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Abstract

Cortical neurons process and integrate information on multiple timescales. In
addition, these timescales or temporal receptive fields display functional and hierar-
chical organization. For instance, areas important for working memory (WM), such
as prefrontal cortex, utilize neurons with stable temporal receptive fields and long
timescales to support reliable representations of stimuli. Despite of the recent ad-
vances in experimental techniques, the underlying mechanisms for the emergence
of neuronal timescales long enough to support WM are unclear and challenging
to investigate experimentally. Here, we demonstrate that spiking recurrent neural
networks (RNNs) designed to perform a WM task reproduce previously observed
experimental findings and that these models could be utilized in the future to study
how neuronal timescales specific to WM emerge.

1 Introduction

Previous studies have shown that higher cortical areas such as prefrontal cortex operate on a long
timescale, measured as the spike-count autocorrelation decay constant at rest [1]. These long
timescales have been hypothesized to be critical for performing working memory (WM) computations
[2, 3], but it is experimentally challenging to probe the underlying circuit mechanisms that lead to
stable temporal properties.

Recurrent neural network (RNN) models trained to perform WM tasks could be a useful tool if
these models also utilize units with long heterogeneous timescales and capture previous experimental
findings. However, such RNN models have not yet been identified. In this study, we construct a
spiking RNN model to perform a WM task and compare the emerging timescales with the timescales
derived from the prefrontal cortex of rhesus monkeys trained to perform similar WM tasks. We show
that both macaque prefrontal cortex and the RNN model utilize units/neurons with long timescales
during delay period to sustain stimulus information. In addition, the number of units with long
timescales was significantly reduced in the RNN model trained to perform a non-WM task, further
supporting the idea that neuronal timescales are task-specific and functionally organized.

2 Spiking RNN model

We employed a spiking RNN model based on leaky integrate-and-fire (LIF) units recurrently con-
nected to one another. These units are governed by:

τm
dvi(t)

dt
= −vi(t) + (xi(t) + Iext(t))R (1)
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where τm is the membrane time constant (10 ms), vi(t) is the membrane voltage of unit i at time t,
xi(t) is the synaptic input current that unit i receives at time t, Iext is the external input current, andR
is the leak resistance (set to 1). The synaptic input current (x) is modeled using a single-exponential
synaptic filter applied to the presynaptic spike trains:

τsi
dxi(t)

dt
= −xi(t) +

N∑
j=1

wij

∑
tjk<t

δ(t− tjk) (2)

where τsi is the synaptic decay time constant of unit i, wij defines the synaptic connectivity strength
from unit j to unit i, and the second summation refers to the spike train produced by unit j.

We used the method that we previously developed in [4] to construct LIF RNNs that performed a
delayed match-to-sample task (DMS; Figure 1A top). Briefly, we trained several continuous-variable
rate RNNs to perform the DMS task using a gradient descent algorithm, and the trained networks
were then mapped to LIF networks. In total, we trained 40 RNNs of 200 units (80% excitatory and
20% inhibitory units) to perform the task. The synaptic decay constants (τs) were optimized and
constrained to vary between 20 ms and 125 ms, but the major findings presented here did not change
when the synaptic decay constants were not optimized (i.e. fixed to a constant value; see Section A).
All the units from the trained RNNs that satisfied the preprocessing criteria were pooled for the
spike-count autocorrelation analysis (see Section 4).

The task began with a 1 s of fixation period (i.e. no external input) followed by two sequential input
stimuli (each stimulus lasting for 0.25 s) separated by a delay period (0.75 s). The input signal was
set to either -1 or +1 during the stimulus window. If the two sequential stimuli had the same sign
(-1/-1 or +1/+1), the network was trained to produce an output signal approaching +1 after the offset
of the second stimulus (Figure 1A). If the stimuli had opposite signs (-1/+1 or +1/-1), the network
produced an output signal approaching -1 (Figure 1A).
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Figure 1: RNN and experimental task paradigms. A. DMS task
paradigm used to construct the RNN model. Network output and
spike rasters from an example RNN model. B. DMS task paradigm
used by Constantinidis et al. [5] for the experimental data.

To ensure that the spiking RNN model
we employed here is a valid model
for investigating neuronal timescales
observed in the prefrontal cortex, we
compared the findings from our model
to the findings obtained from a pub-
licly available dataset [6, 7, 5]. The
dataset contains single-neuron spike
train recordings from ventral and dor-
sal prefrontal cortex of four rhesus
monkeys performing DMS tasks (Fig-
ure 1B). The spike trains of 3257
neurons recorded in the dorsolateral
prefrontal cortex (dlPFC) were ana-
lyzed for the spike-count autocorrela-
tion analysis. More details regarding
the dataset and the tasks can be found
in [6, 7].

4 Neuronal timescales specific to working memory

Spike-count autocorrelation decay time constants. To characterize the temporal receptive field,
we computed the decay time constant of the spike-count autocorrelation for each unit/neuron during
the fixation period [1]. For each unit/neuron, we first binned the spike trains (during the fixation
period) over multiple trials using a non-overlapping 50-ms moving window. Since the fixation period
duration was 1 s for both RNN and experimental models, this resulted in a [Number of Trials × 20]
spike-count matrix for each unit/neuron. For the experimental data, the minimum number of trials
required for a neuron to be considered for analysis was 11 trials. The average number of trials from
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all the neurons included in the analysis was 84.8 ± 34.5 trials. For the RNN model, we generated 50
trials for each unit.

Next, a Pearson’s correlation coefficient (ρ) was computed between two time bins (i.e. two columns
in the spike-count matrix) separated by a lag (∆). The coefficient was calculated for all possible
pairs with the maximum lag of 650 ms. The coefficients were averaged for each lag value, and an
exponential decay function was fitted across the average coefficient values (ρ̄) using the Levenberg-
Marquardt nonlinear least-squares method:

ρ̄(∆) = A

(
exp

(
−∆

σ

)
+B

)
(3)

where A and B are the amplitude and the offset of the fit, respectively. The timescale (σ) defines how
fast the autocorrelation decays.
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Figure 2: Histograms of the intrinsic timescales extracted from all the
units in the RNNs (before and after training) and the experimental data.
Solid vertical line, median.

The following three inclusion cri-
teria (commonly used in previ-
ous experimental studies) were
applied to the RNN model and
the experimental data: (1) 0 <
σ ≤ 500 ms, (2) A > 0, and (3)
a first decrease in ρ earlier than
∆ = 150 ms. In addition, the
fitting was started after a first de-
crease in autocorrelation.

As shown in Figure 2 (left), the timescales extracted from the untrained RNNs (sparse, random
Gaussian connectivity weights; 2769 units from 40 RNNs satisfied the inclusion criteria) were
right-skewed. On the other hand, the trained RNNs (841 units from 40 RNNs satisfied the inclusion
criteria) and the experimental data (959 units from 4 monkeys satisfied the inclusion criteria) were
heavily left-skewed, suggesting that both trained model and data contained predominantly units with
long timescales (Figure 2). The distributions and the average autocorrelation values from the RNN
model and the experimental data were within those previously reported [1–3].
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Figure 3: Cross-temporal discriminability scores from
the experimental (top) and RNN (bottom) models. Red
contours indicate significant discriminability (cluster-
based permutation test; P < 0.05).

Units with long neuronal timescales encode
information robustly. Next, we investigated
to see if the units/neurons with longer timescales
were involved with more stable coding using
cross-temporal decoding analysis [2]. For each
cue stimulus identity, the trials of each neuron
were divided into two splits in an interleaved
manner (i.e. even vs odd trials). All possi-
ble pairwise differences (in instantaneous firing
rates) between cue conditions were computed
within each split. Finally, a Fisher-transformed
Pearson correlation coefficient was computed
between the pairwise differences of the first split
at time t1 and the differences of the second split
at time t2. A high Fisher-transformed correla-
tion value (i.e. high discriminability) represents
a reliable cue-specific difference present in the
network population.

We performed the above analysis on short and
long neuronal timescale subgroups from the
experimental data and the RNN model. A
unit/neuron was assigned to the short σ group if
its timescale was smaller than the lower quartile

value. The upper quartile was used to identify units/neurons with large autocorrelation decay time
constants. There were 122 short σ and 128 long σ neurons for the experimental data. For the RNN
model, there were 210 units in each subgroup.
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The cross-temporal discriminability matrices (Figure 3) indicate that stronger cue-specific differences
across the delay period were present in the long σ subgroup compared to the short σ subgroup for both
experimental data and the RNN model. These results are consistent with the previous experimental
findings [2, 3], and suggest that longer neuronal timescales correspond to more stable coding.

Task-specific temporal receptive fields. Murray et al. [1] demonstrated that the hierarchical or-
ganization of the neuronal timescales from different cortical areas closely tracks the anatomical
hierarchical organization. For instance, sensory areas important for detecting incoming stimuli house
predominantly neurons with short timescales. On the other hand, higher cortical areas including
prefrontal areas may require neurons with stable temporal receptive fields that are capable of encoding
and integrating information on a longer timescale.
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Figure 4: A. Neuronal timescale distributions from Go-NoGo and DMS
RNN models. 1143 units from the Go-NoGo RNNs; 841 units from the
DMS RNNs; Solid vertical line, median. B. Average timescales from 40
RNNs for each task model (GNG and DMS). Each circle represents the
average value from one RNN. Student’s t-test, ***P < 0.0001.

To investigate if such functional
specialization also emerges in
our spiking model, we trained
another group of spiking RNNs
(40 RNNs) on a simpler task
that did not require WM. The
task paradigm is modeled after a
Go-NoGo task, and required the
RNNs to respond immediately af-
ter the cue stimulus: output ap-
proaching -1 for the “-1” cue and
+1 for the “+1” cue. Each cue
stimulus lasted for 125 ms. This
specific task paradigm, which we
refer to as Go-NoGo task, was
chosen since it does not involve WM, and it has been widely used to study how primary sensory areas
process sensory information. Apart from the task paradigm, all the other model parameters were
same as the RNNs trained to perform the DMS task.

The autocorrelation decay timescales extracted from the RNNs trained to perform the Go-NoGo task
were significantly shorter than the timescales obtained from the working memory RNNs (Figure 4).
The RNNs contained fewer units with long timescales compared to the DMS RNNs (Figure 4A),
and the timescales averaged by network were also significantly faster than the average timescales
from the DMS networks (Figure 4B). In addition, the average autocorrelation timecourse for the
Go-NoGo networks decayed faster than the one from the DMS RNNs and resembled the timecourses
obtained from the primary somatosensory cortex and the medial-temporal area in the visual cortex
(see Figure 1C in [1]). These findings indicate that the neuronal timescales of our RNN models are
task-specific and possibly organized in a hierarchical fashion.

5 Conclusions and future work

In this study, we employed a spiking RNN model of WM to investigate if the model exhibits and
utilizes heterogeneous timescales for prolonged integration of information. We validated the model
using an experimental dataset obtained from rhesus monkeys trained on WM tasks: the model and the
primate prefrontal cortex both displayed similar heterogeneous neuronal timescales and incorporated
units/neurons with long timescales to maintain stimulus information. The timescales from the RNN
model trained on a non-WM task (Go-NoGo task) were markedly shorter, since units with long
timescales were not required to support the simple computation. Future works include characterizing
the network dynamics and the circuit motifs of the DMS RNN model to elucidate connectivity
structures required to give rise to the diverse, stable temporal receptive fields specific to WM.
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A Appendix: Effects of synaptic decay constants on neuronal timescales

Here, we demonstrate that the timescales that we obtained from the two RNN models (Go-NoGo and
DMS) are not largely driven by the synaptic decay time constants (τs) that we optimized to construct
the spiking RNNs. For each task model, we trained 40 RNNs with the synaptic decay constants
fixed to 125 ms. Even though all the units now had τs = 125 ms, the timescale distributions from
both models were largely preserved (Figure 1A), and the hierarchy was also maintained (Figure 1B).
For the Go-NoGo model, the average timescale values (averaged by network) obtained from the
τs optimized RNNs were significantly smaller than the timescales computed from the RNNs with
τs = 125 ms: 93.8 ± 27.6 ms and 109.1 ± 21.0 ms for the τs optimized and fixed RNNs, respectively.
On the other hand, the average timescales from the τs optimized DMS RNNs were significantly larger
than the ones extracted from the fixed τs networks: 157.0 ± 32.0 ms and 141.1 ± 27.6 ms for the
τs optimized and fixed RNNs, respectively. Therefore, increasing the synaptic decay time constant
for all the units to 125 ms did not necessarily lead to increased neuronal timescales, suggesting that
connectivity patterns and structures might play a bigger role in governing task-specific timescales.
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Figure 1: A. Neuronal timescale distributions from Go-NoGo and DMS RNN models with τs fixed to 125 ms.
1353 units from the Go-NoGo RNNs; 1098 units from the DMS RNNs; Solid vertical line, median. B. Average
timescales from 40 RNNs for each task model (GNG and DMS). Each circle represents the average value from
one RNN. Student’s t-test, ***P < 0.0001.
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