects when we mix wave and non-wave trials, that 
the alpha and theta effects previously observed were in fact due to 
the undetected presence of travelling waves. This is supported by the 
recent discovery that alpha and theta oscillations travel as propagat-
ing waves across awake human cortex21. If these two phenomena are 
related, this raises the possibility that spontaneous waves may also be 
coordinated across brain areas. Such coordination might explain how 
waves in MT are so strongly predictive of detection for stimuli that 
presumably activate other visual areas such as V1. These results have 
important implications for the neural organization of sensory process-
ing and demonstrate that, when viewed across the spatial extent of the 
cortex, fluctuations of cortical activity are neither purely synchronous 
nor spatially disorganized noise processes. Rather, neocortex exhibits 
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all trials (wave and non-wave) are combined. Right, bar plot showing the depth 
of modulation in detection probability given wave state is roughly double the 
depth for all trials (monkey T, 33% to 17%, n = 464 wave and 494 non-wave trials; 
monkey W, 35% to 19%, n = 479 wave and 485 non-wave trials).
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propagating waves of activity that dynamically regulate neuronal 
responses and perceptual sensitivity.

GLM analysis
To determine the relative predictive power of the state of spontaneous 
travelling waves compared to other measures of network state on the 
detection task, we fitted a GLM to the trial-by-trial responses of the 
monkeys. Predictors included (1) target-evoked firing rate, measured 
from +80 to +200 ms after target onset, (2) the attentive state, estimated 
by the spontaneous spike rate measured during a window preceding the 
appearance of the target (−120 to 0 ms), (3) the pre-target alpha (8–13 Hz)  
power 50 ms before target onset, measured as the instantaneous power 
(Hilbert transform modulus) after narrowband filtering and normal-
ized by the broadband power spectrum (5–200 Hz), (4) arousal state, 
estimated by the pupil diameter at the time of target onset, and (5) GP 
at the time of maximal PPA (Fig. 3f). For the measure of normalized 
alpha-band power, transformation by the logarithm function was used 
for the purpose of variance stabilization. The fit was performed using 
1,277 trials on which waves were detected in both monkeys. Predictor 
distributions were standardized by z-scoring before fitting so that 
resulting model weights (βFR, βSP, βα, βPUP, βGP) could be compared to 
assess relative importance60,61. The GLM was fitted using a logit link 
function to relate changes in the continuous predictor variables to the 
binary response variable (hit or miss in the detection task). Individual 
predictors were evaluated by calculating the t-statistic associated with 
the estimated weight (H0: β = 0, H1: β ≠ 0), with significance determined 
at the α = 0.05 level.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2802-y.
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Methods

Surgeries
Two marmosets (C. jacchus), one male (monkey W, five years of age) and 
one female (monkey T, three years of age) participated in this study. 
The sample size was chosen to minimize animal use while providing 
for reproducibility of results; no statistical methods were used to 
predetermine sample size. No blinding or randomization was applied. 
Each marmoset was fitted with a headpost for head stabilization and 
eye tracking. The headpost contained a hollow chamber housing an 
Omnetics connector for a Utah array, which was chronically implanted 
in a subsequent surgery. For this surgery, a 7 × 10 mm craniotomy was 
made over area MT (stereotaxic coordinates 2 mm anterior, 12 mm 
dorsal). An 8 × 8 (64 channel, monkey W) and 9 × 9 with alternating 
channels removed (40 channel, monkey T) Utah array was chroni-
cally implanted over area MT using a pneumatic inserter wand. The 
electrodes spacing was 400 µM with a pitch depth of 1.5 mm. The 
craniotomy was closed with Duraseal (Integra Life Sciences, monkey 
W) or Duragen (Integra Life Sciences, monkey T), and covered with a 
titanium mesh embedded in dental acrylic. All surgical procedures 
were performed with the monkeys under general anaesthesia in an 
aseptic environment in compliance with NIH guidelines. All experi-
mental methods were approved by the Institutional Animal Care and 
Use Committee (IACUC) of the Salk Institute for Biological Studies 
and conformed to NIH guidelines.

Data acquisition
Marmosets were trained to enter a custom-built marmoset chair that 
was placed inside a Faraday box with an LCD monitor (ASUS VG248QE) 
at a distance of 40 cm. The monitor was set to a refresh rate of 100 Hz 
and gamma corrected with a mean grey luminance of 75 cds m−2. Elec-
trode voltages were recorded from the Utah arrays using two Intan 
RHD2132 amplifiers connected to an Intan RHD2000 USB interface 
board. Data were sampled at 30 kHz from all channels. The marmo-
sets were headfixed by a headpost for all recordings. Eye position was 
measured with an IScan CCD infrared camera sampling eye position at 
500 Hz. Stimulus presentation and behavioural control was managed 
through MonkeyLogic in Matlab. Digital and analogue signals were 
coordinated through National Instrument DAQ cards (NI PCI6621) 
and BNC breakout boxes (NI BNC2090A). Neural data was broken into 
two streams for offline processing of spikes (single-unit and multi-unit 
activity) and LFPs. Spike data were high-pass filtered at 500 Hz and 
candidate spike waveforms were defined as exceeding 4 × s.d. of a 
sliding 1 s window of ongoing voltage fluctuations. Artefacts were 
rejected if appearing synchronously (within 0.5 ms) on over a quarter 
of all recorded channels. Segments of data (1.5 ms) around the time 
of candidate spikes were selected for spike sorting using principal 
component analysis through the open source spike sorting software 
MClust in Matlab (A. D. Redish, University of Minnesota). Sorted units 
were classified as single- or multi-units and single units were validated 
by the presence of a clear refractory period in the autocorrelogram. LFP 
data was low-pass filtered at 300 Hz and down-sampled to 1,000 Hz.

Generalized phase
The analytic signal paradigm was originally developed by Denis Gabor 
in 194648, defining the concept of ‘instantaneous frequency’ and ‘instan-
taneous phase’ for non-stationary signals; however, owing to several 
technical limitations, the analytic signal representation is commonly 
used strictly in the context of signals pre-treated with a tight narrow-
band filter49. Here, we sought to address the technical limitations in 
the analytic signal to generalize its application beyond signals where 
tight narrowband filtering is appropriate. For this reason, we call our 
updated approach for non-stationary, wideband signals GP.

Consider a real-valued signal xn ∈  � for n ∈  [1,2,...,Ns], where  
Ns is the number of samples in one recorded trial obtained at a  

sampling frequency fs. Given xn, its analytic signal representation  
(Xn) is:

X x iH x= + [ ]n n n

where i is the imaginary unit and H[xn] is the Hilbert transform (HT) of 
the signal xn. This representation can be obtained by implementing 
the HT operator as a finite impulse response (FIR) filter in the time 
domain50, or by using a single-sided Fourier transform approach51,52. 
Sinusoidal cycles appear in this representation as circular contours 
in the complex plane, whereas non-sinusoidal fluctuations appear 
as closed, quasi-circular contours. In this complex plane representa-
tion, phase is calculated numerically by the four-quadrant arctangent 
function.

The technical limitations in the analytic signal framework occur for 
two principal reasons. First, low-frequency intrusions effectively shift 
the representation by a complex constant, which has the critical effect 
of highly distorting phase angles estimated by the arctangent. As an ini-
tial step in the GP representation, then, we filter the signal within a wide 
bandpass (5–40 Hz; 8th-order zero-phase Butterworth filter), excluding 
low-frequency content. Note that this important step is distinct from 
narrow bandpass filtering (for example, 8–13 Hz), as this approach pre-
serves a significant portion of the signal spectrum, thereby minimizing 
waveform distortion and potential artefacts due to narrowband filter-
ing of broadband noise (Fig. 2a, Extended Data Fig. 3a). We then use the 
single-sided Fourier transform approach51,52 on the wideband signal and 
compute phase derivatives as finite differences, which are calculated 
by multiplications in the complex plane18,24,53. Second, high-frequency 
intrusions appear in the analytic signal representation as complex rid-
ing cycles53, which manifest as periods of negative frequencies in the 
analytic signal representation. As a secondary step in the GP representa-
tion, then, we numerically detect these complex riding cycles—namely, 
Nc points of negative frequency in the phase sequence Arg[Xn]—and 
utilize shape-preserving piecewise cubic interpolation on the next 2Nc 
points of Arg[Xn] following the detected negative frequency epoch. The 
resulting representation captures the phase of the largest fluctuation 
on the recording electrode at any moment in time (Fig. 2a), without the 
distortions due to the large, low-frequency intrusions or the smaller, 
high-frequency intrusions characteristic of the 1/f-type fluctuations 
in cortical LFP54–56. The GP represents a coherent numerical approach 
to the original analytic signal framework of Denis Gabor48, suitable 
for implementation in modern digital signal processing applications.

Wave detection
We employed a recently introduced statistical approach to detect spon-
taneous travelling waves in noisy multichannel recordings18,24, adapted 
to utilize GP. The advantage of GP is to capture the dominant fluctuation 
on each electrode at each point in time; furthermore, it does not distort 
the signal waveform, as would occur with a narrowband filter. When 
these fluctuations are shared across electrodes and exhibit consistent 
phase offsets, the algorithm detects these patterns as travelling waves, 
as described below and illustrated in Extended Data Fig. 2.

Spontaneous waves were detected during epochs of fixation, exclud-
ing 50 ms before and 100 ms after eye movements, identified from the 
eye tracking signals. The wave-detection technique occurs in three 
steps. First, the algorithm finds the time point nearest to each positive 
LFP peak on the array. This defines a flexible window in which we test 
for a spontaneous wave, where the phases are valid in a neighbourhood 
around that time point. Second, the algorithm finds the most likely 
starting point for the wave, by finding the point that maximizes the 
divergence of the phase gradient in a smoothed version of the scalar 
phase field. This captures the point from which neural activity flows 
outward at each moment. Third, with the putative source point found, 
the algorithm then quantifies how clearly activity is organized about 
this point, by calculating the circular-linear correlation with distance 
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(ρφ,d ∈ [−1,1]) across the whole electrode array57, consistent with our 
observation that the wavelengths were long relative to the spatial extent 
of the array. Importantly, this step is done on the tested scalar phase 
field without spatial smoothing, which prevents smoothing artefacts 
from contaminating the results. Finally, a null distribution was con-
structed for ρφ,d by randomly shuffling phase values on the electrode 
array. Unless stated otherwise, a scalar threshold of 0.3 was used to 
detect waves throughout, which represented a conservative threshold 
on all constructed null distributions.

Data inclusion criteria
Only visually responsive units (defined by having a mean evoked firing 
rate 80–200 ms after target onset that was at least 2 times the mean 
baseline firing rate, computed from −200 to 0 ms) were included. 
Units were excluded if they had fewer than 6 trials on which the 
preferred-orientation target appeared in the unit’s receptive field on 
the trial type being considered (hits vs misses; wave vs non-wave). 
For the analysis of power spectral density in Extended Data Fig. 2c, 
wave trials were only included if they exhibited at least four detected 
waves over a 300-ms fixation epoch. For the analysis in Fig. 3e, trials 
were only included if a wave was detected before target onset on hit 
trials, and phase at the target-aligned electrode was within ±π/6 of 
the aligned phase.

Receptive field mapping
Receptive fields were mapped through reverse correlation. The mar-
moset was trained to hold fixation on an image (marmoset face, 1° of 
visual angle (DVA) square) presented to the centre of the LCD moni-
tor. A drifting Gabor (2° diameter, spatial frequency: 0.5 cycles per 
degree, temporal frequency 10 cycles s−1) was presented at a random 
position on the monitor between 0–18° in azimuth and −15° to 15° in 
elevation, drifting in one of 8 possible directions for 200 ms, after 
which it disappeared. After a random delay drawn from an exponen-
tial distribution (mean 40 ms), a new probe appeared and the pattern 
repeated until the marmoset broke fixation (defined as an excursion 
of 1.5° from fixation) or viewed 16 probes. The marmoset was given 
a juice reward proportional to the number of probes presented. The 
receptive field for each unit recorded on the array was estimated by 
calculating the spike-triggered average (STA) stimulus that evoked 
the maximal response:

∑N
x ySTA =

1

i

N

i i

The STA is the sum of probe location xi weighted by the spike count yi 
within the time bin 40 to 200 ms after probe onset, normalized by the 
number of all recorded spikes N. From the location of estimated receptive 
fields on each spiking channel, and the known topography of area MT in 
the marmoset58, we estimated the relative position of each recording array 
in marmoset cortex (Fig. 1a). We excluded from the analysis the upper half 
of monkey W’s array as the recordings did not appear to be in area MT.

Target detection task
Marmosets initiated each trial by fixating a marmoset face (a stimulus 
that naturally attracts marmoset gaze) that, upon fixation, transformed 
into a fixation point (0.15 DVA). They were trained to hold fixation on 
the fixation point (1.5° tolerance) awaiting the appearance of a drift-
ing Gabor (4 DVA diameter which reliably produced evoked responses 
on 1–2 electrodes; spatial frequency, 0.5 cycles per degree; temporal 
frequency, 10 cycles s−1, drifting in one of up to 8 possible directions). 
After establishing fixation, the marmoset was required to hold fixation 
for a minimum duration (monkey W, 400 ms; monkey T, 300 ms) to 
avoid contamination from waves caused by the saccade to the fixation 
point19. Early fixation breaks (defined by the excursion of the eye position 
from the fixation window) were excluded from analysis. The target only 

appeared if fixation was held for an additional random duration drawn 
from an exponential distribution (mean 200 ms) to generate a flat haz-
ard function. The target could appear at one of two locations selected 
based on receptive field mapping at equal eccentricity (7° monkey W, 8° 
monkey T). The target was presented for 200 ms, after which the monkey 
had 300 ms (for a total of 500 ms) to saccade to within 2.5° of the target 
centre for a juice reward. In 10% of trials no target was presented, and the 
monkey was rewarded for holding fixation to the trial end. If a saccade 
reached the target in less than 100 ms from target onset, the trial was 
rejected from analysis. The trial was classified as a miss if the marmoset 
broke fixation to a non-target location after the target had appeared, or 
if the marmoset held fixation until after the response window closed. 
The trial was classified as a false alarm if the monkey broke fixation to 
a target location after achieving a minimum fixation duration (500 ms) 
but when no target had been shown to any location. This minimum dura-
tion was to help avoid classifying early fixation breaks as false alarms. 
Only trials from the preferred directions of motion (preference defined 
as the difference between the mean response for a direction and the 
mean response to the orthogonal direction, divided by their sum; trials 
were excluded if preference was < 0.2) presented within the receptive 
field of a single- or multi-unit were analysed for that unit. The target 
contrast that produced a correct detection rate of 50% was selected for 
each monkey (mean 1.4 percent Michelson contrast for both monkeys). 
High-contrast (10 percent Michelson contrast) targets were presented 
on 10% of trials. If performance for these targets was below 70 percent, 
the session was rejected from analysis.

Free viewing natural images
Marmosets were headfixed and their gaze monitored as in the previous 
tasks. Greyscale versions of naturalistic images (spanning 20–30 DVA) 
were randomly interleaved and presented to the monkey. The monkey 
was free to look at the images, and after 10 s was given a juice reward. 
Saccades were identified from the absolute value of the first numeri-
cal derivative of the smoothed vertical and horizontal eye traces (5 ms 
sliding Gaussian). Saccades were defined as velocity peaks exceeding 
25°s−1. We analysed periods between saccades, excluding 50 ms before 
and 100 ms after each detected saccade.

Cross-trial phase alignment
To quantify alignment of the GP across trials, we used the standard 
formulation for the Kuramoto order parameter:

∑r
N

=
1

e
t j

N
iφ

t
j

where Nt is the number of trials in each condition (hit or miss), i is 
the complex unit, and φj is the GP at the tested time point. The order 
parameter ranges between 0 (uniform distribution of phase values) 
and 1 (identical phase values for each trial). To compare meaningfully 
between two sets of observations (hit and miss) with slightly different 
number of trials while accounting for the expected mean and variances 
of the order parameter at finite scales59, all phase alignment values 
were put in z-score units of a null distribution computed from 10,000 
iterations of the value from randomly selected trials, with the same 
number of observations.

Conditional probability estimate
In order to understand how waves modulate the probability of target 
detection, we calculated the conditional probability of detection at 
each phase:

( ) ( )
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p φ
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where h ∈ {0,1} is an indicator variable for target detection and φi 
represents GP in bin i ∈ [1,Nb], where Nb is the number of bins (nine 
throughout). To balance trial counts between wave and non-wave con-
ditions, in this analysis we used the median of the ρφ,d distributions as 
the wave-detection threshold. We then fit a sinusoid by least-squares 
estimate to the binned conditional probabilities in wave and non-wave 
states. Finally, significance of the difference in modulation amplitude 
between the two states was assessed in each monkey by comparing 
confidence intervals for each fit at the α = 0.05 level.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. Source data are pro-
vided with this paper.

Code availability
An open-source code repository for all methods is available on GitHub: 
http://mullerlab.github.io.
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Extended Data Fig. 1 | Retinotopic mapping and motion direction tuning is 
consistent with the anatomical organization and tuning preferences of 
marmoset MT. a, Receptive fields for recorded units were measured by reverse 
correlation. Monkeys held fixation on a marmoset face while visual probes 
(drifting Gabor) appeared at random locations in the visual hemifield 
contralateral to the recording array. Each probe would appear, drift for 200 ms, 

and disappear after which a new probe would appear in a new random location 
and the process would repeat until the monkey broke fixation. b, The estimated 
position and orientation of Utah arrays in area MT based on retinotopy and 
histological examination for monkey W (blue) and monkey T (red). c, Example 
receptive fields and their preference for motion direction were consistent with 
previous reports of marmoset MT58.



Extended Data Fig. 2 | Detection of spontaneous travelling waves. a, The 
method for detecting spontaneous waves from the Generalized Phase. First, 
the detection algorithm found the most likely starting point for a putative wave 
as the point that maximizes the divergence of the phase gradient (step 1).  
b, With this source point found, the algorithm then quantified the spatiotemporal  
organization about this point from the circular-linear correlation of phase with 
distance across the whole array (step 2). With this approach, the algorithm can 
robustly detect arbitrarily shaped wavefronts in the array data. c, The average 
power spectrum for waves (N = 215) had significantly less power in low 

frequencies (<12 Hz) as compared to non-wave fluctuations (N = 524). Dotted 
bounds represent s.e.m. Asterisk: P < 1 × 10−5, two-tailed Wilcoxon rank-sum 
test. d, Detected waves in both monkeys predominantly travelled at speeds 
consistent with the conduction velocity of unmyelinated horizontal axons 
(0.1–0.6 m/s, red dashed lines; monkey W, 5571 waves, blue line; monkey T, 9285 
waves, red line). e, There was no difference in the amplitude of fluctuations that 
were detected as waves (blue line; N = 696 waves) or rejected (non-wave, grey 
line; N = 565 non-wave fluctuations; example monkey T session).
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Extended Data Fig. 3 | Wideband GP is better coupled to spike timing than 
narrowband alpha or theta filters. a, The phase and amplitude of the raw  
(5–100 Hz) LFP was poorly captured by narrow-band theta (4–8 Hz, blue dotted 
line) or alpha (8–13 Hz, red dotted line) filters. b, Scatter plot showing 
spontaneous spike-phase coupling was greater for GP (5–40 Hz) than alpha or 
theta narrowband filtered phases. Coupling averaged across electrodes for 
individual recording sessions is plotted as black dots and each red dot 

represents the average value across sessions. c, Spontaneous spike-phase 
coupling remained stronger for GP than the narrow frequency bands even 
when the spontaneous LFP epochs were restricted to periods where there is 
large alpha (12.06% of recorded time) or theta (7.24%) LFP power during 
fixation (5 dB SNR, narrow- to broad-band power ratio). Results are presented 
from monkey W.



Extended Data Fig. 4 | Spike coupling to GP is spatially dependent.  
a, Scatter plot showing the average spike–GP coupling across the distances of 
the array. Each point was averaged across a given spike-phase distance for a 
single recording session in monkey W (N = 22 sessions). The red dashed line 
shows the average null distribution for shuffled phases ± 2 s.d. (shaded region). 
b, Same as a, but for monkey T (N = 18 sessions). c, Scatter plot showing the 

cross-channel GP correlation for 200 ms of LFP during fixation across the 
electrode distances of the recording array. Each dot is the average circular 
correlation within an individual recording session across that channel 
distance. Shaded region represents the mean (±2 s.d.) correlation after 
shuffling the spatial position of the electrodes. d, Same as c, but for monkey T.
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Extended Data Fig. 5 | Spontaneous travelling waves are present during 
normal viewing of naturalistic visual scenes. Marmosets freely viewed static 
natural images for 10 s while head-fixed. a, An example high-contrast image 
with the gaze of the marmoset over the 10 s viewing interval shown in red. b, An 
example of a spontaneous travelling wave detected during a period of fixation 

while monkey T was freely viewing a high-contrast image. c, Across 86 trials, 
593 spontaneous travelling waves were detected during spontaneous fixations 
while the monkey freely viewed the images (−50 to +100 ms perisaccadic 
activity excluded). d, The density of observed wave speeds was consistent with 
the conduction velocity of unmyelinated axons (0.1–0.6 m s−1).



Extended Data Fig. 6 | False alarms are not predicted by the phase of 
travelling waves. To test whether the alignment of waves with the target 
location produces a bias towards saccading to that location, we examined the 
spontaneous activity before false alarms, time locked to the eye movement. 
This is distinct from our analysis of hits, which was time locked to the onset of 
the target, and is a limitation in our design for comparing hits to false alarms. 
However, we did find a significant modulation of spontaneous spiking activity 
that was possibly the sensory signal generating the false alarm, giving us a 
window to explore their potential relationship with waves62. If waves increase 
the likelihood of false alarms, they should show some phase-dependent 
relationship similar to what we observe in hits, but time-locked to the spiking 
activity predictive of a false alarm. a, Multi-unit spiking activity (normalized to 
the baseline, shaded regions ± s.e.m.) for monkey W (blue) and monkey T (red) 
was significantly increased in the interval before a false alarm (grey shaded 
box, −120 ms to −60 ms, P < 0.001, two-sided Wilcoxon rank-sum test).  
b, Scatter plot showing the average firing rate before the false alarm ( y axis, 
shaded interval in a) was significantly greater than the spontaneous 

background firing rate (x axis, −400 ms to −200 ms) for monkey W (blue dots; 
N = 62 multi-units, P < 0.0001, Wilcoxon signed rank test) and monkey T (red 
dots; N = 70 multi-units). c, Cross-trial phase alignments for waves aligned to 
the location of false alarm for the interval preceding the occurrence of a false 
alarm. There was no strong phase alignment during the period of significant 
spiking activity (shaded region) for either monkey W (blue line) or monkey T 
(red line) that would show a wave state is predictive of a false alarm. However, 
there was a strong phase alignment just before (monkey T −40 ms) and during 
the eye movement (monkey W, 0 ms). Given their close proximity to the onset of 
the eye movement we suspect the observed alignment may reflect an efference 
signal related to the pending saccade63. d, The distribution of observed wave 
phases was uniform during the period of significantly increased spiking 
activity (−90 ms before false alarm), indicating there was no relationship 
between the phase of spontaneous waves and the spontaneous spiking 
fluctuation associated with false alarms. Data collapsed across both monkeys 
as there was no difference in their distributions.
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Extended Data Fig. 7 | Target-evoked response magnitude is correlated 
with detection performance. a, Detection performance of different target 
contrasts for monkey W (blue) and monkey T (red) across training days where 
those contrasts were presented. Both monkeys had similar psychophysical 
thresholds, defined as the contrast where the monkey detected the target 50 
percent of the time on average (c50) as estimated from a sigmoid fit (grey 
dashed line). b, c, Distributions of reaction times for monkey W (b) and monkey 
T (c) during the detection task at their c50 value. The median reaction time for 
each monkey is shown by a red line. d, Spike rasters for an example neuron with 

trials sorted into hits (bottom rasters) and misses (top rasters). e, Scatter plot 
showing the distribution of mean hit (x axis) and miss ( y axis) evoked responses 
(80–200 ms) for all single- (x) and multi-units (dot) recorded across all sessions 
for monkey W (blue) and monkey T (red). The circled x is the example neuron 
from d. Target-evoked responses were significantly stronger for detected 
targets in both monkeys. (monkey W, N = 25 single- and 83 multi-units, P < 0.01; 
monkey T, N = 27 single and 110 multi-units, P < 1 × 10−5; two-sided Wilcoxon 
signed-rank test).



Extended Data Fig. 8 | Narrowband filters fail to detect any significant wave 
phase alignment before target onset. a, The cross-trial phase alignment 
computed as in Fig. 3, but using a narrowband alpha (8–13 Hz) filter, did not 

show any significant alignment (grey dashed line) for hits (blue) or misses 
(grey) before target onset (grey region) for either monkey T (top) or monkey W 
(bottom). b, The same as in a, but for a beta (15–30 Hz) narrowband filter.
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Extended Data Fig. 9 | Instantaneous voltage is less predictive of spike 
timing and perception than GP. a, Scatter plot showing the relationship 
between instantaneous LFP amplitude in voltage, and GP. The same voltage 
value occurred across a broad range of phases. b, While we found wave phase to 
be predictive of detection, the average LFP voltage was not different preceding 
a hit (blue) or a miss (red). Shaded area indicates s.e.m. across 18 sessions in 
monkey T. c, Scatter plot showing the coupling of spike probability to GP. Each 

point is the probability of a spike occurring in that phase bin within a recording 
session (N = 18). There was a strong circular-linear correlation of GP with spike 
probability (r = 0.87). d, Scatter plot showing weaker spike-amplitude coupling. 
Each point is the relative probability of a spike occurring in each voltage bin, 
normalized by the amount of time that instantaneous voltage occurs. Spike 
probability was less correlated with LFP amplitude (Spearman’s rank 
correlation, r = −0.48).




