
ARTICLE

Spontaneous traveling waves naturally emerge
from horizontal fiber time delays and travel through
locally asynchronous-irregular states
Zachary W. Davis 1,4✉, Gabriel B. Benigno2,3,4, Charlee Fletterman1,4, Theo Desbordes1, Christopher Steward3,

Terrence J. Sejnowski 1,5, John H. Reynolds 1,5✉ & Lyle Muller 2,3,5✉

Studies of sensory-evoked neuronal responses often focus on mean spike rates, with fluc-

tuations treated as internally-generated noise. However, fluctuations of spontaneous activity,

often organized as traveling waves, shape stimulus-evoked responses and perceptual sen-

sitivity. The mechanisms underlying these waves are unknown. Further, it is unclear whether

waves are consistent with the low rate and weakly correlated “asynchronous-irregular”

dynamics observed in cortical recordings. Here, we describe a large-scale computational

model with topographically-organized connectivity and conduction delays relevant to biolo-

gical scales. We find that spontaneous traveling waves are a general property of these

networks. The traveling waves that occur in the model are sparse, with only a small fraction

of neurons participating in any individual wave. Consequently, they do not induce measurable

spike correlations and remain consistent with locally asynchronous irregular states. Further,

by modulating local network state, they can shape responses to incoming inputs as observed

in vivo.
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V isual cortical neurons exhibit variable fluctuations in their
spontaneous activity and stimulus-evoked responses.
Rather than being due to noise intrinsic to the neural

spiking mechanism1, which is highly reliable2, variability is
thought to emerge from ongoing synaptic activity in the dense
recurrent connectivity of cortical networks3,4. When observed
from a single point in the cortex, spontaneous fluctuations
resemble a broadband temporal noise process4,5. Multisite
recordings have revealed that these temporal fluctuations can be
part of waves traveling across a cortical area6–10. Spontaneous
traveling waves had largely been observed in slow-wave fluctua-
tions associated with anesthesia, sleep, or low arousal11–13. While
traveling waves had been theorized to have an impact on cortical
computation, it was difficult to identify their role since active
cortical states exhibit fluctuations that are more complex, domi-
nated by higher-frequency and lower-amplitude activity14, mak-
ing these waves harder to detect. Further, driving input is believed
to quench variability in ongoing dynamics15, calling into question
the potential impact of traveling waves on evoked activity16.

Recent work has shown that spontaneous traveling waves are
present in the awake state, that they influence the magnitude of
sensory-evoked activity, and that—depending on their retinotopic
alignment with sensory input—they can improve perceptual
sensitivity17. However, the mechanisms that generate them, and
whether they are consistent with the asynchronous-irregular
spiking dynamics characteristic of awake cortex18, are unknown.
Based on their speed of propagation, we hypothesize that these
waves result from action potentials propagating along unmyeli-
nated horizontal fibers. To test this hypothesis, we studied a
spiking network model across a range of biologically realistic
neuronal densities, distance-dependent connection probabilities,
excitatory/inhibitory balances, and synaptic conductance states.
Importantly, this model incorporated axonal time delays from
conduction along unmyelinated horizontal fibers, which shaped
ongoing activity patterns into traveling waves consistent with
those observed in vivo. Spontaneous traveling waves were
apparent in this network model and occurred consistently across
a wide parameter range that produced asynchronous-irregular
dynamics.

One might wonder whether the occurrence of these traveling
waves induces correlated variability, which has been found to
impair perception19. Results from the spiking network model
show this need not be the case. In both the computational model
and multielectrode recordings in the marmoset visual system, we
found the change in spiking probability due to the wave was low,
only sparsely modulating spiking activity. We thus refer to the
model as the sparse-wave model and this regime as the sparse-
wave regime. This is in contrast to smaller-scale network models
where spikes are strongly coupled to the state of traveling waves,
producing strong correlations in spiking activity. Rather, at the
scale of entire cortical areas, spontaneous waves can emerge in
spatially structured shifts in spiking probability and propagate
through sparse spiking activity along horizontal fibers, without
inducing changes in pairwise correlations in the activity of indi-
vidual neurons. Traveling waves can thus coexist with a locally
asynchronous-irregular state, conferring their benefits while
maintaining the computational advantages of this dynamical
regime20,21.

Results
Spontaneous synaptic fluctuations are comparable to those
during stimulus-evoked responses. Previous work has shown
that moment-by-moment fluctuations in synaptic input in the
cortex can be on the same order of magnitude as during the
sustained period of stimulus-evoked responses6,22–24. Fluctuating

synaptic inputs can have a significant impact on neural
excitability25, gain modulation26, and readout of sensory
information7. To understand the impact of the spontaneous
network state on evoked responses in the awake visual cortex, we
recorded spontaneous and stimulus-evoked activity from
chronically implanted multielectrode Utah arrays (Blackrock
Microsystems) in area MT of two common marmosets (Callithrix
jacchus; data previously reported by Davis et al.17). Spontaneous
multiunit activity recorded from a single electrode while a mar-
moset fixated a fixation point was characterized by a low, irre-
gular firing rate. The appearance of a highly salient stimulus (10%
Michelson contrast drifting Gabor) within the multiunit receptive
field evoked a robust response (Fig. 1a). When measured over
many repeated presentations of the stimulus, the mean multiunit
firing rate rose from 13 ± 1.6 sp/s during fixation, to 97 ± 5.7 sp/s
in response to the stimulus (N= 40 trials over three recording
sessions). These evoked spiking responses were variable from trial
to trial (mean fano factor= 1.01 ± 0.01 SEM, 40–240 ms after
stimulus onset), consistent with previous observations15,27,28.

This variability is partly the result of ongoing spontaneous
fluctuations in synaptic activity in the local population at the time
of the evoked spiking response6,7. These fluctuating synaptic
inputs, in turn, contribute to the local field potential (LFP)29,30.
When averaged across high-contrast trials, the LFP had a robust
negative deflection aligned to the stimulus-evoked spiking
response, while the pre-stimulus period was flat (black line,
Fig. 1a). However, at the single-trial level, the stimulus-evoked
LFP response was similar in magnitude to the spontaneous
fluctuations occurring during fixation (right panel, Fig. 1a). The
relative power between the LFP just prior to the stimulus (−200
to 0 ms) and following stimulus onset (+50 to +250 ms) across
single trials had a small but significant difference from 0 dB,
which represents parity between spontaneous and stimulus-
evoked fluctuations (median 1.89 dB, p= 0.00005 two-tailed
Wilcoxon’s rank-sum test).

While strong, high-contrast visual stimulation evoked
slightly stronger LFP fluctuations than intrinsic network
fluctuations, the distinction disappears in the context of weak
visual inputs (Fig. 1b). When the marmoset was presented a
faint stimulus that was detected ~50% of the time (<2%
Michelson contrast), the evoked spiking response was sig-
nificantly weaker and more variable (mean= 68 ± 4.4 sp/s,
p= 0.0009; fano factor= 1.54 ± 0.14, p= 0.002, two-tailed
Wilcoxon’s rank-sum test). This corresponded with a weaker
average LFP response, and the trial-by-trial relative power
between spontaneous and evoked fluctuations was not sig-
nificantly different from 0 dB (median= 1.23 dB, p= 0.07 two-
tailed Wilcoxon’s rank-sum test).

Given the comparable magnitude of spontaneous LFP fluctua-
tions to responses evoked by weak sensory inputs, we
hypothesized that much of the variability in neuronal spiking
could be explained by the state of the local network since the
synaptic drive (manifested in the LFP) during spontaneous and
evoked activity is roughly equal22,23. We recently reported that
spontaneous LFP fluctuations in the awake cortex are organized
into waves that travel across an entire cortical area (Fig. 1c and
Supplemental Movie S1). They modulate spontaneous spiking
probability (Fig. 1d), and they directly impact the magnitude of
stimulus-evoked responses depending on their alignment with
neuronal receptive fields (Fig. 1e). We found that, rather than
acting as a source of noise that impairs perception, spontaneous
waves can—depending on their spatiotemporal alignment with a
visual stimulus—improve the monkeys’ ability to detect the
stimulus. We thus sought to understand what mechanisms might
generate traveling waves in the cortex and test whether they
represent an operating regime either consistent with or distinct
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from the irregular, asynchronous activity patterns classically
observed in silico31,32 and in vivo21,33.

Spontaneous traveling waves can emerge in network models
without altering individual neuron spiking statistics. To
address this question, we studied large-scale spiking network
models composed of leaky integrate-and-fire (LIF) neurons with
balanced excitation and inhibition and conductance-based
synapses. When neuronal interactions are modeled as con-
ductances, taking into account the time-dependent driving forces
and channel activations at the synapse, spiking network models
can enter into states of self-sustained activity34,35. Asynchronous-
irregular activity32 in these self-sustained states, generated with-
out external drive, results naturally from the recurrently gener-
ated fluctuations intrinsic to the dynamics of the system34,35.
These dynamics are characterized by low, variable firing rates,
weak pairwise correlations, and coefficient of variation (CV) near
unity. These self-sustained states provide an opportunity to study
spiking network dynamics that are structured by the recurrent
activity of the network itself, rather than dominated by random
external Poisson synaptic input20, and are well suited to model
the spontaneous background activity observed in the cortex
during active perception.

We first studied a two-dimensional (2D) conductance-based
spiking network model with over 1,000,000 neurons distributed
over a 6 × 6 mm2 area consisting of 80% excitatory and 20%
inhibitory neurons, randomly connected with 3000 synapses per
cell, yielding a sparsely connected network (Fig. 2a). We
eliminated the outer millimeter from analysis, yielding a
4 × 4 mm2 area with 450,000 neurons. These values were selected
to approximate the density and connectivity of neurons in
cortical layer 2/3 of area MT in the common marmoset36,37. This
randomly connected network generated self-sustained activity
with spontaneous spiking fluctuations consistent with the
asynchronous-irregular regime32,38 and lacked any spatiotem-
poral structure (Fig. 2b, c). A simulated LFP was calculated from
summed excitatory and inhibitory synaptic activity over adjacent,
nonoverlapping pools of 10 × 10 neurons (corresponding to
67.8 × 67.8 μm2)39 and was used to estimate the local excitability
state at each point in the network for comparison to the
electrophysiological recordings. The LFP was homogeneous
across the network, as would be expected from pools of neurons
receiving synaptic input from random positions in the network
(Fig. 2c and Supplemental Movie S2).

To test whether topographic connections with transmission
delays were sufficient to generate spontaneous traveling waves in
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Fig. 1 Spontaneous network fluctuations are of similar magnitude to stimulus-evoked responses in vivo. a Spike raster for repeated presentations
(N= 40) of a high-contrast (10% Michelson contrast) drifting Gabor recorded from area MT of a fixating marmoset (stimulus-onset, red line; mean
response, blue line). A single-trial LFP trace is plotted in gray, and the average LFP response is plotted in black. The relative power between baseline
(−200ms to stimulus-onset) and evoked fluctuations (stimulus-onset+ 50–250ms) significantly favored the evoked response (right panel; N= 110 trials;
median= 1.89 dB, p= 0.000019, two-tailed Wilcoxon’s ranked-sum test). b Same as in (a), but for a low contrast stimulus (<2% Michelson contrast). The
relative power between baseline and evoked LFP fluctuations was not statistically different from parity (median= 1.23 dB, p= 0.087 two-tailed Wilcoxon’s
ranked-sum test). c An example of spontaneous LFP fluctuations structured as a traveling wave recorded from a spatially distributed multielectrode array in
marmoset area MT. d Histogram of spontaneous spike probability as a function of the generalized phase of the LFP during fixation. e The average evoked
response to low contrast stimuli was stronger when a more excitable phase (±π rad) of a spontaneous traveling wave aligned with the retinotopic location
of the target (aligned, green line) as compared to when a less excitable phase (0 rad) was aligned (unaligned, purple line; N= 43 wave and non-wave trials;
shaded region SEM; p= 0.0000015 two-tailed Wilcoxon’s rank-sum test). Data for panels c–e modified from Davis et al.17 with permission.
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the network, as a refinement to the model described in Fig. 2a,
two key elements were introduced: (1) connection probability
decayed as a Gaussian with the distance between neurons
(σ= 400 µm)40,41 to mimic the topographic connectivity in
cortex and (2) action potentials activated synaptic currents after
a time delay determined by the distance between neurons to
simulate the conduction velocity of horizontal fibers in the cortex
(vc= 0.2 m/s;42 Fig. 2d). This network also produced self-
sustained, spontaneous fluctuations, but spiking activity was
weakly organized into bands that moved across the network as
traveling waves (rasters, Fig. 2e). LFP fluctuations were hetero-
geneous across the network and exhibited organized spatial
structure with localized regions coordinated in amplitude (Fig. 2f
and Supplemental Movie S3).

To test whether the presence of these organized topographic
fluctuations altered the asynchronous-irregular dynamics of
individual neurons in the network, we compared the firing rates
and CV across a randomly selected population of excitatory
neurons (N= 5000). There was no difference in the distribution
of firing rates across the networks (mean rate= 5.23 vs. 5.27 sp/s;
p= 0.28, two-tailed Wilcoxon’s rank-sum test; Fig. 2g) or in the

distribution of CV (mean CV= 0.93 vs. 0.92; p= 0.11, two-tailed
Wilcoxon rank-sum test; Fig. 2h). Therefore, individual neurons
maintained their asynchronous and irregular firing states while
the topographically connected network produced spontaneous
traveling waves.

While one might expect the organized bands of spiking activity
would result in increased correlations across neurons, we found
no evidence that this was the case. The introduction of
topographic connections did not affect pairwise correlations, as
the degree of spike–spike coherence between the randomly and
topographically connected networks was indistinguishable
(Fig. 2i). No change in coherence occurred despite the
topographically connected network producing increased power
in lower frequencies (30–50 Hz) and reduced power in higher
frequencies (>60 Hz) relative to the randomly connected network
(Fig. 2j). The spatiotemporal structure could, therefore, exist in
these networks without disrupting CV or pairwise coherence
because the spiking probability was only weakly modulated by the
presence of traveling waves. The probability of a neuron firing a
spike at any given millisecond was low, and the peak of a traveling
wave only marginally increased spiking probability (2.33%
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Fig. 2 Topographically connected networks produce structured fluctuations without altering neuronal spiking dynamics. a Schematic diagram of a 2D
spiking network model with 80% excitatory (gray) and 20% inhibitory (blue) neurons wired with a uniformly random connection probability. b Spike
rasters from 10,000 excitatory neurons along a 1D slice arranged by linear distance in the network. LFP fluctuations calculated from summed synaptic
currents for a single 10 × 10 neuron pool is plotted in red. The mean spike rate within one neuron pool is shown in black. c Spatial organization of LFP
amplitude for each neuron pool in the network plotted at one time point. d Network schematic as in (a), but the network was topographically connected
with probabilities drawn from a Gaussian (σ= 400 µm), and activity had a distance-dependent transmission delay (0.2 m/s). e Spike rasters as in (b), but
sparse structured fluctuations were apparent across the network. f Spatial LFP amplitude as in (c), but the LFP was heterogeneous across the network with
topographic structure. g The distribution of single-unit mean firing rates did not differ between the random (blue line) and topographic networks (purple
line; N= 5000 neurons; p= 0.28, two-tailed Wilcoxon’s rank-sum test). h The distribution of single-unit CV did not differ between the random and
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paired adjacent neuron pools; CI test, α= 0.05; dotted lines 95% CI). j Power spectral density for LFP from the random and topographically connected
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increase), resulting in only a small fraction of neurons spiking
during the peak of any given wave. We, therefore, refer to this as
the “sparse-wave” network regime. If it were the case that neurons
strongly participated in these fluctuations, then they would show
a degree of coherence in the range of frequencies dominated by
those fluctuations. To demonstrate this, we simulated a smaller
network with fewer neurons and denser connections (model
parameters Table S1), which generated spontaneous fluctuations
that strongly regulated spiking activity. This “dense-wave”
network did strongly modulate spiking activity during traveling
waves (26.48% increase in spiking probability), which produced
strong spike–spike coherence in the frequency band dominated
by fluctuations in the LFP (Fig. S1). This increase in correlation
was greatest for nearby locations in the network and was
negatively correlated with distance (Pearson’s r=−0.72; Fig. S2).
Thus, unlike in the dense-wave network, traveling waves in the
sparse-wave regime do not necessarily induce pairwise correlation
across the network.

Topographic connectivity and distance-dependent delays are
necessary to generate spontaneous waves. As hypothesized, the
addition of topographic connections and conduction delays was
sufficient to produce clear spatiotemporal organization in the
network activity (Fig. 3a). In order to detect traveling waves, we
utilized the property that activity patterns propagating at a fixed
speed in the network will produce a band at a constant slope in
the 2D space–time fast Fourier transform (FFT)43. Importantly,
although the power spectral density at each point in the network
had broad-spectral power (Fig. 2j), the 2D space–time FFT
revealed a clear spectral peak (Fig. 3b), whose slope in relation to
the temporal and spatial frequencies was dependent on the axonal
conduction speed. To classify these activity patterns as traveling
waves and quantify their properties relative to cortical recordings
from the marmoset cortex, we applied the same analysis techni-
que developed for the experimental recordings (generalized
phase, GP17) to the simulated LFP in each 10 × 10 neuronal pool.
We then adapted a technique previously developed for detecting
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Fig. 3 Spontaneous topographic network fluctuations travel as waves. a Time series of simulated LFP activity from the topographically connected
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traveling waves in noisy multielectrode recordings44,45. We esti-
mated the gradient of the phase at each moment in time and
calculated putative wavelengths. We then identified places and
times in the network where there was significant spatial organi-
zation. Significance was determined by comparing the observed
wavelengths to the wavelength distribution after a spatial shuffle
of electrode positions, with the 99th percentile of the shuffle
distribution taken as the threshold criterion (Fig. 3c, d). This
approach provides a sensitive and robust means to detect tra-
veling waves from moment to moment44,45. We found significant
wave activity in the topographically connected network ~50% of
the time, whereas the presence of significantly structured wave
organization was absent from networks with random connections
and no delays (Fig. 3e) as the distribution of putative wavelengths
was similar to the shuffled distribution (Fig. 3f).

We also explored the sufficiency of topographic connections
and conduction delays in generating waves separately (Fig. S3). A
topographic network lacking transmission delays produced
spatially organized activity, but there was no spectral line in the
2D FFT consistent with traveling waves (Fig. S3b). Conversely,
delays in an otherwise randomly connected network did not
generate large-scale spatially organized activity, but did have a
clear spectral line consistent with propagating activity (Fig. S3c).
From this, we conclude that, in our framework, topographic
connectivity is necessary for the emergence of large-scale spatially
organized activity, and transmission delays are necessary for the
regular flow of activity over space and time. Both topography and
delays together are necessary in our network framework to
produce spatiotemporal dynamics that travel over the network
consistent with the traveling waves we observed in our cortical
recordings. These results were consistent in a simpler one-
dimensional (1D) network model where the emergence of
traveling waves required both topographic connections and
transmission delays (Fig. S4).

Spontaneous waves occur throughout the asynchronous-
irregular regime. In the example network, topographic connec-
tions with axonal conduction delays were sufficient to induce large-
scale waves of activity without disrupting the fine-scale asynchro-
nous-irregular dynamics of individual neurons. Does the presence of
traveling waves generalize across all networks with asynchronous-
irregular activity, topographic connections, and axonal conduction
delays35,38? We scanned across 2500 combinations of different
excitatory and inhibitory (E/I) conductances in the topographically
connected model and found 601 combinations that produced self-
sustained spiking activity. We then identified networks with
asynchronous-irregular spiking dynamics, defined as networks with
mean excitatory firing rates between 1 and 25 sp/s and mean CV
between 0.7 and 1.438. Approximately 99% (599 out of 601) of the
networks that generated self-sustained activity were classified as
asynchronous irregular. We then measured the percentage of time
each network’s activity was significantly organized into traveling
waves. Waves were present across the entire range of asynchronous-
irregular networks (Fig. 4a). The strength of wave activity was
negatively correlated with the magnitude of E/I conductance
(Pearson’s r=−0.55 ± 0.002, 95% confidence interval (CI)) indi-
cating weaker synapses led to stronger wave activity. The average
wavelength was positively correlated with synaptic strength (Pear-
son’s r= 0.72 ± 0.001; Fig. 4b), indicating stronger synaptic weights
lead to more synchronous network dynamics. These results
demonstrate that spontaneous traveling waves are a general property
of topographic connectivity and are entirely consistent with locally
asynchronous-irregular states.

How important is network scale in generating traveling waves?
To answer this question, we simulated networks ranging from 0.5

to 4 mm in width, holding neuronal and connection density
constant. For small networks (~0.5 mm), a very limited range of
the E/I space produced self-sustained and asynchronous network
dynamics. As network size grew, the asynchronous-irregular
parameter space grew as well, extending to include smaller and
smaller combinations of E/I synaptic strength18 (Fig. 4c). It was
thus necessary to simulate spiking network models at sufficient
spatial scales (>1 mm) to generate asynchronous-irregular activity
in networks with conductances resembling those estimated
in vivo18. At small network scales, wavelength distributions
during asynchronous-irregular dynamics were not distinct from
the spatial shuffle, and the parameters that favored longer
wavelengths did not produce asynchronous-irregular activity.
Only at larger network scales did wave activity become strongly
apparent (Fig. 4d).

Network connectivity determines wave properties. What effect
did our chosen parameters for connection distance and conduc-
tion velocity have on wave properties? We hypothesized the
spatial extent of connections and the conduction speed of spikes
directly control the wavelength and propagation speed, respec-
tively, of traveling waves in the model. To test these predictions,
we simulated networks with various values of standard deviation
(σs) for the Gaussian connection probability distribution. Con-
sistent with our hypotheses, the distribution of significant wave-
lengths increased with larger connection distances (Fig. 5a and
Supplemental Movies S4 and S5), and increasing the conduction
velocity created a corresponding increase in the propagation
speed reflected in the slope of the spectral line in the space–time
FFT (Fig. 5b). Thus, the macroscopic features of spontaneous
traveling waves were directly related to specific network struc-
tures in the model.

Are these waves only possible with perfectly Gaussian
connection profiles and uniform conduction velocity, or can they
tolerate a broad range of values similar to those observed in vivo?
To test this, we simulated the example model in Fig. 2, with 10%
of the connections randomly rewired with uniform probability
across the network, generating long-range connections46,47. The
conduction velocity along each connection was drawn from the
range of conduction speeds observed for unmyelinated horizontal
fibers in the cortex (0.1–0.6 m/s42,48,49). Spontaneous traveling
waves persisted under these network conditions (Fig. 5c, d),
indicating that the presence of waves was not limited to a fixed or
limited set of homogeneous network properties, but instead also
occurred in networks with large heterogeneity, as in the cortex.

Network simulations are consistent with traveling waves
in vivo. How well do the dynamics observed in our simulations
match the dynamics observed in electrophysiological recordings
of the cortex? To test this, we compared the model results to the
data recorded from marmoset MT, while monkeys fixated a spot
at the center of an otherwise gray computer screen. We measured
the mean firing rates (Fig. 6a) and CV (Fig. 6b) across the
population of single- and multiunit activity over multiple
recording sessions. The distributions of firing rates and CV were
qualitatively similar between the recorded data and the sparse-
wave model, suggesting that the spontaneous dynamics in the
cortical recordings are also consistent with the asynchronous-
irregular regime.

We next measured the distribution of estimated wavelengths in
the data and compared this to the wavelength distribution in the
model. LFP data in the cortex are not independent across
electrodes (as it is in our simulation), but rather pools signals
from a cortical volume of ~250 μm in a radius around the
electrode tip29,30 and has correlations that fall off with distance14.
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To emulate these properties of cortical LFP recordings, we
applied a smoothing kernel that expanded the area of integration
from each simulated LFP point and reduced the independence of
the signal. After smoothing our simulated LFP and quantifying
wave properties, the distribution of simulated wavelengths closely
approximated the distribution observed in the cortex (dotted gray
and blue lines, Fig. 6c). Similarly, the distribution of observed
speeds in both the network simulation and the data covered the
range of conduction velocities in the horizontal fibers, peaking at
~0.2 m/s (Fig. 6d). Thus, across four different measures (spike
rate, spike variability, wave size, wave velocity), the distributions
characterizing activity in the network model were in close
alignment with experimental recordings.

Neurons sparsely participate in waves due to weak coupling to
synaptic fluctuations. How does activity in the sparse- and
dense-wave networks affect the membrane potentials at the level
of individual neurons? To answer this question, we studied the
membrane potential distributions of individual neurons in each
network. In the sparse-wave model, membrane potential fluc-
tuations were Gaussian and close to the spiking threshold, con-
sistent with the fluctuation-driven regime50 (black line, Fig. 7a).
This was in contrast to the skewed distribution of membrane
potentials in the dense-wave network, which was consistent with

a synaptic drive to neurons that is clustered and strongly
correlated51 (purple line, Fig. 7a).

In the sparse-wave network model, stochastic fluctuations in
the membrane potential produced sparse and irregular spiking
activity. These fluctuations were driven by shifts in excitatory-
inhibitory balance across the local population, which, due to the
topographic network connections, were shared by adjacent
populations and carried by spikes across horizontal connections.
These summed currents in our estimate of the LFP reflect the
total synaptic input in the local population, which exhibited a
counter phase relationship with the relative E/I balance: the
inhibition-dominated E/I regime produced positive LFP poten-
tials, and the excitation-dominated E/I regime produced negative
LFP potentials (Fig. 7b, c). This leads to the mechanistic
observation that when the conductances are high, the z-scored
LFP is positive and the balance is dominated by the shunting
effects of inhibition. When the conductances are low, the z-scored
LFP is negative and the balance is shifted to excitation, producing
more spiking activity. This relationship mechanistically accounts
for the phase-dependent relationship of spiking to the LFP in our
cortical recordings.

To demonstrate that simulated neurons are sparsely modulated
by traveling waves, we measured the LFP phase at which each
spike occurred (10 bins from −π to π; Fig. 7d) across network
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Fig. 4 Spontaneous traveling waves emerge in network regimes consistent with asynchronous-irregular dynamics. a The percentage of wave-like
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simulations with varying E/I synaptic conductances. The degree
of spike-phase modulation was significant across the entire
parameter space, with spikes more likely during phases closer to
±π. The magnitude of this modulation was correlated with the
magnitude of E/I conductances (Pearson’s r= 0.78 ± 0.001, 95%
CI; N= 599 simulations), with stronger synaptic weights driving
stronger coupling of spiking activity to LFP fluctuations
indicating denser and more synchronous spiking waves. This
result highlights the importance of large-scale network simula-
tions that can produce stable A–I spiking dynamics with weaker
synaptic weights to see sparse modulations of spiking probability
by traveling waves. We chose a point among these small
conductance values (1 nS Ge, 10 nS Gi; same values for the
topographic network in Fig. 2), to compare the degree of coupling
between the model and the cortical recordings. There was no
difference between the magnitude of spike-phase modulation
observed in the sparse-wave network model and the recorded
data (N= 22 matched resamplings; model spike-phase index=
0.15 ± 0.001 SEM; cortex spike-phase index= 0.16 ± 0.005; p=
0.18, two-tailed Wilcoxon’s rank-sum test), although the preferred
phase-angle differed slightly between the data and model (data-
preferred phase= 3.05 rad, model-preferred phase=−2.27 rad).

While there was a similar degree of spike-phase modulation
between the cortical data and the sparse-wave model (Fig. 7e, f),
the modulation was significantly stronger in the dense-wave
model (N= 10 resamples; spike-phase index= 0.44 ± 0.01,
p= 0.000085, two-tailed Wilcoxon’s rank-sum test; Fig. 7g).
The phase distribution also differed strongly in peak phase angle
(dense-preferred phase=−1.11 rad). In addition, the randomly
connected network showed no spike-phase relationship (N= 22
resamples; spike-phase index= 0.03 ± 0.001 SEM, Fig. S5), as

expected from a network where the neurons in the LFP pool draw
from inputs distributed throughout the entire network. These
results demonstrate that—in the simulated large-scale spiking
networks—spatiotemporal organization emerges from weak
modulations of spiking probability that produces sparse, phase-
modulated spiking activity traveling along topographically
distributed horizontal fibers. The presence of a similar spike-
phase relationship in vivo, particularly for model conductance
states that corresponded to experimental estimates of neuronal
conductance states18, demonstrates that the sparse-wave regime
in the model is consistent with the properties of waves observed
in the experimental recordings.

Spontaneous traveling waves modulate responses to inputs.
Finally, we hypothesized the state of network fluctuations in the
sparse-wave network model would modulate the magnitude of
responses evoked by feed-forward inputs, as previously studied
for synaptic noise4,26 and contextual gain control by visual
stimuli52–55. To test this, we stimulated one 10 × 10 neuron pool
in the sparse-wave network with a 20 Hz Poisson spike train on
100 afferent synapses to each neuron to mimic feed-forward
stimulus input to the network. We stimulated for 10 ms, aligned
either to the depolarized or hyperpolarized state of network
fluctuations defined, respectively, by the most and least probable
phases for spikes to occur according to the network’s spontaneous
spike-phase distribution. When spiking inputs were aligned to the
depolarized state, the evoked spiking responses were boosted
(blue lines, Fig. 8a) relative to weaker responses when inputs were
aligned to the hyperpolarized state (red lines, Fig. 8a). These
effects were consistent with wave-modulated visual responses to
motion stimuli observed in area MT in vivo (cf. Fig. 1e). In
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contrast, equal stimulation in either state of the dense-wave
network produced little effect (red and blue lines, Fig. 8b).

To quantify the effect of the traveling waves on evoked responses
in each network, we then calculated the gain modulation, which is
the ratio of firing rates during the stimulus-evoked response divided
by that of the no-stimulus case (Fig. 8c). Across repeated input
stimulations, input gain was significantly stronger for the depolar-
ized state relative to the hyperpolarized state in the sparse-wave
network (N= 40 stimulations; depolarized state= 3.09 ± 0.09;
hyperpolarized state= 2.11 ± 0.05, mean ± standard deviation;
p= 3.57 × 10−8, two-tailed Wilcoxon’s signed-rank test). In contrast,
in the dense-wave network, the strong spontaneous fluctuations
shunted the incoming spikes, resulting in very weak evoked
responses that did not significantly differ depending on network
state (depolarized state= 1.11 ± 0.05; hyperpolarized state= 1.10 ±
0.04; p= 0.20; two-tailed Wilcoxon’s signed-rank test). The increase
in gain that occurs in the sparse-wave network mirrors our
observations of wave-dependent sensitivity in awake monkeys
performing a threshold detection task17. Thus, the sparse-wave
model offers a mechanistic account for observed phase-dependent
modulations of weak sensory responses by traveling waves measured
in vivo that a network characterized by dense-wave dynamics fails to
replicate.

Discussion
The present work builds on and seeks to explain our recent
finding that spontaneous fluctuations in cortical activity modulate
the moment-to-moment processing of sensory information in a
manner that affects perceptual sensitivity. These fluctuations are
neither synchronous across the cortical surface nor independent
noise processes. Rather, they are often structured as traveling

waves. The model presented here shows that distance-dependent
conduction delays in topographic, conductance-based spiking
network models are sufficient to account for our results in vivo.
Waves occur spontaneously, without requiring a driving input,
and they occur robustly, in the sense that they are generated
across a wide parameter space and in the sense that they occur
across the entire space of E/I conductances that gives rise to
asynchronous-irregular activity dynamics. The properties of these
waves depend systematically on the scales of distance-dependent
connections and the speeds of action-potential propagation. The
waves were well-matched to those observed in cortical recordings
from behaving marmosets17 for speeds consistent with the con-
duction velocity of unmyelinated horizontal fibers. Neurons
sparsely participated in these waves at the scales of neuronal
density and connectivity found in the cortex. The spiking spar-
seness of the waves allowed them to occur without disturbing the
asynchronous-irregular dynamics that are observed in cortical
activity and have advantages for neural computation3,20,21,56,57.
These sparse-wave networks remain sensitive to spiking inputs,
producing evoked responses modulated in a phase-dependent
manner, as observed in vivo. This is in contrast to smaller-scale
networks that exhibit dense waves that drive correlated fluctua-
tions across the population and render the network insensitive to
spiking inputs.

These results demonstrate the importance of considering
distance-dependent time delays in neural systems. When con-
sidered at the scales of entire cortical areas, individual horizontal
fibers can span distances ranging from hundreds of microns to
several millimeters46,47, with axonal conduction delays on the
order of tens of milliseconds42,48. While previous spiking network
models that considered relatively smaller spatial scales (from
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Fig. 6 Simulated network dynamics approximate dynamics observed in cortical recordings of area MT. a Distribution of unit mean firing rates across the
topographic network simulation in Fig. 2d (red) and the distribution observed across single- and multiunits recorded from area MT of awake, behaving
marmosets (blue). b The distributions of CV for simulated (red) and recorded cortical data (blue). c CDFs of wavelengths for the simulation in Fig. 5c (red),
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100 µm to 1 mm of cortex) held that the contribution of axonal
delays was negligible in their effects on the temporal properties of
spiking networks58, other studies have found fixed delays can
have profound effects59–67. The effects of fixed and distance-
dependent delays have been extensively studied in neural field
equations68–77; however, in these averaged population models the
connection between single-unit and population activity is difficult
to study because single-unit information is lost. Finally, traveling
waves have been described in smaller-scale topographic spiking
network models that lack distance-dependent delays, but these

networks only produced dense waves of strongly correlated
spiking activity78–80. In this work, our large-scale spiking model
provides the insight that distance-dependent delays on scales
relevant to a large extent of a visual region in the cortex provide a
fundamental mechanism to shape spontaneous activity into
waves throughout the state of balanced excitation and inhibition.
Further, instead of being inconsistent with asynchronous-
irregular states, as with previous models of traveling waves in
spiking networks, spontaneous waves can travel across these
large-scale spiking networks while local networks remain locally

a

d

b

f g

e

c

Sparse
Dense

Example simulated membrane potential voltages

25 50 75 100
Time (ms)

-2

0

2

Am
pl

itu
de

 (z
)

LFP
ge - gi

-4 -2 0 2 4
LFP (z)

-4

-3

-2

-1

0

1

2

3

4

g e
 - 

g i 
(z

)
Network Simulation (Sparse)

Network Simulation (Dense)Cortical Recordings

0.1 1  2  3  4  5  
Excitatory G (nS)

1 

10

20

30

40

50

In
hi

bi
to

ry
 G

 (n
S)

Spike-Phase Index by E/I Strength

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ik

e-
Ph

as
e 

In
de

x

10
 m

V

100 ms

0
LFP Phase (rad)

0

0.1

0.2

0.3

Fr
ac

tio
n 

of
 S

pi
ke

s

0
LFP Phase (rad)

0

0.1

Fr
ac

tio
n 

of
 S

pi
ke

s

0
LFP Phase (rad)

0

0.1

Fr
ac

tio
n 

of
 S

pi
ke

s

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26175-1

10 NATURE COMMUNICATIONS |         (2021) 12:6057 | https://doi.org/10.1038/s41467-021-26175-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


asynchronous. Thus, not only are spontaneous traveling waves
consistent with the asynchronous-irregular regime, they are a
necessary consequence of topographic connectivity and distance-
dependent delays in cortex across conditions that yield
asynchronous-irregular spiking.

Critically, the waves we observe sparsely modulate the back-
ground spiking probability of neurons in the network, allowing
them to maintain locally asynchronous-irregular dynamics. These
sparse-wave dynamics only become apparent when networks are
modeled at sufficient scales, in particular hundreds of thousands
of neurons over an area a few millimeters across. Our custom
software implementation allowed for the simulation of networks
with ~100,000 to 1,000,000 neurons, each with 3000 outgoing
synapses per cell, addressing in the largest networks over 60 GB of
RAM. Importantly, while the cells in our network models have a
large number of synapses per cell, the number of possible con-
nection partners is high such that the network connectivity
remains sparse. In these networks, the large number of synapses
per cell allows the network to achieve self-sustained asynchro-
nous-irregular activity when synaptic conductances are on the
order observed in cortex35,81. Importantly, the sparse waves we
observe here may be related to the concept of sparse
synchrony82–84, which has been shown to facilitate information
transfer across areas during narrowband oscillations. Sparse
waves may reflect this principle unfolding over both space and
time, while also being consistent with the more generally

occurring broad-spectral fluctuations during spontaneous awake
activity in vivo.

Our findings that traveling waves need not induce pairwise
correlations may at first appear to differ from recent work by
Huang et al. (2019), in which traveling waves emerged from
different spatial and temporal scales of excitation and inhibition
and drove shared variability in ongoing dynamics. We do not
view these findings as mutually exclusive. The work of Huang
et al. offers a mechanistic explanation for a source of shared
variability that occurs particularly in low-frequency fluctuations
in the sensory cortex85. This shared variability has been shown in
theoretical86–88 and experimental studies19 to have deleterious
effects on sensory processing and has been observed experi-
mentally to be reduced by attention85,89. In contrast, our model
does not generate strong low-frequency dynamics, but instead
seeks to describe traveling waves that occupy higher-frequency
ranges (above 10 Hz) that our model suggests propagate through
horizontal connectivity. Separate mechanisms could underlie the
generation of low-frequency correlated variability and higher-
frequency traveling waves, the latter of which have recently been
shown to have phase-dependent benefits for visual detection17.
One critical difference between the two models, however, is their
relative scale, leaving open the question as to whether the dif-
ferences in spiking correlation are due to fundamental mechan-
isms or network size. Additional research is necessary to
understand how such mechanisms may interact in large-scale

Fig. 7 Spontaneous waves reflect structured fluctuations in E/I balance that sparsely modulate spike probability. a Membrane voltage for a simulated
neuron in either the sparse-wave network (black line) or dense-wave network (purple line) calculated from the summed excitatory and inhibitory synaptic
currents received by that neuron. Spiking activity occurred when the voltage crosses the threshold (Vth red line). The distribution of membrane potentials
over the interval for the sparse and dense networks is plotted on the right. b The amplitude of the simulated LFP (blue line) and the relative level of
excitatory and inhibitory conductance (red line) over a 10 × 10 neuron pool were counter phase. c Scatter plot of LFP and ge− gi difference revealed a
significant negative correlation (N= 50,000 time points; Pearson’s r=−0.83; CI test, α= 0.01). d Spike-phase coupling was significant across networks in
the asynchronous-irregular regime, and the degree of coupling was correlated with the magnitude of synaptic conductance (N= 599 simulations; Pearson’s
r= 0.78 ± 0.001, 95% CI). e Histogram showing the fraction of spikes that occurred during each phase of the simulated LFP in the topographically
connected network. Spike probability was modulated by the LFP phase (N= 22 resamples vs. shuffle; spike-phase index= 0.15). f Same as in (e), but for
recorded cortical data. Spike probability was similarly modulated (spike-phase index= 0.16; N= 22 recording sessions vs. shuffle). g The dense-wave
network simulation had a significantly stronger spike-phase relationship (N= 10 resamples; spike-phase index= 0.44, p= 0.0000085, two-tailed
Wilcoxon’s rank-sum test).
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Fig. 8 The sparse-wave network regime boosts spike inputs while the dense-wave network shunts. a A 0.2 × 0.2 mm2 pool in the sparse-wave network
model received a 20 Hz Poisson spike train input for 10 ms aligned either to a period of depolarization (blue shaded region) or hyperpolarization (red
shaded region) as defined by the spike-LFP phase relationship. The dark blue and red lines are the mean evoked firing rate after receiving the spiking input
in either the depolarized or hyperpolarized phase respectively (light blue and red lines represent N= 40 individual trials). The black line is the firing rate of
the neuron pool when no input was given. b Same as (a), but the inputs were delivered to the dense-wave network. The evoked responses were much
weaker as the network shunted the currents evoked by the incoming spikes. c The response gain between the distributions of spontaneous and evoked
activity across N= 40 presentations of spiking input. In the sparse-wave network (left bars), inputs during the depolarized state had larger relative
responses as compared to inputs during the hyperpolarized state (3.09 ± 0.09 compared to 2.11 ± 0.05 mean ± standard deviation; p= 3.57 × 10−8, two-
tailed Wilcoxon’s signed-rank test). In contrast, the dense-wave network (right bars) responses did not differ in their response gain during the
hyperpolarized and depolarized states (1.10 ± 0.04 and 1.11 ± 0.05, respectively; p= 0.20).
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network models to better recapitulate the broader space of cor-
tical dynamics observed in vivo.

Unlike the outsized conductances typically used in smaller
network simulations, the large-scale networks simulated here
enabled us to incorporate E/I synaptic strengths that were similar
to those observed experimentally, leading to total E/I con-
ductances on the order of the leak conductance18,90. This is
advantageous because the larger conductances needed in smaller
networks yield unrealistic coupling of spiking activity to synaptic
fluctuations and shunt driving inputs91, as illustrated in the
dense-wave model. By scaling our model to realistic neuronal
densities on a spatial scale over several millimeters of the cortex
(450,000 neurons over 16 mm2 in the case studied here), the
sparse-wave model sustains irregular activity, with strengths of
individual synaptic inputs down to 0.5 and 4 nS for excitatory
connections and inhibitory connections respectively. At these
spatial scales and synaptic conductances, waves are present about
50% of the time, similar to what we find in the neocortex, and the
wavelengths closely approximate those we find in vivo.

It is important to recognize that, while our network model of a
cortical sheet generates self-sustained activity intrinsically, cor-
tical circuits in vivo are driven by inputs from other cortical areas
and subcortical structures, particularly the thalamus. Thalamic
inactivation has been shown to severely attenuate the sponta-
neous firing rates of cortical neurons92,93, raising the question as
to whether spontaneous traveling waves in vivo also involve
interactions between cortical and subcortical areas. In this work,
our objective was to study whether or not topographic con-
nectivity with conduction delays was sufficient to generate
spontaneous waves, as well as to ask whether waves were com-
patible with asynchronous-irregular dynamics. We, therefore,
chose to use the simplest model we could to test what parameters
might recapitulate the properties of waves we had observed in the
cortex. Undoubtedly, the massive connectivity across cortical
areas and subcortical structures impact the features of sponta-
neous activity in the cortex, and understanding their contribution
to the properties of intrinsic traveling waves will be an important
avenue of future study.

Traveling waves of neural activity in the awake cortex have
been observed under stimulus-evoked44,94,95, behavior-
evoked96–98, and spontaneous conditions17. The fundamental
neural circuit mechanism for these waves, however, had remained
unclear. Our modeling results suggest that the spontaneous LFP
fluctuations we observe traveling as waves in the cortex during
active vision result from sparse waves of spiking activity traveling
unmyelinated horizontal fibers. The sparse-wave model, which
produces activity patterns consistent with the spiking activity
observed in vivo, posits that these waves arise from the time
delays inherent in communicating spikes across topographic
connections within a cortical area. Further, observations from the
model suggest that as these sparse waves traverse the massive
recurrent connectivity within cortical areas3,36,99,100, they pro-
duce subthreshold shifts in the local E-I balance that, collectively,
modulate cortical excitability. Thus, the model offers an expla-
nation for our empirical finding that perceptual sensitivity varies
over space and time depending on the alignment of wave phase17.
Importantly, these traveling waves need not introduce correlated
variability believed to harm perceptual sensitivity; instead, the
sparse-wave state weakly modulates the background spiking
probability in locally asynchronous-irregular neuron pools.
Rather than a source of noise, as would be predicted if waves
modulated activity akin to the dense-wave regime, the presence of
these sparse waves can boost weak inputs that would otherwise
have been imperceptible. These results indicate these traveling
waves may be a network mechanism that can improve perceptual
processing when aligned to the source of feed-forward signals,

without disrupting the computational benefits of the irregular
spiking dynamics of individual neurons.

Methods
In vivo cortical recordings. The methods for the recordings and behavioral task
used in this work was identical to work previously published17, which provided the
physiology and behavioral data used in this work. Two marmoset monkeys (C.
jacchus), one male (monkey W) and one female (monkey T), were surgically
implanted with a headpost for head stabilization during eye-tracking. The headpost
housed an Omnetics connector for a 64-channel multielectrode recording array
(Utah array, Blackrock Microsystems), which was implanted in a 7 × 10 mm2

craniotomy over area MT (stereotaxic coordinates 2 mm anterior, 12 mm dorsal).
Monkey W was implanted with an 8 × 8 recording array with channel spacing of
400 µm and monkey T was implanted with a 9 × 9 array with alternating channels
removed yielding a channel spacing of 800 µm. Both arrays had a pitch depth of
1.5 mm. The arrays were chronically implanted over area MT using a pneumatic
inserter wand. The craniotomy was closed with Duraseal (Integra Life Sciences,
monkey W) or Duragen (Integra Life Sciences, monkey T), and covered with a
titanium mesh embedded in dental acrylic. All surgical procedures were performed
with the monkeys under general anesthesia in an aseptic environment in com-
pliance with NIH guidelines. All experimental methods were approved by the
Institutional Animal Care and Use Committee (IACUC) of the Salk Institute for
Biological Studies and conformed to NIH guidelines.

Marmosets entered a custom-built marmoset chair that was placed inside a
Faraday box with a liquid crystal display (LCD) monitor (ASUS VG248QE) at a
distance of 40 cm. The monitor refresh rate was 100 Hz and gamma corrected with
a mean gray luminance of 75 cd/m2. Electrode voltages were recorded at 30 kHz
from the Utah arrays using two Intan RHD2132 amplifiers connected to an Intan
RHD2000 USB interface board. The marmosets were headfixed by a headpost for
all recordings. Eye position was measured with an IScan CCD infrared camera
sampling eye position at 500 Hz. Stimulus presentation and behavioral control were
managed through MonkeyLogic (revision date: 4-05-2014, build 1.0.26) in
MATLAB (version R2016b). Digital and analog signals were coordinated through
National Instrument DAQ cards (NI PCI6621) and BNC breakout boxes (NI
BNC2090A). Neural data were broken into two streams for offline processing of
spikes (single- and multiunit activity) and LFPs. Spike data were high-pass filtered
at 500 Hz and candidate spike waveforms were defined as exceeding 4 SDs of a
sliding 1 s window of ongoing voltage fluctuations. Artifacts were rejected if
appearing synchronously (within 0.5 ms) on over a quarter of all recorded
channels. Segments of data (1.5 ms) around the time of candidate spikes were
selected for spike sorting using principal component analysis through the open-
source spike sorting software MClust (ver. 4.3.02; A. David Redish, University of
Minnesota) in MATLAB. Sorted units were classified as single- or multiunit and
single units were validated by the presence of a clear refractory period in the
autocorrelogram. LFP data were low-pass filtered at 300 Hz and down-sampled to
1000 Hz for further analysis.

Receptive field mapping. Receptive fields were mapped using a reverse correlation
technique. The marmoset was trained to hold fixation on an image (marmoset face,
1 degree of visual angle (DVA) square) presented at the center of the LCD monitor.
A drifting Gabor (2° diameter, spatial frequency: 0.5 cycles/degree, temporal fre-
quency 10 cycles/s) appeared at a random position on the monitor between 0° and
18° in azimuth and −15° to 15° in elevation, drifting in one of eight possible
directions for 200 ms, after which it disappeared. A new probe then appeared after
a random delay drawn from an exponential distribution (mean delay= 40 ms). The
sequence repeated until the marmoset broke fixation (defined as an excursion of
1.5° from fixation) or viewed 16 probes. The marmoset was given a juice reward
proportional to the number of probes presented. The receptive field for each unit
recorded on the array was estimated by calculating the spike-triggered average
(STA) stimulus that evoked the maximal response:

STA ¼ 1
N

∑
N

i¼1
xiyi ð1Þ

The STA is the sum of probe location xi weighted by the spike count yi within
the time bin 40–200 ms after probe onset, normalized by the number of all
recorded spikes N. We estimated the relative position of each recording array
in cortex from the location of estimated receptive fields on each spiking channel,
and the known topography of area MT in the marmoset101 (Fig. 1a). We excluded
from the analysis the upper half of monkey W’s array as the recordings did not
appear to be in area MT.

Behavioral task. The marmosets were trained to saccade to a marmoset face to
initiate a trial of a visual detection task. Upon their gaze landing on the face, the
face turned into a fixation point (0.15 DVA). The marmosets held fixation on the
fixation point (1.5° tolerance) for a minimum duration (400 ms monkey W, 300 ms
monkey T) awaiting the appearance of a drifting Gabor. The Gabor target was
4 DVA in diameter, which reliably produced evoked responses in the multiunit
spiking activity on 1–2 adjacent electrodes. The Gabor had a spatial frequency of
0.5 cycles/degree, a temporal frequency of 10 cycles/s, and could drift in one of up
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to 8 possible directions. Spontaneous data were analyzed for the period of fixation
preceding the appearance of a target and excluded a period of at least 100 ms
following the initial saccade to initiate the trial. Early fixation breaks (defined by
the excursion of the eye position from the fixation window) were excluded from the
analysis. The target only appeared if fixation was held for an additional random
duration beyond the minimum duration. The random duration was drawn from an
exponential distribution (mean duration= 200 ms) to generate a flat hazard
function.

Relative power between spontaneous and evoked LFP. We calculated the
relative power between spontaneous and evoked LFP (forward-reverse filtered with
a fourth-order Butterworth at 5–50 Hz) by computing the sum-squared LFP
magnitude in a window just after stimulus onset (0–200 ms) divided by sum-
squared LFP magnitude just before stimulus onset (−200 to 0 ms) on the electrode
retinotopically aligned to the stimulus location in cortex. For LFP values λt at this
electrode, where t∈ {Δt, 2Δt, …, nΔt}, the relative power P is then

P ¼ ∑t3
t2
λ2t

∑t2
t1
λ2t

ð2Þ

where t1=−200 ms, t2= 0, and t3= 200 ms.

Computational simulations. The model consists of N LIF neurons, with Ne= 0.8N
excitatory units and Ni= 0.2N inhibitory. The membrane potential V(i) of the ith
neuron evolves according to the equations

Cm
_V

ið Þ ¼ GL EL � V ið Þ� �þ g ið Þ
e Ee � V ið Þ� �þ g ið Þ

i Ei � V ið Þ� � ð3Þ

τ e;if g _g
ið Þ
e;if g ¼ �g ið Þ

e;if g ð4Þ

where Cm is the membrane capacitance, GL is the leak conductance, EL is the
resting membrane potential, τ{e,i} are the excitatory and inhibitory synaptic time
constants, g{e,i}((i)) are the time-dependent synaptic conductances of the ith neuron,
and E{e,i} are the reversal potentials for excitatory and inhibitory synaptic trans-
mission, respectively.

When V(i) exceeds threshold VT at time ts, the following spike and reset
conditions occur:

V ið Þ 7!V r ð5Þ

tn ¼ ts þ τ i;jð Þ; g jð Þ
e;if g 7! g

jð Þ
e;if g þ G e;if g 8j 2 1;K½ � ð6Þ

where Vr is the reset potential, tn is the time at which the postsynaptic neuron
receives its input following axonal and synaptic delays, G{e,i} are the excitatory and
inhibitory synaptic weights, g{e,i}((j)) are the excitatory and inhibitory conductances
of postsynaptic neuron j ≠ i, respectively, and K is the number of postsynaptic
targets of neuron i. Immediately after neuron i spikes, it undergoes a refractory
period of τr where the membrane potential is not updated.

Network connectivity and axonal conduction delays. We studied spiking net-
work models with unstructured, random connectivity (random networks, Fig. 2a)
or topographic, locally random connectivity (topographic networks, Fig. 2d) or a
dense version of the topographic network (dense network, Figs. 7 and 8). The
Ne= 0.8N excitatory neurons, of indices 1, 2, …, Ne, where Ne is a square number,
are arranged uniformly on a 2D grid. Similarly, the Ni= 0.2N inhibitory neurons,
of indices Ne+ 1, Ne+ 2, …, N, where Ni is also a square number, are arranged
uniformly on a 2D grid. Both grids have side length L and they are concentric,
together forming a 2D sheet of the N neurons.

In the random network, connections were randomly and uniformly drawn, and
the only delay modeled was that relating to synaptic vesicle release, τs, which was
short and homogeneous across the network. In the topographic and dense
networks, connections were randomly drawn from an isotropic 2D Gaussian
probability distribution of zero mean and SD σ in either dimension. σ is 400 µm
except in Fig. 6a, where the effect of this parameter was studied systematically. In
all networks, there were no self- or double-connections. Axonal conduction delays
increased linearly with distance between pre- and postsynaptic cells:

τ i;jð Þ ¼ τs þ
d i;jð Þ

v
i;jð Þ
c

ð7Þ

where τ(i,j) is the delay from neuron i to neuron j, τs is the same delay representing
synaptic vesicle release as in the random network, d(i,j) is the Euclidean distance
between neurons i and j, and vc((i,j)) is the axonal conduction speed for the
connection from neuron i to neuron j. All distances were calculated taking 2D
periodic boundary conditions into account, effectively wrapping the network onto
a toroidal topology58,81. 1D versions of the random and topographic networks were
also simulated. The models were the same as in the 2D cases, except the neurons
were positioned on a ring of length L with periodic boundary conditions.

Self-sustained activity. Instead of initializing self-sustained activity through a
“kick” of external Poisson input spikes34,35,38, which may induce trace activity
correlations, we recorded the state variables of a self-sustained network, including
membrane potential (V(i)) and conductance (g{e,i}((i))), after a long period (10 s) of
simulated self-sustained activity. Taking these distributions as a steady state, we
then used the Gaussian approximation (mean and variance) to initialize the
membrane potentials and conductances with randomly drawn values in the
simulations thereafter. After starting the simulation with these initial conditions,
networks with approximately balanced excitation and inhibition exhibit self-sus-
tained, irregular spiking activity. Each simulation ran for 1.2 s, from which we
eliminated the first 200 ms from our analysis in case of residual initialization
artifacts.

Spike train statistics and the asynchronous-irregular regime. To characterize
basic spike train statistics, we randomly selected 5000 neurons in the simulation
and measured the mean firing rate, CV (defined as the ratio of the standard
variation of the interspike interval to the mean for each neuron that has a mini-
mum of three spikes over the simulation window), and the average pairwise cor-
relation (average Pearson’s correlation between spike trains smoothed with a
100 ms window for 1000 randomly selected pairs). To prevent longer simulations
with high firing rates during our parallel runs, networks that produced mean firing
rates over 25 sp/s had an early exit condition. Simulations were classified as
asynchronous irregular if the mean firing rate across all simulated units was >1 and
<25 sp/s; the mean CV across all units was >0.7 and <1.438,102.

Pairwise spike coherence. Pairwise spike coherence was calculated using multi-
taper methods85. We took the spike trains from the 10 × 10 excitatory neurons
comprising the pool for estimating the LFP and an adjacent LFP pool. The 1000 ms
of simulation time was broken into 500 ms epochs, stepping 125 ms to cover the
full period. The DC component of each unit’s spike train was removed, and tapered
with a single Slepian taper, giving an effective smoothing of 2.5 Hz for the 500 ms
data windows.

To estimate the coherence between two spike trains x= [x1 x2…xi…xn] and
y= [y1 y2…yi…yn], we first calculated their FFT spectra X= [X1 X2…Xj…Xm] and
Y= [Y1 Y2…Yj…Ym], respectively, where j denotes the index of spectral frequency.
The auto- and cross-spectral densities are calculated as

Sxxj ¼ 2Δt2

T
XjX

*
j

ð8Þ

and

Sxyj ¼ 2Δt2

T
XjY

*
j

ð9Þ

respectively, where Δt is the sampling interval, T is the spike train duration, and
superscript * denotes complex conjugation. In practice, x and y each represent
pools of 100 concurrent spike trains across space. The coherence at a given spectral
frequency is calculated as

Cxy
j ¼

Sxyj

���
���

ffiffiffiffiffiffiffiffiffiffiffiffi
Sxxj Syyj

q ð10Þ

This coherence calculation is averaged across ten trials to generate an estimate
of the average coherence at each frequency as well as an estimate of the variance.
For estimating differences in pairwise coherence across networks, we take the
frequency with the maximum coherence in the two networks.

NETSIM software. Simulations were generated using a specialized program called
NETSIM (v0.1), which is ~1500 lines of C code (available at http://mullerlab.github.io).
Equations in the model were integrated using the forward Euler method with a time
step of 0.1ms. Simulation results were additionally point-checked with shorter time-
steps throughout. Random numbers were generated using a C implementation of the
ISAAC algorithm103 (Tom Bartol, personal communication, 2016). To verify the
numerical integration in this program, we confirmed the network displayed the correct
firing rate for unconnected LIF neurons with varying DC-current injections. We also
verified simulations under a simple feed-forward network topology to confirm the
accuracy of the simulations. In addition, to ensure reproducibility of our computational
simulations104, we compared results from NETSIM and Brian2 at specific points in the
(Ge,Gi) parameter space for the balanced random network model, verifying that the
mean firing rate, CV, and cross-correlation were in agreement between the two
simulators.

Network parameter scans. In order to identify the excitatory and inhibitory
synaptic conductance weights that produced self-sustained and asynchronous-
irregular activity, we simulated networks with 50 values of Ge ranging from 0.1 to
5 nS and Gi ranging from 1 to 50 nS for a total of 2500 simulations (Table S2). In
order to determine the effect of network scale on the range of these 2500 simula-
tions that produced self-sustained and asynchronous-irregular activity, we repeated
these simulations five times with varying parameters of network size, neuron
number, and connections per neuron (Table S2). The number of neurons per
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network size was chosen to maintain a density of 28,125 neurons/mm2. The
number of connections was chosen to maintain the density of connections within
the Gaussian used to assign connections across network sizes. For larger networks
(> 2 mm), the connection number did not grow with the size of the network, as
99% of the connections occur within 3 SDs of the Gaussian (σ= 400 μm). In order
to run these simulations across all combinations of network size and conductance
parameters, we utilized the Extreme Science Engineering Discovery Environment
Comet cluster at the San Diego SuperComputer center at UC San Diego. Data
analysis for these simulations was also performed on the Comet cluster running
MATLAB. Circular variables were analyzed using the Circular Statistics Toolbox.

Calculation of LFP estimate. We utilized a previously developed proxy for the LFP
generated by a network of point LIF neurons, which was systematically developed
from a spatially extended model39. The LFP estimate λ(t) is computed as a
weighted sum of the excitatory and inhibitory synaptic currents Ie and Ii across m
excitatory cells in each 10 × 10 neuron pool:

λ tð Þ ¼ ∑
m

j¼1
I

jð Þ
e t � τð Þ � α ∑

m

j¼1
I

jð Þ
i tð Þ ð11Þ

where τ= 6 ms, α= 1.65, and m= 100 excitatory cells. These values of τ and α
were found by the authors to have an optimal agreement with the LFP generated
from a three-dimensional model of spatially extended multi-compartment model
neurons39 and are the values used here. Here, we computed the LFP using the
pooled excitatory and inhibitory synaptic conductances and the driving force
between the mean pooled membrane potential and the synaptic reversal potential
to calculate the average current in the pool. We verified that this approach was
nearly precisely equivalent to the proxy calculated using synaptic inputs to each
individual neuron in the pool. This LFP proxy is then computed for each 10 × 10
neuron pool across the 2D network. The LFP proxy was thus independent across
each spatial pool, unlike cortical recordings where LFP signals show varying
frequency-dependent scales of spatial integration105. We note that excluding these
effects is a conservative step, as the addition of spatial integration would only
increase traveling waves in the LFP. Further, we note that our results do not depend
critically on the choice of LFP proxy and our conclusions are unchanged when
analyzing the mean membrane potentials or excitatory synaptic conductances.

In order to compare the properties of waves in our model, where LFP signals are
independent across space, with waves recorded from the cortex, where electrodes
pool signals across a volume ~250 μm in radius29,106, we convolved the LFP with a
2D Gaussian kernel (with a spatial standard deviation of four LFP bins,
corresponding to a radius of 272 μm) before further analysis.

Analysis of spatiotemporal dynamics. To analyze spatiotemporal dynamics in
the population activity produced by the spiking network model, we used a tech-
nique we recently developed for the wideband analysis of nonstationary data.
Briefly, for each real-valued time series λ(x,y) (t) ∀ x∈ [1,Nc],y∈ [1,Nr], where Nc

and Nr are the numbers of columns and rows, respectively, we compute the GP
ϕ(x,y) of the wideband filtered LFP (fourth-order Butterworth from 5 to 100 Hz) at
each point using the corrected analytic signal representation introduced in recent
work17. We next calculated the gradient of GP gðx;yÞðtÞ at each moment in time:

gx;y tð Þ ¼ �∇ϕx;y tð Þ ð12Þ
For the spatial gradient, derivatives are taken across the two dimensions of space and

are approximated by the appropriate forward and centered finite differences (formulas
and code available in the wave MATLAB toolbox: https://github.com/mullerlab/wave-
MATLAB/blob/master/analysis/phase_gradient_complex_multiplication.m). As in
previous work, phase differences were implemented as multiplications in the complex
plane44,107,

Δϕn ¼ arg Λnþ1Λ
*
n

h i
ð13Þ

so that the unwrapping phase across the two dimensions of the network was not
necessary. Here, Λ is the analytic signal representation of λ(t). Wavelength is the
reciprocal of the phase gradient magnitude at each point in space and time:

νx;y ¼
1

gx;y

���
��� ð14Þ

As specified in the main text, significance was determined at each point in space
and time by comparing observed wavelengths to a spatial shuffle of electrode
positions, with the 99th percentile of the shuffle distribution serving as a threshold.
The fraction of wave state (Fig. 4a) is the ratio between points with detected waves
over all points αw/α, where αw is the number of points with detected waves and α is
the total number of points tested.

Wave speed s(t) was computed as the ratio of instantaneous frequency to phase
gradient magnitude96,

s tð Þ ¼
∂ϕ
∂t

gx;y

���
��� ð15Þ

We further analyzed the spatiotemporal activity patterns using a 2D spectral
decomposition in space and time (Figs. 3b and 5b). To do this, we calculated the

2D FFT of λ(x,y) (t) for each 1D slice through the network by transforming first in
space, and then in time. To account for the spatial and temporal autocorrelation in
the data, each slice’s spectrum was normalized by dividing the spectrum produced
from a spatial and temporal shuffle respectively. This normalization allows
visualization of the spectral line representing traveling waves in the network LFP; it
is important to note, however, that the spectral peak representing traveling waves is
nevertheless clear in the raw spectrum. The normalized spectrum for each slice
through the network was then averaged together.

Calculation of response gain. To quantify the sensitivity of the sparse- and dense-
wave network regimes to incoming stimulation, we first identified depolarized and
hyperpolarized states from the LFP of a 0.2 × 0.2mm2 neuron pool defined by the
spike-phase bins that generated the maximum or minimum spiking probability,
respectively, for each network regime. We then applied feed-forward stimulation of 20-
Hz Poisson spiking inputs to 100 synapses for each neuron within the pool for 10ms,
aligned to the depolarized or hyperpolarized phase in the network. This process was
repeated across 40 trials, yielding a distribution of evoked responses. The same random
seed was used to construct the networks across each trial, so that the simulations were
identical up to the point of stimulation. We calculated the sum of firing rate during
stimulus for the evoked response divided by that of the no-stimulus case.

Calculation of the spike-phase index. The degree of spike-phase coupling was
measured as the mean resultant vector length for the LFP (filtered with a forward-
reverse fourth-order Butterworth filter from 5 to 100 Hz) phase distribution from
observed spike times. This measure was calculated using the circ_r function in the
Circular Statistics Toolbox for MATLAB (P. Berens, CircStat: A MATLAB Toolbox
for Circular Statistics, Journal of Statistical Software, Volume 31, Issue 10, 2009).
The mean resultant r of the spike-phase distribution is the normalized sum over
complex exponentials of the phase angles ϕj,

r ¼ 1
M

∑
M

j¼1
eiϕj ð16Þ

whereM is the number of spikes, the modulus of r (|r|∈ [0,1]) represents the degree of
spike-phase modulation, and i2=−1. The closer r is to 0, the more uniform the phase
distribution. The closer it is to 1, the more concentrated the phases.

Statistics and reproducibility. Experimental results from in vivo electro-
physiology were generated in an initial monkey and replicated in a second monkey
with a similar result. All analyses that stemmed from previous experimental work
were reproduced from newly written analysis code. Network simulations and
subsequent data analysis including statistical tests were initially generated and then
repeated on separate machines across different institutes to ensure the reprodu-
cibility of the results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Access to the raw simulation data and the processed electrophysiology data used in this
study are available at https://github.com/mullerlab/davis2021ncomms. Source data are
provided with this paper.

Code availability
An open-source code repository for all analysis methods is available on https://
github.com/mullerlab/davis2021ncomms. The open-source code for the custom
simulation framework NETSIM is available at https://github.com/mullerlab/NETSIM.
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